Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of values that have the property "Describe output parameters model" assigned.

⧼showingresults⧽

View (previous 50 | ) (20 | 50 | 100 | 250 | 500)


    

List of results

  • --  +
  • A plot, and/or the value of the NetCDF file at the designated cell  +
  • Air Frost number  +
  • Amount of deflection of the crust as a function of horizontal position  +
  • Amount of deflection of the crust as a function of horizontal position.  +
  • Amount of the bed shear stress capable of transporting grains  +
  • Arc ASCII grids of topography and non-erodible basement.  +
  • Bank profile and simulated erosion rates  +
  • "channel__bed_shear_stress": { "dtype": f"channel__bed_shear_stress": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "Pa",</br>"mapping": "node",</br>"doc": "Shear exerted on the bed of the channel, assuming all discharge travels along a single, self-formed channel",</br>}</br></br>"channel__depth": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": True,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Depth of the a single channel carrying all runoff through the node",</br>}</br></br>"channel__discharge": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m**3/s",</br>"mapping": "node",</br>"doc": "Volumetric water flux of the a single channel carrying all runoff through the node",</br>}</br></br>"channel__width": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": True,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Width of the a single channel carrying all runoff through the node",</br>}</br></br>"channel_sediment__relative_flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "The fluvial_sediment_flux_into_node divided by the fluvial_sediment_transport_capacity",</br>}</br></br>"channel_sediment__volumetric_flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m**3/s",</br>"mapping": "node",</br>"doc": "Total volumetric fluvial sediment flux brought into the node from upstream",</br>}</br></br>"channel_sediment__volumetric_transport_capacity": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m**3/s",</br>"mapping": "node",</br>"doc": "Volumetric transport capacity of a channel carrying all runoff through the node, assuming the Meyer-Peter Muller transport equation",</br>}</br></br>"drainage_area": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m**2",</br>"mapping": "node",</br>"doc": "Upstream accumulated surface area contributing to the node's discharge",</br>}</br></br>"flow__link_to_receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "ID of link downstream of each node, which carries the discharge",</br>}</br></br>"flow__receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array of receivers (node that receives flow from current node)",</br>}</br></br>"flow__upstream_node_order": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array containing downstream-to-upstream ordered list of node IDs",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "inout",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}</br></br>"topographic__steepest_slope": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "The steepest *downhill* slope",</br>} "doc": "The steepest *downhill* slope", }  +
  • "channel__chi_index": { "dtype": float, ""channel__chi_index": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "variable",</br>"mapping": "node",</br>"doc": "the local steepness index",</br>},</br></br>"drainage_area": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m**2",</br>"mapping": "node",</br>"doc": "Upstream accumulated surface area contributing to the node's discharge",</br>},</br></br>"flow__link_to_receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "ID of link downstream of each node, which carries the discharge",</br>},</br></br>"flow__receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array of receivers (node that receives flow from current node)",</br>},</br></br>"flow__upstream_node_order": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array containing downstream-to-upstream ordered list of node IDs",</br>},</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>},</br></br>"topographic__steepest_slope": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "The steepest *downhill* slope",</br>} "doc": "The steepest *downhill* slope", }  +
  • "channel__steepness_index": { "dtype": fl"channel__steepness_index": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "variable",</br>"mapping": "node",</br>"doc": "the local steepness index",</br>}</br></br>"drainage_area": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m**2",</br>"mapping": "node",</br>"doc": "Upstream accumulated surface area contributing to the node's discharge",</br>}</br></br>"flow__link_to_receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "ID of link downstream of each node, which carries the discharge",</br>}</br></br>"flow__receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array of receivers (node that receives flow from current node)",</br>}</br></br>"flow__upstream_node_order": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array containing downstream-to-upstream ordered list of node IDs",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}</br></br>"topographic__steepest_slope": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "The steepest *downhill* slope",</br>} "doc": "The steepest *downhill* slope", }  +
  • "depression__depth": { "dtype": float, "i"depression__depth": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Depth of depression below its spillway point",</br>}</br></br>"depression__outlet_node": </br>{</br>"dtype": int,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "If a depression, the id of the outlet node for that depression, otherwise grid.BAD_INDEX",</br>}</br></br>"flood_status_code": </br>{</br>"dtype": int,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Map of flood status (_PIT, _CURRENT_LAKE, _UNFLOODED, or _FLOODED).",</br>}</br></br>"is_pit": </br>{</br>"dtype": bool,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Boolean flag indicating whether a node is a pit.",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}": "Land surface topographic elevation", }  +
  • "distance_to_divide": { "dtype": float, ""distance_to_divide": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Distance from drainage divide.",</br>}</br></br>"drainage_area": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m**2",</br>"mapping": "node",</br>"doc": "Upstream accumulated surface area contributing to the node's discharge",</br>}</br> </br>"flow__link_to_receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "ID of link downstream of each node, which carries the discharge",</br>}</br> </br>"flow__receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array of receivers (node that receives flow from current node)",</br>}</br> </br>"flow__upstream_node_order": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array containing downstream-to-upstream ordered list of node IDs",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}": "Land surface topographic elevation", }  +
  • "drainage_area": { "dtype": float, "inten"drainage_area": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m**2",</br>"mapping": "node",</br>"doc": "Upstream accumulated surface area contributing to the node's discharge",</br>}</br></br>"flow__link_to_receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "ID of link downstream of each node, which carries the discharge",</br>}</br></br>"flow__receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array of receivers (node that receives flow from current node)",</br>}</br></br>"flow__upstream_node_order": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array containing downstream-to-upstream ordered list of node IDs",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "inout",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}": "Land surface topographic elevation", }  +
  • "drainage_area": { "dtype": float, "inten"drainage_area": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m**2",</br>"mapping": "node",</br>"doc": "Upstream accumulated surface area contributing to the node's discharge",</br>}</br></br>"flow__receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array of receivers (node that receives flow from current node)",</br>}</br></br>"flow__upstream_node_order": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array containing downstream-to-upstream ordered list of node IDs",</br>}</br></br>"lateral_erosion__depth_increment": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Change in elevation at each node from lateral erosion during time step",</br>}</br></br>"sediment__flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m3/y",</br>"mapping": "node",</br>"doc": "Sediment flux (volume per unit time of sediment entering each node)",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "inout",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}</br></br>"topographic__steepest_slope": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "The steepest *downhill* slope",</br>}</br></br>"volume__lateral_erosion": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m3",</br>"mapping": "node",</br>"doc": "Array tracking volume eroded at each node from lateral erosion",</br>}oded at each node from lateral erosion", }  +
  • "drainage_area": { "dtype": float, "inten"drainage_area": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": True,</br>"units": "m**2",</br>"mapping": "node",</br>"doc": "Upstream accumulated surface area contributing to the node's discharge",</br>},</br> </br>"flow__link_to_receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "ID of link downstream of each node, which carries the discharge",</br>},</br> </br>"flow__receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array of receivers (node that receives flow from current node)",</br>} that receives flow from current node)", }  +
  • "flow__link_direction": { "dtype": np.int"flow__link_direction": </br>{</br>"dtype": np.int8,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "link",</br>"doc": "Direction of flow on link. A value of -1 indicates that water flow goes from head node to tail node, while a value of 1 indicates that water flow goes from tail node to head node.",</br>}</br> </br>"flow__link_to_receiver_node": </br>{</br>"dtype": int,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "ID of link downstream of each node, which carries the discharge",</br>}</br></br>"flow__receiver_node": </br>{</br>"dtype": int,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array of receivers (node that receives flow from current node)",</br>}</br></br>"flow__sink_flag": </br>{</br>"dtype": bool,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Boolean array, True at local lows",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": True,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}</br></br>"topographic__steepest_slope": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "The steepest *downhill* slope",</br>} "doc": "The steepest *downhill* slope", }  +
  • "flow__link_to_receiver_node": { "dtype":"flow__link_to_receiver_node": </br>{</br>"dtype": int,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "ID of link downstream of each node, which carries the discharge",</br>}</br></br>"flow__receiver_node": </br>{</br>"dtype": int,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array of receivers (node that receives flow from current node)",</br>}</br></br>"flow__sink_flag": </br>{</br>"dtype": bool,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Boolean array, True at local lows",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": True,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}</br></br>"topographic__steepest_slope": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "The steepest *downhill* slope",</br>} "doc": "The steepest *downhill* slope", }  +
  • "flow__potential": { "dtype": float, "int"flow__potential": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m**3/s",</br>"mapping": "node",</br>"doc": "Value of the hypothetical field 'K', used to force water flux to flow downhill",</br>}</br></br>"surface_water__depth": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Depth of water on the surface",</br>}</br></br>"surface_water__discharge": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m**3/s",</br>"mapping": "node",</br>"doc": "Volumetric discharge of surface water",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}</br></br>"water__unit_flux_in": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m/s",</br>"mapping": "node",</br>"doc": "External volume water per area per time input to each node (e.g., rainfall rate)",</br>}put to each node (e.g., rainfall rate)", }  +
  • "flow__receiver_node": { "dtype": int, "i"flow__receiver_node": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Node array of receivers (node that receives flow from current node)",</br>}</br></br>"sediment__deposition_coeff": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "-",</br>"mapping": "node",</br>"doc": "Fraction of incoming sediment that is deposited on the node",</br>}</br></br>"sediment__deposition_rate": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m/yr",</br>"mapping": "node",</br>"doc": "Deposition rate on node",</br>}</br></br>"sediment__erosion_rate": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m/yr",</br>"mapping": "node",</br>"doc": "Erosion rate on node",</br>}</br></br>"sediment__flux_in": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m/yr",</br>"mapping": "node",</br>"doc": "Incoming sediment rate on node (=qs/dx)",</br>}</br></br>"sediment__flux_out": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m/yr",</br>"mapping": "node",</br>"doc": "Outgoing sediment rate on node = sediment eroded on node + sediment transported across node from upstream",</br>}</br></br>"sediment__transfer_rate": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m/yr",</br>"mapping": "node",</br>"doc": "Rate of transferred sediment across a node (incoming sediment - deposited sediment on node)",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "inout",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}</br></br>"topographic__steepest_slope": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m/m",</br>"mapping": "node",</br>"doc": "The steepest *downhill* slope",</br>} "doc": "The steepest *downhill* slope", }  +
  • "fracture_at_node": { "dtype": np.int8, "intent": "out", "optional": False, "units": "-", "mapping": "node", "doc": "presence (1) or absence (0) of fracture", }  +
  • "landslide__probability_of_failure": { "d"landslide__probability_of_failure": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "None",</br>"mapping": "node",</br>"doc": "number of times FS is <=1 out of number of iterations user selected",</br>}</br></br>"soil__density": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "kg/m3",</br>"mapping": "node",</br>"doc": "wet bulk density of soil",</br>}</br></br>"soil__internal_friction_angle": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "degrees",</br>"mapping": "node",</br>"doc": "critical angle just before failure due to friction between particles",</br>}</br></br>"soil__maximum_total_cohesion": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "Pa or kg/m-s2",</br>"mapping": "node",</br>"doc": "maximum of combined root and soil cohesion at node",</br>}</br></br>"soil__mean_relative_wetness": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "None",</br>"mapping": "node",</br>"doc": "Indicator of soil wetness; relative depth perched water table within the soil layer",</br>}</br></br>"soil__minimum_total_cohesion": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "Pa or kg/m-s2",</br>"mapping": "node",</br>"doc": "minimum of combined root and soil cohesion at node",</br>}</br></br>"soil__mode_total_cohesion": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "Pa or kg/m-s2",</br>"mapping": "node",</br>"doc": "mode of combined root and soil cohesion at node",</br>}</br></br>"soil__probability_of_saturation": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "None",</br>"mapping": "node",</br>"doc": "number of times relative wetness is >=1 out of number of iterations user selected",</br>}</br></br>"soil__saturated_hydraulic_conductivity": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m/day",</br>"mapping": "node",</br>"doc": "mode rate of water transmitted through soil - provided if transmissivity is NOT provided to calculate tranmissivity with soil depth",</br>}</br></br>"soil__thickness": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "soil depth to restrictive layer",</br>}</br></br>"soil__transmissivity": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m2/day",</br>"mapping": "node",</br>"doc": "mode rate of water transmitted through a unit width of saturated soil - either provided or calculated with Ksat and soil depth",</br>}</br></br>"topographic__slope": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "tan theta",</br>"mapping": "node",</br>"doc": "gradient of the ground surface",</br>}</br></br>"topographic__specific_contributing_area": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "specific contributing (upslope area/cell face ) that drains to node",</br>}upslope area/cell face ) that drains to node", }  +
  • "lithosphere__overlying_pressure_increment"lithosphere__overlying_pressure_increment": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "Pa",</br>"mapping": "node",</br>"doc": "Applied pressure to the lithosphere over a time step",</br>}</br></br>"lithosphere_surface__elevation_increment": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "The change in elevation of the top of the lithosphere (the land surface) in one timestep",</br>}ere (the land surface) in one timestep", }  +
  • "plant__age": { "dtype": float, "intent":"plant__age": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "Years",</br>"mapping": "cell",</br>"doc": "Age of plant",</br>}</br></br>"plant__live_index": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "None",</br>"mapping": "cell",</br>"doc": "1 - vegetation__cumulative_water_stress",</br>}</br></br>"vegetation__cumulative_water_stress": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "None",</br>"mapping": "cell",</br>"doc": "cumulative vegetation__water_stress over the growing season",</br>}</br></br>"vegetation__plant_functional_type": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "None",</br>"mapping": "cell",</br>"doc": "classification of plants (int), grass=0, shrub=1, tree=2, bare=3, shrub_seedling=4, tree_seedling=5",</br>}e=3, shrub_seedling=4, tree_seedling=5", }  +
  • "radiation__incoming_shortwave_flux": { ""radiation__incoming_shortwave_flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "W/m^2",</br>"mapping": "cell",</br>"doc": "total incident shortwave radiation over the time step",</br>}</br></br>"radiation__net_flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "W/m^2",</br>"mapping": "cell",</br>"doc": "net total radiation over the time step",</br>}</br></br>"radiation__net_longwave_flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "W/m^2",</br>"mapping": "cell",</br>"doc": "net incident longwave radiation over the time step",</br>}</br></br>"radiation__net_shortwave_flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "W/m^2",</br>"mapping": "cell",</br>"doc": "net incident shortwave radiation over the time step",</br>}</br></br>"radiation__ratio_to_flat_surface": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "None",</br>"mapping": "cell",</br>"doc": "ratio of total incident shortwave radiation on sloped surface to flat surface",</br>}</br></br>"surface__potential_evapotranspiration_rate": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "mm",</br>"mapping": "cell",</br>"doc": "potential sum of evaporation and potential transpiration",</br>}vaporation and potential transpiration", }  +
  • "radiation__incoming_shortwave_flux": { ""radiation__incoming_shortwave_flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "W/m^2",</br>"mapping": "cell",</br>"doc": "total incident shortwave radiation over the time step",</br>}</br></br>"radiation__net_shortwave_flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "W/m^2",</br>"mapping": "cell",</br>"doc": "net incident shortwave radiation over the time step",</br>}</br></br>"radiation__ratio_to_flat_surface": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "None",</br>"mapping": "cell",</br>"doc": "ratio of total incident shortwave radiation on sloped surface to flat surface",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}": "Land surface topographic elevation", }  +
  • "rainfall__flux": { "dtype": float, "inte"rainfall__flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "mm/hr",</br>"mapping": "node",</br>"doc": "Depth of water delivered per unit time in each storm",</br>}</br></br>"rainfall__total_depth_per_year": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "mm/yr",</br>"mapping": "node",</br>"doc": "Depth of water delivered in total in each model year",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": True,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}": "Land surface topographic elevation", }  +
  • "sediment_fill__depth": { "dtype": float,"sediment_fill__depth": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Depth of sediment added at eachnode",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "inout",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}": "Land surface topographic elevation", }  +
  • "soil__depth": { "dtype": float, "intent""soil__depth": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Depth of soil or weathered bedrock",</br>}</br></br>"soil_production__rate": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m/yr",</br>"mapping": "node",</br>"doc": "rate of soil production at nodes",</br>}oc": "rate of soil production at nodes", }  +
  • "soil__flux": { "dtype": float, "intent":"soil__flux": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m^2/yr",</br>"mapping": "link",</br>"doc": "flux of soil in direction of link",</br>}</br></br>"topographic__elevation": </br>{</br>"dtype": float,</br>"intent": "inout",</br>"optional": False,</br>"units": "m",</br>"mapping": "node",</br>"doc": "Land surface topographic elevation",</br>}</br></br>"topographic__slope": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "m/m",</br>"mapping": "link",</br>"doc": "gradient of the ground surface",</br>}"doc": "gradient of the ground surface", }  +
  • "surface__evapotranspiration": { "dtype":"surface__evapotranspiration": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "mm",</br>"mapping": "cell",</br>"doc": "actual sum of evaporation and plant transpiration",</br>}</br></br>"surface__potential_evapotranspiration_30day_mean": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "mm",</br>"mapping": "cell",</br>"doc": "30 day mean of surface__potential_evapotranspiration",</br>}</br></br>"surface__potential_evapotranspiration_rate": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "mm",</br>"mapping": "cell",</br>"doc": "potential sum of evaporation and potential transpiration",</br>}</br></br>"vegetation__cover_fraction": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "None",</br>"mapping": "cell",</br>"doc": "fraction of land covered by vegetation",</br>}</br></br>"vegetation__dead_biomass": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "g m^-2 d^-1",</br>"mapping": "cell",</br>"doc": "weight of dead organic mass per unit area - measured in terms of dry matter",</br>}</br></br>"vegetation__dead_leaf_area_index": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "None",</br>"mapping": "cell",</br>"doc": "one-sided dead leaf area per unit ground surface area",</br>}</br></br>"vegetation__live_biomass": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "g m^-2 d^-1",</br>"mapping": "cell",</br>"doc": "weight of green organic mass per unit area - measured in terms of dry matter",</br>}</br></br>"vegetation__live_leaf_area_index": </br>{</br>"dtype": float,</br>"intent": "out",</br>"optional": False,</br>"units": "None",</br>"mapping": "cell",</br>"doc": "one-sided green leaf area per unit ground surface area",</br>}</br></br>"vegetation__plant_functional_type": </br>{</br>"dtype": int,</br>"intent": "in",</br>"optional": False,</br>"units": "None",</br>"mapping": "cell",</br>"doc": "classification of plants (int), grass=0, shrub=1, tree=2, bare=3, shrub_seedling=4, tree_seedling=5",</br>}</br></br>"vegetation__water_stress": </br>{</br>"dtype": float,</br>"intent": "in",</br>"optional": False,</br>"units": "None",</br>"mapping": "cell",</br>"doc": "parameter that represents nonlinear effects of water deficit on plants",</br>}ear effects of water deficit on plants", }  +
  • "surface_water__depth": { "dtype": float, "intent": "inout", "optional": False, "units": "m", "mapping": "node", "doc": "Depth of water on the surface", }  +
  • "taxa__richness": { "dtype": int, "intent": "out", "optional": False, "units": "-", "mapping": "node", "doc": "The number of taxa at each node", }  +
  • "topographic__elevation": { "dtype": float, "intent": "inout", "optional": False, "units": "m", "mapping": "node", "doc": "Land surface topographic elevation", }  +
  • "topographic__elevation": { "dtype": float, "intent": "inout", "optional": True, "units": "m", "mapping": "node", "doc": "Land surface topographic elevation", }  +
  • * Calculation of snowmelt using the surface energy balance or a temperature index/enhanced temperature index method * Calculation of evapotranspiration for snow-free surfaces using the FAO Penman-Monteith method   +
  • * Query particle locations and travel tim</br>* Query particle locations and travel times at a given iteration</br>* Query particle locations at a given travel time</br>* Plot the particle exposure time distributions</br>* Animate the output images of particle locations</br>* Plot the travel paths specified particles have taken</br>* Plot the particle positions for a specified iteration or travel time</br>ns for a specified iteration or travel time   +
  • - output_raster: rasterized change detecti- output_raster: rasterized change detection data from .las</br>- acc_d8: flow accumulation raster</br>- fdir_d8: flow direction raster</br>- output_shapefile_path: query point shapefile </br>- output_shapefile: buffered flow path shapefile </br>- investigation_polygons_shapefile: investigation polygon shapefile (first generated, then populated with volume and geomorphometric data under the same name) geomorphometric data under the same name)  +
  • 1-D Metrics: (channel width, bank height, floodplain width); 2-D Metrics: (floodplain 2D metrics); 2-D HAND Metrics: (channel width and floodplain width)  +
  • 1. Floodwater depth raster 2. Smoothed (low-pass filter) floodwater depth raster  +
  • 2-dimensional distributions of the following: * Vegetation community (high- or low-flow-resistance) * Depth-averaged flow speed and directional components * Bed shear stress * Soil elevation * Suspended sediment concentration  +
  • 2D longitudinal profiles, multiple grainsizes, probabilistic stratigraphic sections.  +
  • 3D fields of temperature, salinity, velocity, turbulent kinetic energy; 2D fields of surface elevation, vertically averaged velocity, stream function.  +
  • 3D grid of the simulated basin (cartesian grid), + properties (depositional bathymetry, lithology, facies, porosity, ...)  +
  • 3D stratigraphy (age, provenance, grainsize, peat fraction)<br>Morphodynamic maps of grainsize, discharge, sediment erosion and deposition  +
  • A 3D cube of model strata coded by water depth of deposition and thickness transported versus thickness deposited in-situ per time step  +
  • A sequence of grids that represent DEMs at different times in the evolution. Saved in RTS (RiverTools Sequence) format with RTI file for georeferencing.  +
  • A web page displaying skill scores for the models and plots (PNG) of the spatial distribution of model outputs versus benchmark data.  +
  • After infiltration occurs, the component returns an updated 'surface_water__depth' field, as well as an updated 'soil_water_infiltration__depth' field that tracks how much water has been infiltrated into the soil column.  +
  • Although the model’s primary output producAlthough the model’s primary output product is channel discharge, all internal rate and state variables (soil moisture, for example) can also be written as output. In addition, all output can be written as grids, or time series at user-defined points or areas. The user has complete control over how output is written, thus minimising any waste of disk space or CPU time.ising any waste of disk space or CPU time.  +