
   

LTRANS 
 

 
Larval TRANSport Lagrangian model 

(LTRANS) 
v.1 

 
 

User’s Guide 
 
 

Authors:  
Zachary R. Schlag 
Elizabeth W. North 
Katharine A. Smith 

 
 

September 5, 2008 
 
 

University of Maryland Center for Environmental Science 
Horn Point Laboratory 

Cambridge, Maryland 21613 
USA



   

i 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Developers 
 
The Larval TRANSport Lagrangian (LTRANS) model was built by Elizabeth North and Zachary 
Schlag of University of Maryland Center for Environmental Science Horn Point Laboratory. 
Both wrote portions of this User’s Guide and Katharine Smith helped edit and correct it.  
 
 
 
Acknowledgements 
 
We thank Thomas Gross, Charles Hannah, Raleigh Hood, Ming Li, Richard Signell, Uffe 
Thygesen, Liejun Zhong, the members of the International Council for the Exploration of the Sea 
(ICES) Working Group on Modelling Physical-Biological Interactions, and 2008 LTRANS 
Workshop participants for their helpful advice and discussions. Funding was provided by the 
National Science Foundation Biological Oceanography Program (OCE-0424932, OCE-
0453905), Maryland Department of Natural Resources (K00P4200981), NOAA Chesapeake Bay 
Studies (NA04NMF457038), and NOAA-funded UMCP Advanced Study Institute for the 
Environment (Z759502 NA06NES4280016). 
 
 
 
Citation Information 
 
Schlag, Z. R., E. W. North, and K. A. Smith. 2008. Larval TRANSport Lagrangian model 
(LTRANS) User’s Guide. Technical Report of the University of Maryland Center for 
Environmental Science Horn Point Laboratory. Cambridge, MD. 146 p.   
 



   

ii 

Table of Contents 
 

I. Overview  …………………………………………………………………………… 1 
Model structure 
Interpolation scheme 
Turbulence sub-model 
Behavior sub-model  
Settlement sub-model  
Boundary conditions 
User’s Guide structure 
Concluding thoughts 
Open source license 

 
II. Setting up LTRANS in a new model domain …………………………………… 8 

 
III. Include Files (Initialization) ……………………………………………………. 15  

A. GRID.inc  
B. LTRANS.inc 

 
IV. Input Files ………………………………………………………………………. 21 

A. ROMS NetCDF files  
B. Particle location file  
C. Habitat location files for Settlement Module  

 
V. Execution (LTRANS.f90, main program) ……………………………………… 28 

A. External time step loop  
B. Internal time step loop  
C. Particle loop  

1. Vertical boundary test 
2. Advection 
3. Horizontal boundary test 

D. Output  
E. Variable definitions for the main program 
F. Subroutine FIND_CURRENTS 
 

VI. Behavior Module (behavior_module.f90, BEHAVIOR_MOD) ………………… 44 
A. Subroutine Behave 

1. Passive (no behavior) 
2. Near-surface orientation 
3. Near-bottom orientation 
4. Diurnal vertical migration (DVM) 
5. Oyster larvae (two species) 
6. Sinking velocity 

B. Function getColor 
C. Subroutine initBehave 
D. Subroutine updateStatus 



   

iii 

 
 
 

VII. Boundary Module (boundary_module.f90, BOUNDARY_MOD) ……………… 56 
A.  Subroutine add 
B.  Subroutine createBounds  
C.  Subroutine getNext 
D.  Subroutine ibounds 
E.  Subroutine intersect_reflect  
F.  Function isBndSet 
G.  Subroutine mbounds 
H.  Subroutine output_llBounds 
I.  Subroutine output_xyBounds 

 
VIII. Conversion Module (conversion_module.f90, CONVERT_MOD) ……………… 72 

A.  Interface lat2y 
B.  Interface lon2x 
C.  Interface x2lon 
D.  Interface y2lat 

 
IX. Gridcell Module (gridcell_module.f90, GRIDCELL_MOD) ……………………. 75 

A.  Subroutine Gridcell 
 

X. Horizontal Turbulence Module (hor_turb_module.f90, HTURB_MOD) ……… 77  
A.  Subroutine HTurb 

 
XI. Hydrodynamic Module (hydrodynamic_module.f90, HYDRO_MOD) ………… 79 

A.  Function getInterp 
B.  Subroutine getMask_Rho 
C. Function getP_r_element 
D. Subroutine getR_ele 
E.  Function getSlevel 
F.  Subroutine getUVxy 
G. Function getWlevel 
H. Subroutine initGrid 
I.  Subroutine initHydro 
J.  Function interp 
K. Subroutine setEle 
L.  Subroutine setInterp 
M. Subroutine updateHydro 
N. Function WCTS_ITPI 

 
XII. Interpolation Module (interpolation_module.f90, INT_MOD) ………………… 101 

A. Subroutine linint 
B. Function polintd 

 



   

iv 

XIII. Norm Module (norm_module.f90, NORM_MOD) ……………………………… 103 
 

XIV. Parameter Module (parameter_module.f90, PARAM_MOD) …………………..  105 
 
 

XV. Point-in-Polygon Module (point_in_polygon_module.f90, PIP_MOD) ………… 107 
A. Function INPOLY 

  
XVI. Random Number Module (random_module.f90, RANDOM_MOD) ……………110 

 
XVII. Settlement Module (settlement_module.f90, SETTLEMENT_MOD)  ………….. 112 

A.  Subroutine createPolySpecs 
B.  Function DEAD 
C.  Subroutine DIE 
D.  Subroutine hsettle 
E.  Subroutine initSettlement 
F.  Subroutine psettle 
G.  Subroutine readinHabitat 
H.  Function SETTLED 
I.  Subroutine settlement 

 
XVIII. Tension Spline Module (tension_module.f90, TENSION_MOD) ……………… 123 

 
XIX. Vertical Turbulence Module (ver_turb_module.f90, VTURB_MOD) ………… 135 

A. Subroutine VTurb 
 

XX. Literature Cited ………………………………………………………………… 140 
 

XXI. Appendix ………………………………………………………………………… 142  
 
 



  II. Overview 

1 

I. Overview 
 
 The Larval TRANSport Lagrangian model (LTRANS) is an off-line particle-tracking 
model that runs with the stored predictions of a 3D hydrodynamic model, specifically the 
Regional Ocean Modeling System (ROMS). Although LTRANS was built to simulate oyster 
larvae, it can easily be adapted to simulate passive particles and other planktonic organisms. 
LTRANS is written in Fortran 90 and is designed to track the trajectories of particles in three 
dimensions. It includes a 4th order Runge-Kutta scheme for particle advection and a random 
displacement model for vertical turbulent particle motion. Reflective boundary conditions, larval 
behavior, and settlement routines are also included. LTRANS was built by Elizabeth North and 
Zachary Schlag of University of Maryland Center for Environmental Science Horn Point 
Laboratory. Funding was provided by the National Science Foundation Biological Oceanography 
Program, Maryland Department of Natural Resources, NOAA Chesapeake Bay Office, and 
NOAA-funded UMCP Advanced Study Institute for the Environment. Components of LTRANS 
have been in development since 2002 and are described in the following publications: North et 
al. 2005, North et al. 2006a, North et al. 2006b, and North et al. 2008.  
 
Model structure 
 
 The larval transport model is designed to predict the movement of particles based on 
advection, turbulence and larval behavior. It has an external and internal time step (Fig. 1) and 
boundary condition algorithms that keep particles from leaving the model domain. The external 
time step is the time step of hydrodynamic model output (e.g., 10 min). The internal time step is 
the time interval during which particle movement is calculated (e.g., 120 s). The internal time 
step is smaller than the external time step so that particles do not move in large jumps that could 
cause inconsistencies between predictions of the hydrodynamic model and the particle tracking 
model. At each internal time 
step of the larval transport 
model, particle motion is 
calculated as the sum of 
movement due to advection, 
turbulence and larval behavior. 
The larval transport model 
contains sub-models for each 
of these components. The 
turbulence and behavior 
routines can be turned off so 
that particle movement is based 
solely on advection. LTRANS 
also includes sub-models for 
boundary conditions and 
pediveliger settlement as well 
as specially designed search 
algorithms that significantly 
increase the speed of model 
computations.  

Fig. 1. Flow diagram of the 
larval transport model.   

Create search algorithms

Define variables

Read-in particle start locations

Read-in oyster bar locations 

Initialize Model

Advection

Turbulence

Behavior

Write output

Boundary conditions

Update particle location

External Time Step

Internal Time Step

Read-in hydro data

Read-in hydro data

Read-in hydro data Settlement

End



  II. Overview 

2 

Interpolation scheme 
 
 Hydrodynamic model predictions (stored in NetCDF format) are 
read in and interpolated in space and time to the particle location. The 
first step in the process of interpolating the water properties (e.g., 
current velocities, salinity, temperature, sea surface height, and 
vertical and horizontal diffusivities) to the particle location is to 
determine the grid cell in which the particle is located. For this, we use 
the ‘crossings’ point-in-polygon approach coupled with a search 
algorithm for computational efficiency. Once the particle is located in 
a grid cell, water properties are interpolated in space to the particle 
location. All water properties are interpolated from the native ROMS 
grid points (i.e., u grid points are used to calculate u-velocity at the 
particle location, v grid points are used for v-velocity, and rho grid 
points are used for sea surface height, w-velocity, salinity, and 
diffusivity calculations). For two-dimensional water properties (e.g., 
sea surface height, water depth) bilinear interpolation is used. For 
three-dimensional water properties (e.g., current velocities, 
diffusivities, salinity), a water-column profile scheme is applied 
(North et al. 2006a). In this scheme, values are interpolated along each 
s-level to create a vertical profile of values at the x-y particle location 
(Fig. 2). A tension spline curve is then fit to the vertical profile and 
used to estimate the water property at the particle location. The 
interpolation scheme was adapted from North et al. (2006a), 
streamlined to increase computational speed, and enhanced to handle 
model domains with irregular bottoms and non-rectangular grid 
geometries. It should be noted that this interpolation scheme likely 
assumes that the underlying hydrodynamic model grid is orthogonal (Rich Signell, pers. comm.). 
 
Although there are several available methods for interpolating to the particle location (e.g., linear 
interpolation, cubic splines) we chose to use a sophisticated tension spline curve fitting routine. 
Both cubic and simple tension splines cause ‘offshoots’. Offshoots occur when the interpolated 
line does not preserve the monotonicity and concavity of the original data. Offshoots can easily 
be seen with the cubic spline interpolation technique (Fig. 3). LTRANS was originally developed 
with the Tension Spline Curve Fitting Package (TSPACK). TSPACK (TOMS/716) was created 
by Robert J. Renka (renka@cs.unt.edu, Department of Computer Science and Engineering, 
University of North Texas) and is available for download from http://www. netlib.org and 
http://portal.acm.org/citation.cfm?id=151277. TSPACK fits tension splines to data that preserve 
the concavity and monotonicity of the data (Fig. 3). The routines in TSPACK are highly 
articulate and produce excellent profiles, although they may be somewhat computationally 
demanding because an individual tension factor is estimated for each segment of the profile. The 
tests of the random displacement model for vertical sub-grid scale turbulence (North et al. 
2006a) were undertaken with TSPACK. Occasionally, the curve fitting method would fail to 
converge. In the North et al. (2006a) simulations, this occurred 0.0004% of the time, or once in 
244,500 calls to TSPACK. In these rare cases, simple linear interpolation of the vertical profile 
was used to avoid program pause.  

Fig. 2. Schematic of ROMS 
model grid and ‘water column’ 
interpolation scheme. 
Hydrodynamic model 
predictions are interpolated 
along s -levels to the x-y 
locations (blue circles) above 
and below a particle (orange 
circle). Then a tension spline is 
fit to the values at the x-y 
locations to determine the water 
property at the particle location. 



  II. Overview 

3 

 
TSPACK is copyrighted by the Association for Computing Machinery (ACM). With the 

permission of Dr. Renka and ACM, TSPACK was modified for use in LTRANS by removing 
unused code and call variables and updating it to Fortran 90. The modified version of TSPACK 
is included in the LTRANS source code in the Tension Spline Module (tension_module.f90). If 
you would like to use LTRANS with the modified TSPACK software, please read and respect 
the ACM Software Copyright and License Agreement 
(http://www.acm.org/publications/policies/softwarecrnotice). For noncommercial use, ACM 
grants "a royalty-free, nonexclusive right to execute, copy, modify and distribute both the binary 
and source code solely for academic, research and other similar noncommercial uses" subject to 
the conditions noted in the license agreement. Note that if you plan commercial use of LTRANS 
with the modified TSPACK software, you must contact ACM at permissions@acm.org to 
arrange an appropriate license. It may require payment of a license fee for commerical use. 
 
 For particle tracking, it is necessary to interpolate in time as well as space because the 
duration between successive outputs of the hydrodynamic models (i.e., the external time step) is 
longer than the time step of particle motion (i.e., the internal time step). To do this, water 
properties are estimated at the particle location (as above) at three time points that correspond to 
the hydrodynamic model output (i.e., at the 10-min intervals of the external time step). Then a 
polynomial curve is fit to the water properties at three time points and used to calculate the water 
properties at the time of particle motion (i.e. for the internal time step).  The advection, 
turbulence and behavior sub-models incorporate these spatial and temporal interpolation 
techniques; specifics associated with each sub-model are discussed below.    
 
  Advection sub-model. A 4th order Runge-Kutta scheme in space and time is used to 
calculate particle movement due to advection. This scheme solves for the u-, v-, and w- current 

-25

-20

-15

-10

-5

0

0 5 10 15 20
Salinity

D
ep

th
 (m

)
linear
cubic
simple tension
TSPACK
nodes

-26

-21

-16

-11

-6

-1

-0.001 0.001 0.003 0.005 0.007 0.009

Vertical diffusivity (m2 s-1)

D
ep

th
 (m

)

linear
cubic
simple tension
TSPACK
nodes

Fig. 3. Fit of linear, cubic spline, simple tension spline (tension factor = 10) and the TSPACK tension spline 
to profiles of salinity (left) and vertical diffusivity (right). The former is field data, the later is derived from 
ROMS. Note that linear interpolation does not preserve what one would expect to be a smooth profile. The 
cubic and simple tension splines create overshoots. These overshoots are especially problematic in the 
random displacement model (for vertical sub-grid scale turbulence) because they create artificial inflection 
points in the diffusivity profile which cause particles to move away from these points.   



  II. Overview 

4 

velocities (representing the x-, y-, and z-directions) at the particle location using an iterative 
process that incorporates velocities at previous and future times to provide the most robust 
estimate of the trajectory of particle motion in water bodies with complex fronts and eddy fields 
(Dippner 2004) like Chesapeake Bay. Current velocities (m s-1) provided by the Runge-Kutta 
scheme are multiplied by the duration of the internal time step (δt) to calculate the displacement 
of the particle in each component direction. Displacements (m) are then added to the original 
location of the particle (xn, yn, zn) in order to calculate the new location of the particle (xn+1, yn+1, 
zn+1): 
(1) tuxx nn δ+=+1  

(2) tvyy nn δ+=+1  

(3) twzz nn δ+=+1  

 The u and v current velocities are separated into north and east component directions before 
particle motion is estimated. Law-of-the-wall (a log layer calculation) is applied to the current 
velocities within one s-level of bottom to simulate reduction in current velocities near bottom.  
 
Turbulence sub-model 
 
 Hydrodynamic models do not simulate turbulent motion at scales smaller than the grid 
resolution of the model. In particle-tracking models, particles can be moved in millimeter to 
centimeter steps -- much less than the hydrodynamic model grid scale. A random component 
must be added to particle motion in order to reproduce turbulent diffusion that occurs at the scale 
of particle motion (Hunter et al. 1993, Visser 1997, Brickman and Smith 2002). A random 
displacement model (Visser 1997) is implemented within the larval transport model to simulate 
sub-grid scale turbulent particle motion in the vertical (z) direction: 

(4)  [ ] 2
11

1 2 tKrRtKzz vvnn δδ −
+ +′+=  

where zn = initial particle location, Kv = vertical diffusivity evaluated at ( tKz vn δ′+ 5.0 ), δt = time 
step of the random displacement model, Kv’ = ∂Kv/∂z evaluated at zn, and R is a random number 
generator with mean = 0 and standard deviation r = 1. Unlike random walk models, random 
displacement models do not result in numerical artifacts if the vertical resolution is adequate to 
resolve sharp variations in vertical diffusivity (Visser 1997; Brickman and Smith 2002). In 
LRTRANS, the turbulent particle motion sub-model uses the same approach for determining Kv 
and Kv’ at the particle location as that used in the advection model, except that 1) a smoothing 
algorithm is applied to the water column profile of Kv to prevent artificial aggregation of 
particles in regions of sharp gradients in diffusivity (North et al. 2006a), and 2) a 4th order 
Runge-Kutta was applied in time but not in space due to computational constraints.  
 
 A random walk model is used to simulate turbulent particle motion in the horizontal 
direction (x- or y- directions). When Kh is constant, the random displacement model defaults to a 
random walk model (Visser 1997): 

(5)  [ ] 2
11

1 2 tKrRxx hnn δ−
+ +=  

where Kh = horizontal diffusivity evaluated at ( nx ). This was suitable for the ROMS model for 
which LTRANS was developed (Li et al. 2005, 2006, Zhong and Li 2006) because it was 



  II. Overview 

5 

implemented with a constant value for Kh (1 m2 s-1). The model output was interpolated to the 
particle location using the same approach as was used for advection (described above), except 
that a 4th order Runge-Kutta was applied in time only (not space) due to the computational 
constraints. Note that it is likely that a random displacement model should be used if horizontal 
diffusivity is not constant in the hydrodynamic model.  
 
Behavior sub-model  
 
 The behavior sub-model includes a swimming speed component and a behavioral cue 
component that can depend upon species and developmental stage. The swimming speed 
component controls the speed of particle motion due to behavior. Swimming speeds can be set as 
constant or as a function of particle age.  The behavioral cue component regulates the direction 
of particle movement. To simulate random variation in the movements of individual larvae, the 
direction of particle motion is assigned a random component that can be weighted so that 
particles have a tendency to move up or down depending on species and/or age of particle. 
 
Settlement sub-model  
 
 The purpose of the settlement sub-
model is to determine if a particle is inside 
or outside suitable habitat. Once a particle 
reaches a specified age, the Settlement 
Module tests the location of pediveliger-
stage particles at each internal time step 
(e.g., every 2 min) to determine if they are 
within the boundaries of a habitat polygon. 
If so, they settle and stop moving (Fig. 4). 
To determine if the particle is inside or 
outside an irregularly shaped polygon, the 
‘crossings method’, a ‘point-in-polygon’ 
technique, is applied. A ray, parallel to the 
x-coordinate axis, is shot from the particle (a point) to the east. The number of times the ray 
intersects with the line segments of each polygon is calculated. If the number of intersections is 
odd, then the particle is within the polygon. If the number is even, then the particle is outside the 
polygon boundaries. A search restriction algorithm ensures that the locations of particles are 
tested only for nearby polygons to reduce computation time.   
 
Boundary conditions 
 
 Before particles settle or die (i.e., between the time they are released and the time they stop 
moving), the location of each particle is tested every internal time step to ensure that it remains 
within the model boundaries. If the motion of the particle causes it to exceed the boundaries, the 
particle is placed within the model domain as specified below.  
 
 Vertical boundaries (surface and bottom) are specified for each particle by interpolating sea 
surface height and bottom depth to the x-y location of the particle. If a particle passes through the 

Outside suitable habitat: 
continue swimming

Inside: settle and
stop moving

Fig. 4. Schematic of 
settlement model  
strategy (above) and the 
‘crossings’ numerical 
method (left) used in the 
settlement model.  



  II. Overview 

6 

surface or bottom boundary due to turbulence or vertical advection, the particle is placed back in 
the model domain at a distance that is equal to the distance that the particle exceeds the boundary 
(i.e., it is reflected vertically). If a particles passes through the surface or bottom due to particle 
behavior, the particle is placed just below the surface or above the bottom (i.e., it stops near the 
boundary). 
 
 Reflective horizontal boundary condition routines keep particles within the model domain. 
For ROMS, boundaries are taken to be halfway between water and land grid points. Boundary 
points of the main land/sea boundary and each individual island are ordered to create closed 
polygons. The ‘crossings’ point-in-polygon approach is used to determine if a particle is inside 
or outside the model boundaries. If the particle is on land or on an island, the particle is reflected 
off the boundary with an angle of reflection that equals the angle of approach to the boundary. 
The distance that the particle is reflected is equal to the distance that the particle exceeded the 
boundary. The horizontal boundary condition routine allows multiple reflections within one time 
step.  
 
User’s Guide  
   
Our objective in writing this User’s Guide is to provide the necessary information for users to 1) 
set up and run LTRANS, and 2) be able modify LTRANS to adapt it to their needs. We have 
tried to define every variable in the model. If you search the document (Ctrl F) and cannot find 
the definition of a variable used in LTRANS, please report this to LTRANS@hpl.umces.edu and 
we will correct it.  Your suggestions on how to make this document more useful also would be 
appreciated.  
 
Concluding thoughts 
 
 The LTRANS model is designed to maintain fidelity with hydrodynamic model 
predictions. All interpolation occurs from the original staggered grid of the u, v, and rho grid 
points directly to the particle location. In addition, horizontal interpolation occurs along s-levels 
in an attempt to follow the structure of the hydrodynamic model in regions of changing 
bathymetry. These interpolation schemes may be costly in computation time compared to less 
accurate schemes; the benefits have not been quantified. The LTRANS model was developed to 
simulate oyster larvae in Chesapeake Bay, a region with complex bathymetry and horizontal and 
vertical current shears. It is not known whether the LTRANS interpolation schemes would be 
appropriate in other systems, and, if so, in what conditions they should be used. We invite the 
particle tracking community to participate in cross-system comparisons to help develop 
standardized methods for interpolation, turbulence and time stepping for different systems.  
 
Open Source License 
 
LTRANS is an open-source model and licensed under the MIT/X License. This license is similar 
to the ROMS model license. Here is a copy of the LTRANS model license file: 
 
********************************************************************** 
********************************************************************** 



  II. Overview 

7 

**                      Copyright (c) 2008                          ** 
**   The University of Maryland Center for Environmental Science    ** 
********************************************************************** 
**                                                                  ** 
** This Software is open-source and licensed under the following    ** 
** conditions as stated by MIT/X License:                           ** 
**                                                                  ** 
**  (See http://www.opensource.org/licenses/mit-license.php ).      ** 
**                                                                  ** 
** Permission is hereby granted, free of charge, to any person      ** 
** obtaining a copy of this Software and associated documentation   ** 
** files (the "Software"), to deal in the Software without          ** 
** restriction, including without limitation the rights to use,     ** 
** copy, modify, merge, publish, distribute, sublicense,            ** 
** and/or sell copies of the Software, and to permit persons        ** 
** to whom the Software is furnished to do so, subject to the       ** 
** following conditions:                                            ** 
**                                                                  ** 
** The above copyright notice and this permission notice shall      ** 
** be included in all copies or substantial portions of the         ** 
** Software.                                                        ** 
**                                                                  ** 
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,  ** 
** EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE           ** 
** WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE  ** 
** AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT  ** 
** HOLDERS BE LIABLE FOR ANY CLAIMS, DAMAGES OR OTHER LIABILITIES,  ** 
** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING     ** 
** FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR    ** 
** OTHER DEALINGS IN THE SOFTWARE.                                  ** 
**                                                                  ** 
** The most current official versions of this Software and          ** 
** associated tools and documentation are available at:             ** 
**                                                                  ** 
**  http://northweb.hpl.umces.edu/LTRANS.htm                        ** 
**                                                                  ** 
** We ask that users make appropriate acknowledgement of            ** 
** The University of Maryland Center for Environmental Science,     ** 
** individual developers, participating agencies and institutions,  ** 
** and funding agencies. One way to do this is to cite one or       ** 
** more of the relevant publications listed at:                     ** 
**                                                                  ** 
**  http://northweb.hpl.umces.edu/LTRANS.htm#Description            ** 
**                                                                  ** 
********************************************************************** 
**********************************************************************  



  II. Setting up LTRANS 

8 

II. Setting up LTRANS in a new model domain  
 
Overview. This section provides step-by-step instructions for setting up and running LTRANS 
in both the Windows and Linux environments. More details about the input file types and 
formats can be found in this User’s Guide Input Files section (p. 21). Sample input files can be 
found at the “LTRANS Example Input Files” section of the LTRANS website 
(http://northweb.hpl.umces.edu/LTRANS.htm). The ‘release configuration’ of LTRANS is 
designed to run with these example input files.  
 
0. Note that two modules that are released with LTRANS were not created by LTRANS 
developers and have different license files. They are the Mersenne Twister and TSPACK 
programs found in the Random Number Module (random_module.f90) and the Tension Spline 
Module (tension_module.f90), respectively. Please review and respect the permissions of these 
programs. The information on these programs can found in the appropriate module sections of 
this User’s Guide as well as on the “External Dependencies and Programs” section of the 
LTRANS web site (http://northweb.hpl.umces.edu/LTRANS.htm). 
 
 
1. Install NetCDF Libraries   
Because LTRANS reads in ROMS-generated NetCDF (.nc) files, LTRANS requires that the 
appropriate NetCDF libraries be installed on your computer. Linux users will likely have to build 
their own libraries using the source code/binaries on the Unidata website 
(http://www.unidata.ucar.edu/software/netcdf/).  
 
In Windows Visual Fortran environment, the following pre-built binaries may be used. The 
enclosed pre-built NetCDF library files were downloaded from (see URL) and should be 
placed in (see path) the following locations on your computer: 
 
http://www.unidata.ucar.edu/software/netcdf/binaries.html  
netcdf.dll, place in C:\Program Files\Microsoft Visual Studio\DF98\BIN 
netcdf.inc, place in C:\Program Files\Microsoft Visual Studio\DF98\INCLUDE 
netcdf.lib, place in C:\Program Files\Microsoft Visual Studio\DF98\LIB.   
 
http://www.unidata.ucar.edu/software/netcdf/docs/other-builds.html#windows_ifort_f90  
netcdf90.lib, place in C:\Program Files\Microsoft Visual Studio\DF98\LIB 
netcdf90.mod, place in C:\Program Files\Microsoft Visual Studio\DF98\INCLUDE 
typesizes.f90, place in C:\Program Files\Microsoft Visual Studio\DF98\INCLUDE 
typesizes.mod, place in C:\Program Files\Microsoft Visual Studio\DF98\INCLUDE 
 
These files can be found in VF-NetCDF.zip file in the “External Dependencies and Programs” 
section of the LTRANS web site (http://northweb.hpl.umces.edu/LTRANS.htm). Note that the 
paths above reflect the default installation location of Microsoft Visual Studio; if you installed it 
in a different location, your path will need to be different. Also, note that the "netcdf.lib" file 
needs to be added to the LTRANS Visual Fortran project before building LTRANS. 
 



  II. Setting up LTRANS 

9 

 
2. Make sure the ROMS NetCDF files contain the appropriate variables. The LTRANS 
model uses hydrodynamic data from ROMS NetCDF files. It uses two types of files, a file that 
contains information about the model grid and the output files that contain the hydrodynamic 
model predictions. Often there are multiple sequential hydrodynamic output files. The following 
variables should be in the file that contains the ROMS model grid information: 
 Netcdf ID Description 

angle angle between x-coordinate and true east direction 
h depths of rho nodes  
mask_rho rho node mask value 
mask_u u node mask value 
mask_v v node mask value 
x_rho x-coordinates of rho nodes 
x_u x-coordinates of u nodes 
x_v x-coordinates of v nodes 
y_rho y-coordinates of rho nodes 
y_u y-coordinates of u nodes 
y_v y-coordinates of v nodes 
 

The following variables should be in the ROMS output files that contain the hydrodynamic 
model predictions. Note that the variables Cs_r, Cs_w, sc_r, and sc_w must be in the first output 
file used by LTRANS. The other variables should be in all of the output files used by LTRANS.   
Netcdf ID Description 

Aks vertical diffusivity of salinity at rho nodes 
Cs_r value used to adjust rho node depths 
Cs_w value used to adjust w node depths 
salt rho node salinity 
sc_r value used to convert s-levels to rho node depths 
sc_w value used to convert s-levels to w node depths 
temp rho node temperature 
u u-direction velocity 
v v-direction velocity 
w w-direction velocity 
zeta zeta levels at rho nodes 

 
 
3. Update path to ROMS NetCDF files 
These ROMS NetCDF files can either be placed in the same directory as the program (this is the 
way the LTRANS.inc file is currently configured) or placed in a separate folder. The names and 
location of the files should be updated in the LTRANS.inc file using the following parameters: 
NCgridfile (for the grid file) and prefix, filenum, suffix for the first output file (only the first 
output file need be specified). The ROMS NetCDF files are generally large so you may choose 
to keep them in a separate folder. In this case, the path to the folder with the NetCDF files must 
be specified in the parameters NCgridfile (for the grid file) and prefix (for the ROMS output 
files) found in the LTRANS.inc file. The length of prefix in the variable declaration section must 



  II. Setting up LTRANS 

10 

remain greater than or equal to the length of the path stored in it.  Also note that the length of 
variable filenm must remain greater than or equal to the length of the full file name. 
 
 
4. Create the GRID.inc file by running the GRID.inc Generator program.  The GRID.inc 
Generator program (GRIDinc_Generator.f90) can be found in a folder entitled “GRID.inc 
Generator” within the v.1 LTRANS.zip source code folder. To use it, place the ROMS NetCDF 
grid file in the same folder as GRIDinc_Generator.f90 and update the name of the NetCDF grid 
file within the program. Compile and run the program. Before linking, “netcdf.lib” must be 
added to the program. The program will create the GRID.inc file needed by LTRANS. If you 
would like to run the program in a different folder than the one where the NetCDF grid file is 
located, the file name within the program must include the appropriate path. Documentation for 
GRIDinc_Generator.f90 can be found in the “GRID.inc Generator” folder within the v.1 
LTRANS.zip source code folder (see “GRIDinc_Generator Users Guide.pdf”) 
 
 
5. Create particle locations file 
The particle locations are read in from a .csv file which contains either three or four columns:  
longitude, latitude, depth (in meters) and, if settlement is turned on, the id of the habitat polygon 
the particle starts on.  This file must have at least as many rows as the number of particles in the 
parameter numpar. All of the particle start locations should be within the model boundaries. See 
the Input Files section of the User’s Guide (p. 21) for more information. Place the particle 
locations file in the same folder as the code and specify the filename in the LTRANS.inc file 
using the parfile parameter. If you would like the file to be in a separate folder, add the file’s 
path to the parfile parameter. 
 
 
6. Update ‘User specified’ parameters and variables in LTRANS.inc include file to turn on or 
off turbulent particle motion, specify particle behavior (or lack thereof), and calculate salinity 
and temperature at the particle location, in addition to selecting other options. See User’s Guide 
Include Files section (p. 15) for more information.  
 
 
7. If you would like to use the Settlement Module: 

a. Turn settlementon = .TRUE. in LTRANS.inc include file. 
b. Make habitat location files: In order for the model to run with settlement, it must read in 

habitat location data from .csv files.  There are two types of habitat location files: habitat 
boundary files and habitat hole boundary files.  See User’s Guide Input section (p. 21) for 
more information. Place the habitat files in the same folder as the code and specify the 
file names in the LTRANS.inc file using the habitatfile and holefile parameter. If you 
would like the file to be in a separate folder, add the file’s path to the habitatfile and 
holefile parameters. 

c. Update Settlement Module parameters in LTRANS.inc include file. 
8. Compile and run LTRANS. This section includes instructions for compiling and running 
LTRANS in the Windows and Linux environments.  
 



  II. Setting up LTRANS 

11 

a. In the Visual Fortran (for Windows) environment: 
A. Create a Visual Fortran project: 

1) Start up Visual Fortran 
2) Click on File -> New (or use shortcut Ctrl + N): 

i. Select ‘Fortran Console Application’ 
ii. Type in the desired project name into the ‘Project name:’ box 

iii. Select the location you want the project in the ‘Location:’ box 
iv. Click ‘OK’ button. This creates a project folder in the specified location 

that has the same name as the project. 
v. In the subsequent dialogue window, ensure that ‘An empty project’ is 

selected, and click the ‘Finish’ button 
vi. In the ‘New Project Information’ window that pops up, click ‘OK’ 

B. Add all of the .f90 files found in the “LTRANS” folder, as well as the NetCDF library 
file (netcdf.lib), to the project (Project -> Add To Project -> Files). 

C. Compile the source files in the following stages: 
1) Stage 1: 

i. gridcell_module.f90 
ii. interpolation_module.f90 

iii. random_module.f90 
iv. parameter_module.f90 
v. point_in_polygon_module.f90 

vi. tension_module.f90 
2) Stage 2: 

i. conversion_module.f90 
ii. norm_module.f90 

iii. hydrodynamic_module.f90 
3) Stage 3: 

i. boundary_module.f90 
ii. hor_turb_module.f90 

iii. settlement_module.f90 
iv. ver_turb_module.f90 

4) Stage 4: 
i. behavior_module.f90 

5) Stage 5: 
i. LTRANS.f90 

D. Link (‘build’) the project 
E. Make sure the ROMS model grid and output NetCDF output files, and the LTRANS 

input .csv files (particle locations, habitat and hole files) are located in the project folder 
(unless alternate paths are specified in the LTRANS.inc file).   

F. Run the program 
 
 

b. In the Linux environment: 
First, create a directory and place the following in directory: all of the LTRANS .f90 

files, the ROMS NetCDF grid and output files (unless an alternate path is specified in the 



  II. Setting up LTRANS 

12 

LTRANS.inc file), and particle locations and habitat (optional) .csv input files. The 
commands found below are called from inside this new directory. 

 
Second, remove reference to netcdf90 in the LTRANS Hydrodynamic Module. To use 

LTRANS on Linux, a small change to the code in the Hydrodynamic Module will have to be 
made.  The line “USE netcdf90” will need to be changed to “USE netcdf” in the three 
subroutines initGrid, initHydro, and updateHydro. (Note: the need for this change may be 
platform-dependent).  

 
Third, compile and run LTRANS. A script has been provided called 

LTRANS_compile.sh (in the “Linux Script” folder in LTRANS.zip). This script is capable of 
compiling the model using ifort on Linux if the NetCDF include and library files have been 
installed in /usr/local/include and /usr/local/lib.  If the NetCDF files have been installed in a 
different location, then the following lines of the script will need to be altered so that they 
include the correct path to the NetCDF files:  “-I/usr/local/include” and  
“-L/usr/local/lib”.  When placed in the same directory as the other files and then called 
using the command 

 
 ./LTRANS_compile.sh, 
 

the script will compile all the modules and the main program into the executable file 
LTRANS.exe.  The script simply carries out the steps detailed below with echo commands to 
give updates on its progress. 

 
To compile the model without the script, begin by compiling the Fortran modules without 

linking.  This will create .o and .mod files that are necessary to compile and link the whole 
program.  The following commands will compile the modules without linking using the ifort 
Linux compiler: 

 
ifort -c gridcell_module.f90 
ifort -c interpolation_module.f90 
ifort -c parameter_module.f90 
ifort -c point_in_polygon_module.f90  
ifort -c random_module.f90 
ifort -c tension_module.f90  
ifort -c conversion_module.f90  
ifort -c –I/usr/local/include hydrodynamic_module.f90 
ifort -c norm_module.f90  
ifort -c boundary_module.f90  
ifort -c hor_turb_module.f90  
ifort -c settlement_module.f90  
ifort -c ver_turb_module.f90 
ifort -c behavior_module.f90 
 



  II. Setting up LTRANS 

13 

If the NetCDF include files were installed in a directory other than /usr/local/include then 
the command to compile the Hydrodynamic Module will need to be modified to reflect the 
actual location of the files.   

 
Now the executable can be created using the .o files created in the previous step.  The 

following command will compile and link the code and create the executable file 
LTRANS.exe (to give the executable file a different name, replace ‘LTRANS.exe’ with the 
desired name): 

 
ifort -o LTRANS.exe LTRANS.f90 gridcell_module.o interpolation_module.o 

parameter_module.o point_in_polygon_module.o random_module.o 
tension_module.o conversion_module.o hydrodynamic_module.o norm_module.o 
boundary_module.o hor_turb_module.o settlement_module.o ver_turb_module.o 
behavior_module.o -L/usr/local/lib -lnetcdf 

 
If the NetCDF library files were installed in a directory other than /usr/local/lib, then the 

command will need to be modified to reflect the actual location of the files. 
 
Now that the executable has been created, the program can be run by simply calling the 

executable.  If ‘LTRANS.exe’ is the executable name then the command to call the 
executable looks like this: 

 
 ./LTRANS.exe 

 
 
9. Check to make sure LTRANS is running correctly. The following is written to the screen 
when LTRANS compiles and runs successfully. It is a good idea to check that the initial particle 
and habitat polygon latitude and longitude values are read in correctly (otherwise multiple errors 
can occur).  
 
****** LTRANS INITIALIZATION ******* 
read in particle locations         500 
  Particle n=5 Latitude=   38.11310     Longitude=  -76.19567 
  Particle n=5 Depth=  -35.5500000000000 
  Particle n=5 Start Polygon=      101001 
read-in grid information 
create elements 
find adjacent elements 
prepare boundary arrays 
initialize behavior 
read in habitat polygon locations 
  Edge i=5 Center Lat=   37.8471777800000      Long=  -76.1972269100000 
  Edge i=5   Edge Lat=   37.9296453600000      Long=  -76.2044782800000 
  Hole i=5 Center Lat=   37.7089998400000      Long=  -76.1576469500000 
  Hole i=5   Edge Lat=   37.7274703800000      Long=  -76.1576468300000 
find polygons in elements 
y95hdr_182.nc 
 
****** BEGIN ITERATIONS ******* 
write output to file, day =   6.9444445E-03 
existing matrix,stepf=           4 



  II. Setting up LTRANS 

14 

existing matrix,stepf=           5 
existing matrix,stepf=           6 
existing matrix,stepf=           7 
existing matrix,stepf=           8 
write output to file, day =   4.8611112E-02 
existing matrix,stepf=           9 
existing matrix,stepf=          10 
existing matrix,stepf=          11 
existing matrix,stepf=          12 
existing matrix,stepf=          13 
existing matrix,stepf=          14 
write output to file, day =   9.0277776E-02 
existing matrix,stepf=          15 
. 
. 
. 
existing matrix,stepf=         134 
write output to file, day =    1.923611 
existing matrix,stepf=         135 
existing matrix,stepf=         136 
existing matrix,stepf=         137 
existing matrix,stepf=         138 
existing matrix,stepf=         139 
existing matrix,stepf=         140 
write output to file, day =    1.965278 
existing matrix,stepf=         141 
existing matrix,stepf=         142 
existing matrix,stepf=         143 
write endfile.csv 
 
Number of times random number generator was called: 
                      71812616 
 
****** END LTRANS ******* 
 
 

 



  III. Include Files 

15 

III. Include Files (Initialization)     
 
Overview:  The two include files, GRID.inc and LTRANS.inc, contain the parameters that are 
used to adapt LTRANS to different ROMS hydrodynamic model domains, change particle 
attributes (e.g., turn on/off behavior and turbulence), and set input/output file paths. All 
initialization variables are placed in these files so that the code does not need to be modified to 
run LTRANS in different model domains or with different particle characteristics. Everything 
that the user may need to change can be found in LTRANS.inc and GRID.inc.   
 
 
A. GRID.inc 
 
Overview. The stand-alone program GRIDinc_Generator.f90 can be used to generate the 
GRID.inc file. This program uses the ROMS grid NetCDF file as input to calculate a number of 
parameters that provide LTRANS with information about the ROMS model grid. Documentation 
and instructions for using the GRIDinc_Generator.f90 program can be found in the “GRIDinc 
Generator” folder within the LTRANS.zip source code folder (see ‘GRIDinc_Generator Users 
Guide.pdf). Here is the example GRID.inc file that is included with the LTRANS release 
configuration: 
 
! GRID.inc 
! 
! for CPB_GRID_wUV.nc 
 
integer, parameter :: ui =  81 
integer, parameter :: uj = 122 
integer, parameter :: vi =  82 
integer, parameter :: vj = 121 
 
integer, parameter :: rho_nodes =  10004 
integer, parameter :: u_nodes =     9882 
integer, parameter :: v_nodes =     9922 
 
integer, parameter :: max_rho_elements =   9801 
integer, parameter :: max_u_elements =     9680 
integer, parameter :: max_v_elements =     9720 
 
integer, parameter :: rho_elements =   4083 
integer, parameter :: u_elements =     4316 
integer, parameter :: v_elements =     4435 
 
 
Parameter Definitions:  The parameters listed above are: 

max_rho_element – integer – maximum number of rho grid elements 
max_u_element – integer – maximum number of u grid elements 
max_v_element – integer – maximum number of v grid elements 



  III. Include Files 

16 

rho_elements – integer – total number of wet rho elements (i.e. elements with at least one 
node masked as water) 

rho_nodes – integer – total number of rho nodes 
u_elements – integer – total number of wet u elements (i.e. elements with at least one node 

masked as water) 
u_nodes – integer - total number of u nodes 
ui – integer – number of nodes across u grid 
uj – integer – number of nodes down rho and u grids 
v_elements – integer – total number of wet v elements (i.e. elements with at least one node 

masked as water) 
v_nodes – integer - total number of v nodes 
vi – integer – number of nodes across rho and v grids 
vj – integer – number of nodes across u grid 

 
 
 
B. LTRANS.inc 
 
The variables in LTRANS.inc include file need to be changed manually. The definition of each 
parameter is specified within the file. Instructions for updating the parameters are also included 
in the file where appropriate. Below is the text of LTRANS.inc file that is included with the 
LTRANS release configuration. For more information on the parameters, see the module 
sections of this Users Guide. 
 



  III. Include Files 

17 

! ******************************* LTRANS Include File ******************************* 
 
!*** BASIC PARTICLE ATTRIBUTES*** 
INTEGER, PARAMETER :: numpar = 500                  ! Number of particles 
 
!*** TIME PARAMETERS *** 
REAL,    PARAMETER :: days   = 1.96         ! Number of days to run the model 
INTEGER, PARAMETER :: iprint = 3600         ! Print interval for LTRANS output (s); 3600 = every hour 
INTEGER, PARAMETER :: dt  = 600         ! External time step (duration between hydro model  
                                              predictions) (s)  
INTEGER, PARAMETER :: idt = 120             ! Internal (particle tracking) time step (s) 
DOUBLE PRECISION, PARAMETER :: Delay = 0.0  ! Time (s) to delay particle release  
 
!*** ROMS HYDRODYNAMIC MODEL PARAMETERS *** 
INTEGER, PARAMETER :: us = 20               ! Number of Rho grid s-levels in ROMS hydro model 
INTEGER, PARAMETER :: ws = 21               ! Number of W grid s-levels in ROMS hydro model 
INTEGER, PARAMETER :: tdim = 144            ! Number of time steps per ROMS hydro predictions file 
REAL,    PARAMETER :: hc  = 2.5             ! Min Depth - used in ROMS S-level transformations 
DOUBLE PRECISION, PARAMETER:: z0 = 0.0005   ! ROMS roughness parameter 
DOUBLE PRECISION, PARAMETER :: ConstantHTurb = 1.0  ! Constant value of horizontal turbulence (m2/s) 
 
!*** TURBULENCE MODULE PARAMETERS *** 
LOGICAL, PARAMETER :: HTurbOn = .TRUE.      ! Horizontal Turbulence on (.TRUE.) or off (.FALSE.) 
LOGICAL, PARAMETER :: VTurbOn = .TRUE.      ! Vertical Turbulence on (.TRUE.) or off (.FALSE.) 
INTEGER, PARAMETER :: p2 = ws * 4         ! Number of proliferated points in vertical turbulence module  
     !Note: Only change p2 with a great deal of caution. 
 
 
!*** BEHAVIOR MODULE PARAMETERS *** 
INTEGER, PARAMETER :: Behavior = 4          ! Behavior type (specify a number) 
! Note: The behavior types numbers are: 0 Passive, 1 near-surface, 2 near-bottom,  
!       3 DVM, 4 C.virginica oyster larvae, 5 C.ariakensis oyster larvae, 6 constant) 
 
 



  III. Include Files 

18 

DOUBLE PRECISION, PARAMETER :: deadage = 1.8*24.*3600.  ! Age at which a particle stops moving (dies) (s) 
!  Note: deadage can be used to stop particle motion for all behavior types (0-6) 
 
DOUBLE PRECISION, PARAMETER :: pediage = 1.2*24.*3600.   ! Age when particle reaches max swim speed and can  
                                                         ! settle (s) 
!  Note: for oyster larvae behavior types (4 & 5), pediage = age at which a particle becomes a pediveliger 
!  Note: pediage does not cause particles to settle if the Settlement module is not on 
DOUBLE PRECISION, PARAMETER :: swimstart = 0.5*24.*3600. ! Age that swimming or sinking begins (s)  
DOUBLE PRECISION, PARAMETER :: swimslow = 0.00025        ! Swimming speed when particle begins to swim  
                                                         ! (m/s) 
DOUBLE PRECISION, PARAMETER :: swimfast = 0.003          ! Maximum swimming speed (m/s)   
!  Note: for constant swimming speed for behavior types 1,2 & 3, set swimslow = swimfast = constant speed 
 
DOUBLE PRECISION, PARAMETER :: Sgradient = 1.0  ! Salinity gradient threshold that cues larval  
                                                      ! behavior (psu/m) 
!  Note: This parameter is only used if Behavior = 4 or 5.  
 
DOUBLE PRECISION, PARAMETER :: constant = -0.0003        ! Sinking velocity for behavior type 6 
!  Note: This parameter is only used if Behavior = 6. 
 
!* DVM. The following are parameters for the Diurnal Vertical Migration (DVM) behavior type: 
DOUBLE PRECISION, PARAMETER :: twistart = 4.801821   ! Time of twilight start (hr) ** 
DOUBLE PRECISION, PARAMETER :: twiend = 19.19956     ! Time of twilight end (hr) ** 
DOUBLE PRECISION, PARAMETER :: daylength = 14.39774  ! Length of day (hr) ** 
DOUBLE PRECISION, PARAMETER :: Em = 1814.328         ! Irradiance at solar noon (microE m-2 s-1) ** 
DOUBLE PRECISION, PARAMETER :: Kd = 1.07             ! Vertical attenuation coefficient 
DOUBLE PRECISION, PARAMETER :: thresh = 0.0166       ! Light threshold that cues behavior (microE m-2 s-1) 
!  Note: These values were calculated for September 1 at the latitude of 37.0 (Chesapeake Bay mouth) 
!  Note: Variables marked with ** were calculated with light_v2BlueCrab.f (not included in LTRANS yet) 
!  Note: These parameters are only used if Behavior = 3  
 
 
 



  III. Include Files 

19 

!*** SETTLEMENT MODULE PARAMETERS *** 
LOGICAL, PARAMETER :: settlementon = .TRUE. ! settlement module on (.TRUE.) or off (.FALSE.) 
!  Note: If settlement is off: set minholeid, maxholeid, minpolyid, maxpolyid, pedges, & hedges to 1 
!        to avoid both wasted variable space and errors due to arrays of size 0. 
!        If settlement is on and there are no holes: set minholeid, maxholeid, & hedges to 1 
LOGICAL, PARAMETER :: holesExist = .TRUE.   ! Are there holes in habitat? yes(TRUE) no(FALSE) 
INTEGER, PARAMETER :: minpolyid = 101001    ! Lowest habitat polygon id number 
INTEGER, PARAMETER :: maxpolyid = 101004    ! Highest habitat polygon id number 
INTEGER, PARAMETER :: minholeid = 100201    ! Lowest hole id number 
INTEGER, PARAMETER :: maxholeid = 100401    ! Highest hole id number 
INTEGER, PARAMETER :: pedges = 76           ! Number of habitat polygon edge points (# of rows in habitat  
                                            ! polygon file) 
INTEGER, PARAMETER :: hedges = 33           ! Number of hole edge points (number of rows in holes file) 
 
!*** CONVERSION MODULE PARAMETERS *** 
DOUBLE PRECISION, PARAMETER :: PI = 3.14159265358979     ! Pi 
DOUBLE PRECISION, PARAMETER :: RCF = 180.0 / PI          ! Radian conversion factor 
DOUBLE PRECISION, PARAMETER :: Earth_Radius = 6378*1000  ! Equatorial radius 
 
!*** INPUT FILE NAME AND LOCATION PARAMETERS ***;  
!ROMS NetCDF Model Grid file 
CHARACTER(LEN=15), PARAMETER :: NCgridfile = 'CPB_GRID_wUV.nc'    !Filename  
  !Note: the path to the file is necessary if the file is not in the same folder as the code 
  !Note: if .nc file in separate folder in Linux, then include path. For example: 
  !      CHARACTER(LEN=29), PARAMETER :: NCgridfile = '/share/enorth/CPB_GRID_wUV.nc'  
  !Note: if .nc file in separate folder in Windows, then include path. For example: 
  !      CHARACTER(LEN=23), PARAMETER :: NCgridfile = 'D:\ROMS\CPB_GRID_wUV.nc' 
 
!ROMS Predictions NetCDF Input File. Filename = prefix + filenum + suffix 
CHARACTER(LEN=7), PARAMETER :: prefix='y95hdr_'    ! NetCDF Input Filename prefix                      
INTEGER, PARAMETER :: filenum = 182                ! Number in First NetCDF Input Filename 
CHARACTER(LEN=3), PARAMETER :: suffix='.nc'        ! NetCDF Input Filename suffix 
  !Note: the path to the file is necessary if the file is not in the same folder as the code 



  III. Include Files 

20 

  !Note: if .nc file in separate folder in Windows, then include path in prefix. For example: 
  !      CHARACTER(LEN=15), PARAMETER :: prefix='D:\ROMS\y95hdr_'    
  !      if .nc file in separate folder in Linux, then include path in prefix. For example: 
  !      CHARACTER(LEN=26), PARAMETER :: prefix='/share/lzhong/1995/y95hdr_'    
 
!Particle Location Input File  
CHARACTER(LEN=25), PARAMETER :: parfile     = 'initial_part_location.csv' !Particle locations  
  !Note: the path to the file is necessary if the file is not in the same folder as the code 
 
!Habitat Polygon Location Input Files 
CHARACTER(LEN=24), PARAMETER :: habitatfile = 'sample_habitat_edges.csv'  !Habitat polygons 
CHARACTER(LEN=24), PARAMETER :: holefile    = 'sample_habitat_holes.csv'  !Holes in habitat 
  !Note: the path to the file is necessary if the file is not in the same folder as the code 
 
!*** OTHER PARAMETERS ***  
INTEGER, PARAMETER :: seed = 9              ! Seed value for random number generator (Mersenne Twister) 
LOGICAL, PARAMETER :: BoundaryBLNs = .TRUE. ! Create Surfer Blanking Files of boundaries? .TRUE.=yes,  
                                            !  .FALSE.=no 
LOGICAL, PARAMETER :: SaltTempOn = .FALSE.  ! Calculate salinity and temperature at particle  
                                            ! location: yes (.TRUE.) or no (.FALSE.)                                        



  IV. Input Files 

21 

IV. Input Files 
 
This section includes information on the input files needed to run LTRANS: 1) the NetCDF files 
from the ROMS hydrodynamic model, 2) a comma delimited file that contains the particle 
locations, and 3) comma delimited files that contain habitat boundaries for the Settlement 
Module. The latter is only needed if the Settlement Module is turned on.  
 
 
A. ROMS NetCDF files 
 
Overview:  The LTRANS model uses hydrodynamic data from ROMS NetCDF files. It uses 
two types of files, a file that contains information about the model grid, and the output files that 
contain the hydrodynamic model predictions. Often there are multiple sequential output files that 
contain hydrodynamic model predictions. LTRANS assumes that the sequential ROMS output 
files contain the same number of time steps in each file (e.g., if the first file contains predictions 
at 144 discrete times, then all files should contain predictions at 144 discrete times).  
 
The following variables should be in the file that contains the ROMS model grid information: 
 Netcdf ID Description 

angle angle between x-coordinate and true east direction 
h depths of rho nodes  
mask_rho rho node mask value 
mask_u u node mask value 
mask_v v node mask value 
x_rho x-coordinates of rho nodes 
x_u x-coordinates of u nodes 
x_v x-coordinates of v nodes 
y_rho y-coordinates of rho nodes 
y_u y-coordinates of u nodes 
y_v y-coordinates of v nodes 
 

The following variables should be in the sequential ROMS files that contain the hydrodynamic 
model predictions. Note that the variables Cs_r, Cs_w, sc_r, and sc_w must be in the first 
ROMS predictions file used by LTRANS. The other variables should be all of the files.   

Netcdf ID Description 
Aks vertical diffusivity of salinity at rho nodes 
Cs_r value used to adjust rho node depths 
Cs_w value used to adjust w node depths 
salt rho node salinity 
sc_r value used to convert s-levels to rho node depths 
sc_w value used to convert s-levels to w node depths 
temp rho node temperature 
u u-direction velocity 
v v-direction velocity 
w w-direction velocity 
zeta zeta levels at rho nodes 



  IV. Input Files 

22 

There are two sections in which the ROMS NetCDF files are read in to the program.  The first 
section reads in the ROMS grid file and is located in subroutine initGrid in the Hydrodynamic 
Module.  The call to initGrid is located near the beginning of LTRANS.f90.  The data read in 
includes the x and y coordinates of the nodes in the rho, u, and v grids, depth at the rho nodes, 
the angle between x-coordinate and true east, masks of the rho, u, and v grid nodes that specify 
whether the nodes are on land or in water, and the variables necessary to calculate s-levels: SC, 
CS, SCW, and CSW.  This data is read in once and does not change.   
 
The second section in which NetCDF files are read into the program occurs when information is 
read in from sequential output files of ROMS model predictions. This is done at the beginning of 
the external time step in LTRANS.f90 by calling the subroutines initHydro and updateHydro 
found in the Hydrodynamic Module. The current version of LTRANS uses files that contain 1 
day of ROMS model output. When the program reaches a new day, it opens that day’s NetCDF 
file and reads in the needed data.  This data includes U, V, and W velocities, salinity, 
temperature, zeta, and vertical diffusivity.  LTRANS stores in memory data needed for three 
external time steps (not the whole day’s worth of data) to avoid overloading the computer’s 
memory.  
 
Input File: A single input file is used that contains the ROMS model grid data, and sequential 
input files are used that contain ROMS model predictions.  For LTRANS model development, 
the input file used for reading in the constants is called ‘CPB_GRID_wUV.nc’ and was created 
with Seagrid, a Matlab program that generates grids for ROMS models.  Also, the sequential 
input files used in LTRANS model development have names that begin with the letter “y” 
followed by the last two numbers of the year and “hdr_”.  This is followed by the three digit day 
of the year and “.nc”.  For example, the input file for the day of June 23, 1995 was named 
“y95hdr_174.nc” (June 23 is the 174th day of the year).  The same data types are used in each of 
the daily input files, though the data in each file is specific to the appropriate day.  
  
Initialization:  In order to run the model with NetCDF input, NetCDF libraries must exist on the 
computer on which LTRANS is compiled. Also, before linking the program, the file “netcdf.lib” 
should be added to the project (if compiling using Windows Visual Fortran). Finally, the correct 
name of the ROMS NetCDF files must be specified within the LTRANS.inc include file so the 
appropriate data can be accessed. If these files are not located in the source code folder then the 
correct path to the files must be specified.  
 
Numerical Method:  Before data can be read in from a NetCDF file, the file must be opened by 
calling the function NF90_OPEN.  For example, a NetCDF file might be opened with the line 
“STATUS = NF90_OPEN(filename, NF90_NOWRITE, NCID)”, where “filename” can be a 
hard-coded filename such as “CPB_GRID_wUV.nc” or a character array containing the file 
name.  The advantage of the character array, as seen in this program, is that the array can be 
altered and reused again in a loop, while hard-coding is not as flexible. “NF90_NOWRITE” in 
the above NF90_OPEN statement is a flag indicating that the file will be open for reading but not 
for writing.  NCID is the returned NetCDF ID used in following statements in order to retrieve 
the data within the file.  The function returns an integer that stands for a particular status 
(whether it succeeded, failed, etc.) and that value is stored in the variable STATUS to be tested 
to see if opening the file occurred without error.  The line following the open statement should 



  IV. Input Files 

23 

have “if (STATUS .NE. NF90_NOERR)” to test if there was an error, followed by an 
appropriate action such as writing “Problem NF90_OPEN” to output as is done in LTRANS. 
 
The variable “filenm” is a character array that contains the name of the file that is to be opened.  
It is pieced together from other character arrays as well as integers (filenm  = prefix + counter + 
suffix).  With the ROMS predictions files used to create LTRANS,   prefix = “y95hdr_”, suffix 
= “.nc”, and counter was used to increment the name of sequential input files by one day (each 
file contains one day of ROMS model predictions).  Note that the prefix should also have the 
path to the file if the file is not located in the same directory as the code.  The counter in the 
middle of the file name is created by adding iint, the current day of the model (0 for the first day 
of the model, 1 for the second, etc.), to the day of the year on which the model starts.  Therefore, 
if the model is on the third day of a run that starts on the 174th day of the year, the day of the year 
will be calculated as 174 + 2 = 176.  This value is stored in counter.  Then prefix, counter, and 
suffix are all written to the character array filenm which is used to open the appropriate NetCDF 
file.  This allows the program simply to increment iint, recalculate counter, and remake filenm 
without excessive code, making it superior to hard-coding. 
 
Once the file is open, the program must read the data from it.  There are many functions that can 
be used to read a NetCDF file.  This program uses two: NF90_INQ_VARID and 
NF90_GET_VAR.  The function NF90_INQ_VARID is used to get the variable ID of a certain 
variable within the NetCDF file.  This requires the exact name of the variable in the file.  If this 
is not known, there are other functions that can help you find it.  Additional functions and 
NetCDF information can be found at the links at the end of this section.  Because the ROMS 
variables names are known, we use NF90_INQ_VARID.  The form of the function is “STATUS 
= NF90_INQ_VARID(NCID, ‘varname’, VID)”, where STATUS serves the same purpose as in 
the open function, NCID is the NetCDF ID returned from the open function, ‘varname’ is the 
specific variable name the program is looking for, and VID is the variable ID returned from the 
function. 
 
Now that the program knows the NetCDF ID (NCID) and the variable ID (VID), it can get the 
data for that specific variable in that particular NetCDF file.  This is done using the 
NF90_GET_VAR function. There are several different formats in which different variables can 
be passed to this function, changing how the output is returned.  In LTRANS, we use two 
different formats.  The first format is “STATUS = NF90_GET_VAR (NCID, VID, Var)”, where 
STATUS once again serves the same purpose, NCID is the NetCDF ID, VID is the variable ID, 
and Var is the variable into which the data is being read.  This only works properly if the variable 
has the same dimensions as the data. After NF90_GET_VAR is called, the variable STATUS is 
tested again to ensure that the data has been read in properly. 
 
The format above is only useful for reading in an entire array from a NetCDF file. To read in 
only part of an array the second format is used. The second format of a call to this function used 
in LTRANS is “STATUS = NF90_GET_VAR ( NCID, VID, Var, START, COUNT)”, where 
STATUS is used to check that the function worked properly, NCID is the NetCDF ID, VID is 
the variable ID, Var is the variable that the data is being read into, START is the position in the 
array from which to start reading, and COUNT is the number of positions to read in from each 
dimension  For this to work properly, the dimensions of Var must be the same as the dimensions 



  IV. Input Files 

24 

of the variable COUNT.  Again, after the function call, the variable STATUS is tested to ensure 
that the data was read in without error. 
 
The following is a list of the variable IDs, the variables they are read into, and the description of 
what they are: 
 Netcdf ID LTRANS variable Description 

Aks KHb (c, f)  vertical diffusivity of salinity at rho nodes 
angle rho_angle  angle between x-coordinate and true east direction 
Cs_r CS   value used to adjust rho node depths 
Cs_w CSW  value used to adjust w node depths 
h depth  depths of rho nodes 
mask_rho rho_mask  rho node mask value 
mask_u u_mask  rho node mask value 
mask_v v_mask  rho node mask value 
salt saltb (c, f)  rho node salinity 
sc_r SC   value used to convert s-levels to rho node depths 
sc_w SCW  value used to convert s-levels to w node depths 
temp tempb (c, f) rho node temperature 
u Uvelb (c, f) u-direction velocity 
v Vvelb (c, f) v-direction velocity 
w Wvelb (c, f) w-direction velocity 
x_rho x_rho  x-coordinates of rho nodes 
x_u x_u  x-coordinates of u nodes 
x_v x_v  x-coordinates of v nodes 
y_rho y_rho  y-coordinates of rho nodes 
y_u y_u  y-coordinates of u nodes 
y_v y_v  y-coordinates of v nodes 
zeta zetab (c, f)  zeta levels at rho nodes 

 
After everything has been properly read into the program, the function NF90_CLOSE is called.  
It has the format “STATUS = NF90_CLOSE(NCID)” and simply takes the NetCDF ID (NCID) 
and disassociates it from the NetCDF file it was associated to.  This makes it free to be used with 
the next NetCDF file.  
 
The main structure of LTRANS is based on the assignment of a unique number to each ROMS 
model grid point (referred to as a node). Each grid cell (referred to as an ‘element’) is comprised 
of a set of 4 nodes. After the hydrodynamic data is read from the NetCDF files into the variables 
listed above, it is reorganized so that each data point is assigned the appropriate node number.  
This is done in the subroutine initGrid in the Hydrodynamic Module after the grid variables are 
read in. 
 
Further information regarding how to input data from a NetCDF file can be found at the 
following NetCDF Fortran 77 and Fortran 90 interface guide websites:  
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-f77/  
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-f90/ 
 



  IV. Input Files 

25 

B. Particle location file 
 
Overview:  The starting locations of all particles are read in from an external file which is in 
comma-delimited format. The code for reading in this file is found in the main LTRANS.f90 
program. 
 
Input File: Depending on whether or not the Settlement Module is turned on, this file contains 
either three or four columns. In either case, the first column contains each particle’s latitudinal 
coordinate, the second contains its longitudinal coordinate, and the third column contains the 
particle’s depth (in meters from surface, e.g., -35.55).  If the Settlement Module is turned on, a 
fourth column must contain the identification number of the habitat polygon from which each 
particle starts. In the example LTRANS model, the file is called “initial_part_location.csv”.   
  
Initialization:  The filename and path (if needed) to the file must be specified correctly in the 
variable parfile in the LTRANS.inc include file.  The variable numpar should be equal to the 
number of rows in the particle locations file. numpar equals the number of particles tracked). 
 
Numerical Method:  The file is opened into unit 1 and then read into the variables P_latlon and 
P_xyz(n.3), and, if settlement is on, startpoly, using a loop that iterates through numpar 
particles.  For each particle i, P_latlon(i,1) contains the particle’s longitude, P_latlon(i,2) 
contains the particle’s latitude, P_xyz(n.3) contains the particle’s depth, and startpoly(i) 
contains a habitat polygon identification number.  The file is read in using format 1 which 
expects two real floating point variables (one 12 spaces long with 8 spaces after the decimal, one 
11 spaces long with 8 spaces after the decimal, one double precision variable (6 spaces long with 
2 after the decimal), and one integer of 6 digits if the Settlement Module is turned on.   
 
After the data is read in, it must be converted from latitude and longitude to meters in order to be 
used in the model. This conversion is done in the Conversion Module using the equations from 
the sg_mercator.m and seagrid2roms.m matlab scripts that are found in Seagrid (a Matlab 
program used to generate the ROMS model grid). The particle start latitude and longitude 
locations are converted to meters and stored in the variable P_xyz(n,1) and P_xyz(n,2), 
respectively.  P_xyz is used for all the particle location calculations throughout LTRANS. 
 
Variable Definitions:  The following variables are used when reading in the particle locations 
file: 

numpar – integer – number of particles 
parfile – character array – path (if needed) and file name of the input file 
P_latlon – real – initial latitude and longitude of particles 
P_xyz – dp – array containing particle x, y, and z locations (in meters) 
startpoly – integer – identification number for particles 
settlementon – logical – .TRUE. if settlement is on, else .FALSE. 

 
 
 
 
 



  IV. Input Files 

26 

C. Habitat location files for Settlement Module 
 
Overview:  If the Settlement Module will be used, then the locations of habitat polygons must be 
read in from external files. These comma delimited files contain habitat polygon identification 
numbers and latitude and longitude coordinates for the center and edges of the habitat polygons. 
If the habitat polygons have holes in them, two files must be read in, one containing the 
coordinates for the habitat polygons and the second containing the coordinates for the holes.  
 
Input File:  Data regarding habitat locations is contained in two separate files.  The first contains 
the locations of the edges of all the habitat polygons, while the second contains the locations of 
the edges of any holes that exist in the habitat polygons.  The file containing the habitat polygon 
edge data has five columns: identification number, center point longitude, center point latitude, 
edge point longitude, and edge point latitude.  Each polygon has one identification number and 
one center latitude and longitude that do not change, but different edge points that encircle the 
center point.  Thus, a file will use several rows to define a single polygon, repeating the 
identification number and center latitude and longitude with different edge latitudes and 
longitudes, going around the polygon’s outline and ending with the edge point it started on to 
close the shape. See “sample_habitat_edges.csv” for an example.  
 
The file containing the holes in habitat polygons is set up exactly like the habitat polygon file but 
with a sixth column.  The columns are the hole identification number, hole center longitude, hole 
center latitude, hole edge longitude, hole edge latitude, and the habitat polygon identification 
number.  The sixth column indicates the habitat polygon identification number of the polygon in 
which the hole is located.  In the example LTRANS model, the file with hole information is 
called “sample_habitat_holes.csv”. 
  
Initialization:  The filename and path (if needed) to the file must be specified correctly in the 
variables habitatfile and holefile in LTRANS.inc.  Also, a number of additional parameters in 
LTRANS.inc must be initialized.  The parameter pedges must equal the number of rows in the 
habitat polygon file and the parameter hedges must equal the number of rows in the hole file.  
The parameters minholeid, maxholeid, minpolyid, and maxpolyid must contain the minimum 
and maximum id numbers used in both the habitat polygon and hole input files. 
 
Numerical Method:  The settlement input files are read in by the subroutine initSettlement 
found in the Settlement Module.  The habitat polygon edge file is opened into unit 181 and then 
read into the variable P_lonlat using a loop that iterates pedges number of times.  For each edge 
i, P_lonlat(i,1) contains the edge’s polygon identification number, P_lonlat(i,2) contains its 
center longitude, P_lonlat(i,3) contains its center latitude, P_lonlat(i,4) contains its edge 
longitude, and P_lonlat (i,5) contains its edge latitude.  The file is read in using format 18 which 
expects a floating point variable of 10 characters, none of which are after the decimal, followed 
by four floating point variables of 25 characters, 18 of which are after the decimal. 
 
The hole edge file is opened into unit 331 and then read into the variable H_lonlat using a loop 
that iterates hedges number of times.  For each hedge i, H_lonlat (i,1) contains the current 
hedge’s hole identification number, H_lonlat (i,2) contains its center longitude, H_lonlat (i,3) 
contains its center latitude, H_lonlat (i,4) contains its edge longitude, H_lonlat (i,5) contains its 



  IV. Input Files 

27 

edge latitude, and H_lonlat (i,6) contains the identification number of the habitat polygon in 
which this hole is located. The file is read in using format 343 which expects a floating point 
variable of 10 characters, none of which are after the decimal, followed by four floating point 
variables of 25 characters, 18 of which are after the decimal, and another floating point variable 
of 10 characters, none of which are after the decimal.   
 
After the data is read in, it must be converted from latitude and longitude to meters in order to be 
used in the model. This conversion is done using the equations from the sg_mercator.m and 
seagrid2roms.m matlab scripts that are found in Seagrid and used to generate the ROMS model 
grid. The habitat polygon boundary locations are converted from the variable P_latlon and 
stored in the variable polys. The hole boundary locations are converted from the variable 
H_lonlat and stored in the variable holes. 
 
Variable Definitions:  The following variables are used when reading in habitat polygon files: 

habitatfile – character array, parameter – the file and path (if needed) of the habitat polygon 
data 

hedges – integer, parameter – total number of hole edges 
H_lonlat – dp – latitude and longitude hole data read in from holefile 
holefile – character array, parameter – the file and path (if needed) of the hole data 
holes – dp – id number, center longitude, center latitude, edge longitude, edge latitude for 

each habitat polygon, habitat polygon id number 
minholeid – integer, parameter – lowest hole id number 
minpolyid – integer, parameter – lowest habitat polygon id number 
maxholeid – integer, parameter – highest hole id number 
maxpolyid – integer, parameter – highest habitat polygon id number 
pedges – integer, parameter – number of habitat polygon edge points  
P_lonlat – dp – latitude and longitude habitat polygon data read in from habitatfile 
polys – dp – id number, center longitude, center latitude, edge longitude, and edge latitude 

for each habitat polygon 
 
 



  V. Execution: LTRANS.f90 

28 

V. Execution (LTRANS.f90, main program)  
 
LTRANS.f90 contains the main structure of the particle-tracking program. It executes the 
external time step, internal time step, and particle loops, advects particles, and writes output. It 
calls the modules that read in hydrodynamic model information, move particles due to turbulence 
and behavior, test if particles are in habitat polygons, and apply boundary conditions to keep 
particles in the model domain. See Fig. 1 for a schematic of the model structure and the external 
and internal time steps which are described in this section. 
 
Before the iterative loops that comprise the heart of the particle tracking model structure, 
LTRANS.90 starts with an initialization section. Several time stepping variables are calculated, 
variable arrays are initialized, and the particle locations are read in and their latitude and 
longitude coordinates are converted to meters. Subroutine initBehave is used to initialize the 
matrices that contain information on particle attributes for the Behavior Module.  
 
In addition, information about the ROMS hydrodynamic model domain is read in and used to 
create the LTRANS model domain and grid element structure. In LTRANS, an element is 
defined as a set of four adjacent rho, u or v nodes that form a quadrilateral. Each element is 
assigned a unique identification number. These numbers are used to store previous, and 
efficiently search for new, particle locations. Three subroutines are called to initialize the 
LTRANS domain and element structure. Subroutine initGrid is used to read the x and y 
coordinates of the nodes in the rho, u, and v grids, depth at the rho nodes, the angle between x-
coordinate and true east, masks of the rho, u, and v grid nodes that specify whether the nodes are 
on land or in water, and the variables necessary to calculate s-levels. It also assigns unique 
identification numbers to rho-, u- and v elements to create the LTRANS grid element structure. 
Subroutine createBounds defines the LTRANS model boundaries based on the land/sea masking 
of the rho grid. Finally, subroutine initHydro reads in the initial hydrodynamic data (u-, v-, and 
w-velocities, salinity, temperature, zeta, and vertical diffusivity) for the back, center, and forward 
time steps from the first ROMS sequential output file.   
 
Once the initialization is complete, the external time step loop begins as well as the internal time 
step and particle loops that are nested within it. The following sections of the User’s Guide 
contain explanations of the remaining code in the main program LTRANS.f90: the external time 
step, internal time step and particle loops as well as boundary condition tests, advection, print 
statements (output), and the subroutine find_currents. 
 
 
A. External time step loop 
 
Overview:  The loop which iterates for each external time step contains the majority of the 
execution code of the program.  The execution of the external time step loop can be broken down 
into three major sections: updating the hydrodynamic data, the internal time step loop, and the 
output (print) section.  The internal time step loop and the print statements will be covered in the 
following sections. The main purpose of the external time step loop is to update hydrodynamic 
data. The hydrodynamic data comes from ROMS NetCDF files which contain information about 
u velocity, v velocity, w velocity, salinity, sea surface height, and other attributes.   



  V. Execution: LTRANS.f90 

29 

 
To calculate water properties at the particle location, LTRANS uses hydrodynamic model output 
from the current (‘center’) time step, the previous (‘back’) time step, and the future (‘forward’) 
time step.  On the first iteration of the external time step the attributes of the back, center, and 
forward times are taken directly from the first netcdf file.  However, on every subsequent 
iteration the back and center time steps’ attributes are transferred from the previous center and 
forward time steps, respectively, and data from the netcdf files is only read in for the forward 
time step.   
 
Initialization:  The length of the external time step (in seconds) is set in LTRANS.inc with the 
variable dt.  The value dt should be equal to the duration of the hydrodynamic data output 
intervals.  The variable tdim found in LTRANS.inc should be initialized to the total number of 
external time steps within each hydrodynamic model output file (e.g., 144 in the example 
LTRANS program). The variable stepT, the total number of external time steps in the model, is 
initialized to seconds divided by dt, where seconds is the total number of seconds that the model 
will run and dt is the duration, in seconds, of the external time step. 
 
Numerical Methods:  The external time step consists of a loop from 1 to stepT using the 
variable p to iterate.  The first two iterations use the same data, so the hydrodynamic data is 
initialized before the first iteration by calling subroutine initHydro and is not updated again until 
p is greater than 2.  On all other iterations, the program updates hydrodynamic data by calling 
subroutine updateHydro.  Both initHydro and updateHydro can be found in the Hydrodynamic 
Module.  In updateHydro, the ‘forward’ variables are updated with the most recent 
hydrodynamic data and the ‘back’ and ‘center’ variables are replaced with the ‘center’ and 
‘forward’ variables from the previous time step, respectively.   
 
Following the update hydrodynamic data section is a short section used to update the external 
time step values in ex.  The variable ex is an array of three values used to store the back time, 
center time, and forward time in seconds.  These values are calculated by using multiples of dt, 
the size of the external time step in seconds.   
 
Variable Definitions:  The following variables are used in this section:   

dt – integer, parameter – duration of the external time step (s) 
ex – dp – back, center, and forward external times (s) 
p – integer – iteration variable for external time step 
seconds – real – total number of seconds that the LTRANS model will run 
stepT – integer – total number of external time steps 
tdim – integer, parameter –  total number of external time steps within each hydrodynamic 

model output file. Set in LTRANS.inc 
 
 
 
B. Internal time step loop 
 
Overview:  The internal time step loop is the loop in which the particle tracking occurs. The 
internal time step is shorter than the external time step to allow particles to move in smaller 



  V. Execution: LTRANS.f90 

30 

intervals than the hydrodynamic model output intervals. Within each iteration of the internal time 
step loop, the time and internal time step values are updated. After this, the program enters the 
particle loop where particle movement over the time step is calculated (see next section for a 
description of the particle loop).  Once this is complete, particle locations are updated.  These 
events occur every iteration of the internal time step. 
 
Initialization:  The duration of the internal time step, idt, must be set in LTRANS.inc. The 
variable stepIT (the number of internal time steps per external time step) is then initialized as the 
value of dt (the external time step) divided by idt (the internal time step).  
 
Numerical Method:  The internal time step is a loop that iterates from 1 to stepIT using the 
variable it.  First, the variable time is incremented by idt and daytime is recalculated by dividing 
time by 86,400 (the number of seconds in a day). 
 
Next, the values of ix, the internal time step values, are calculated.  ix is an array with three 
values, so it can hold the internal ‘back’, ‘center’, and ‘forward’ times.   
 
Once time has been updated, the internal time step goes into a loop from 1 to numpar through 
each particle, updating the particles’ locations. Upon the completion of the particle loop, there is 
a short section that iterates through all the particles from 1 to numpar, using the variable n, and 
updates the particle locations in P_xyz to the new locations in newP_xyz.   
 
Variable Definitions: The following variables are used in this section:   

daytime – real – model time in days 
idt – integer, parameter – duration of the internal time step 
it – integer – iteration variable for internal time step 
ix – dp – back, center, and forward internal times (s) 
n – integer – iteration variable for particle loops 
newP_xyz – dp – new particle x,y,z locations after particle loop 
numpar – integer, parameter – total number of particles 
P_xyz – dp – particle x,y,z locations before particle loop 
stepIT – integer – number of internal time steps per external time step 
time – integer – model time in seconds 

 
 
 
C.  Particle Loop 
 
Overview:  The particle loop is a loop that iterates through all of the particles, updating each 
particle’s position for the current internal time step. It calculates advection at the particle location 
and conducts vertical and horizontal boundary tests. It is within this loop that the optional 
turbulence, behavior and settlement modules can be called. For this section, it is useful to be 
reminded that the main structure of LTRANS is based on the assignment of a unique number to 
each ROMS model grid point (referred to as nodes). Each grid cell (referred to an ‘element’) is 
comprised of a set of 4 nodes. 
 



  V. Execution: LTRANS.f90 

31 

Numerical Method:  First, the age of the particle is updated.  The particle’s age is incremented 
by the internal time step, idt.  The particle’s updated age and its previous status can be used to 
determine how it will behave in this iteration.  For example, for oyster larvae, the program can 
determine if the particle is pre-pediveliger stage, pediveliger stage, or so old that it dies.  The 
updated particle age is passed to updateStatus in the Behavior Module to update the current 
particle’s settled or dead status.  If the particle is dead or has settled, the program passes to the 
next particle because the current particle needs no further computation. 
 
The very first time through the particle loop, the subroutine checks that the particles are within 
horizontal boundaries and determines in which rho, u, and v grid elements each particle is 
located.  To find the grid element in which the particle is located, the program calls the 
subroutine setEle from the Hydrodynamic Module with the optional final argument set to 
.TRUE., indicating that the subroutine will need to call gridcell to search through every element 
until it finds the one that contains the particle.  On subsequent iterations, the program calls setEle 
without the optional final argument, indicating that the subroutine will cycle through a 
predetermined list of all the elements adjacent to the element in which the particle was last 
known to be.  If the particle is not in the element in which it was in during the last time step or in 
any of its adjacent elements, the particle has jumped across an element and is considered to have 
violated the Courant-Friedrichs-Levy condition (note this is an informal application of formal 
condition which was derived for hydrodynamic models, not particle tracking models). In this 
case, the program pauses and should be restarted with a smaller internal time step (idt).  If the 
program does not pause, it determines the rho grid, u grid, and v grid elements in which the 
particle is located and stores the node numbers of these elements for later computations. 
 
Next, the program calls subroutine setInterp from the Hydrodynamic Module, which determines 
interpolation values for the particle’s current location.  The subroutine uses bilinear interpolation. 
In the unusual event that the bilinear interpolation fails, an inverse weighted distance technique 
is employed.  The program then checks to ensure that the particle is within the vertical 
boundaries.  The program then creates a matrix of z-coordinates at the particle’s location for each 
s-level.  This is done for the back, center, and forward external times steps for each rho and w s-
level. This is necessary because sea surface height changes over time and therefore the vertical 
position of the s-levels also change.  
 
The next four blocks of code are for advection (described below), horizontal turbulence (see 
Horizontal Turbulence Module), vertical turbulence (see Vertical Turbulence Module), and 
behavior (see Behavior Module). In addition, salinity and temperature at the particle location is 
calculated if the SaltTempOn parameter is set to .TRUE. in the LTRANS.inc file.  The 
displacement (m) of the particle due to advection in the x, y, and z directions are stored in the 
variables AdvectX, AdvectY, and AdvectZ (see Advection section below).  The displacements 
of the particle due to horizontal turbulence in the x- and y-directions are stored in TurbHx and 
TurbHy.  TurbV holds the result of the displacement of the particle in the z-direction due to 
vertical turbulence. The variable Behav stores the displacement in the z-direction due to particle 
behavior. 
 
Once those values have been calculated, they are applied to alter the location of the particle.  
AdvectX and TurbHx are added to the x-position of the particle, AdvectY and TurbHy are 



  V. Execution: LTRANS.f90 

32 

added to the y-position of the particle, and AdvectZ and TurbV are added to the z-position of 
the particle.  If the particle is not within vertical boundaries after those updates it is reflected off 
the surface or bottom (see Vertical boundaries test section below).  Behav is then added to the 
new z position and the vertical bounds are tested again.  If the particle location is outside of a 
boundary, it is placed just within the boundary rather than being reflected. 
 
The next section of the program checks that the trajectory of the particle from its old location to 
its new location does not pass through any horizontal boundaries by calling the subroutine 
intersect_reflect that is located in the Boundary Module (see Horizontal boundaries tests 
section below). If it does pass through a boundary, it is reflected back into the model domain. 
The particle can reflect a maximum of three times before the program will print an error message 
to the screen and discontinue. After the horizontal boundaries are tested, the program calls 
subroutine setEle as a final test to make sure that the particle is still within a rho-, u-, and v-grid 
element. 
 
The last step in the particle loop is to determine if the particle can currently settle (if the 
Settlement Module is turned on (settlementon = .TRUE.).  This is done by calling the subroutine 
settlement in the Settlement Module.  The subroutine first checks if the particle is of the right 
age to settle, has not already settled, and if there are habitat polygons to settle on within the 
element in which the particle is located.  If it passes those three tests, it continues by determining 
if the particle is within the boundaries of any habitat polygon in that element and not within the 
boundaries of any holes in that habitat polygon.  If the particle is within a habitat polygon and 
not within a hole, then it settles.  Its ending habitat polygon number is stored in the variable 
endpoly and its depth is set to equal the depth of the bottom at that location.  If it is not within 
the boundaries of a habitat polygon, or if it is within the boundaries of a hole, then the particle 
can not settle and nothing is done.  Regardless of whether the particle settles or not, this ends the 
particle loop.   
 
Variable Definitions:  The following variables are used in this section: 

AdvectX – dp –  the distance that a particle moves in one internal time step due to advection 
in the x-direction (m) 

AdvectY – dp –  the distance that a particle moves in one internal time step due to advection 
in the y-direction (m) 

AdvectZ – dp –  the distance that a particle moves in one internal time step due to advection 
in the z-direction (m) 

Behav – dp –  the distance that a particle moves in one internal time step due to behavior (m) 
idt – integer, parameter – duration of the internal time step 
TurbHx – dp –  the distance that a particle moves in one internal time step due to subgrid 

scale turbulence in the x-direction (m) 
TurbHy – dp –  the distance that a particle moves in one internal time step due to subgrid 

scale turbulence in the y-direction (m) 
TurbV – dp –  the distance that a particle moves in one internal time step due to subgrid 

scale turbulence in the z-direction (m) 
 
 
 



  V. Execution: LTRANS.f90 

33 

1. Vertical boundaries test 
 
Overview:  At each time step the water surface levels change and the particles move.  This 
section checks that the particles are not moved above the surface or below the bottom (i.e., this 
keeps them in the water).  
 
Numerical Method:  Vertical boundaries (surface and bottom) are specified for each particle by 
interpolating sea surface height and bottom depth to the x-y location of the particle.  The values 
are interpolated by the subroutine getInterp from the Hydrodynamic Module.  Once the vertical 
boundaries have been calculated they are stored in P_depth, P_zetab, P_zetac, and P_zetaf.  
The bottom boundary is stored in P_depth, and the surface boundaries due to changing sea 
levels are stored in P_zetab, P_zetac, and P_zetaf for the back, center, and forward external 
times.  There are two sections where the vertical boundaries are tested, one at the beginning and 
one at the end of the particle loop. 
 
If the particle is out of bounds at the beginning of the particle loop, then it is simply placed just 
within the boundaries.  This is typically only needed if the sea surface has lowered since the last 
time step, leaving the particle just above water.  The vertical boundaries are checked twice at the 
end of the particle loop, once after the particle’s location is updated due to advection and 
turbulence, and one final time after the particle’s location is updated due to behavior.  If a 
particle passes through the surface or bottom boundary due to turbulence or vertical advection, 
the particle is placed back in the model domain at a distance that is equal to the distance that the 
particle has exceeded the boundary (i.e., it is reflected vertically). If a particles passes through 
the surface or bottom due to particle behavior, the particle is placed just below the surface or 
above the bottom (i.e., it stops near the boundary). 
 
Variable Definitions:  The following variables are used in this section: 

newZpos – dp – new z coordinate after advection and turbulence 
P_depth – dp – sea floor depth at the particle location 
P_xyz – dp – particle’s x,y,z coordinates before the current time step 
P_zb(c, f) – dp – particle’s depth at back, center, and forward internal time 
P_zetab(c, f) – dp – surface height at the particle location for back, center, and forward time 
reflect – dp – distance to reflect particle from surface or bottom if advection and turbulence 

moved the particle out of bounds 
 
 
2. Advection  
 
Overview:  This model determines the displacement (m) of a particle due to advection in the x-, 
y-, and z- directions for each internal time step. Current velocities are estimated using a 4th order 
Runge-Kutta technique. ‘Law of the wall’ (log-layer calculation) is applied to particles near 
bottom.  
 
Numerical Method:  The advection model is based on a 4th order Runge-Kutta numerical 
method.  A prototype of 4th order Runge-Kutta looks like this: 

yn+1 = yn + (h/6)*(kn1 + 2kn2 + 2kn3 + kn4) 



  V. Execution: LTRANS.f90 

34 

Where: 
 kn1 = f(tn, yn) 
 kn2 = f(tn + ½h, yn + ½h* kn1) 
 kn3 = f(tn + ½h, yn + ½h* kn2) 
 kn4 = f(tn + h, yn + h* kn3) 
These prototypes are implemented by calculating the kn values using the subroutine 
FIND_CURRENTS subroutine in LTRANS.f90.  First the kn1 values for the u-, v-, and w- 
directions are determined by passing in the values for the current particle location. 
FIND_CURRENTS returns the kn1 values. New location coordinates are calculated using kn1 
values and passed back to FIND_CURRENTS to calculate kn2 values. This process is repeated 
until kn4 values are determined. The kn values then are plugged into the main function to calculate 
advection values in the u-, v-, and w- directions.  Finally, the u- and v-values are rotated using 
P_angle to the x- and y- component directions. Velocities at the particle location are multiplied 
by the internal time step idt to calculate displacement (m). 
 
Variable Definitions:  The following variables are used in the advection section: 

AdvectX, AdvectY, AdvectZ – dp – distance moved in the x, y, and z directions (m) due to 
advection 

ex – dp – back, center, and forward external times (s) 
idt – integer, parameter – duration of the internal time step (s) 
ix – dp – back, center, and forward internal times (s) 
kn1_u(v, w), kn2_u(v, w), kn3_u(v, w), kn4_u(v, w) – dp – u, v, and w-component 

advection currents at the 1st, 2nd, 3rd, and 4th Runga-Kutta position 
maxpartdepth, minpartdepth – dp – to ensure the depth used to calculate 2nd, 3rd, and 4th 

Runga-Kutta positions is not outside vertical bounds 
p – integer – iteration variable for external time step 
P_angle – dp– angle between x-coordinate and true east at particle location  
P_U, P_V, P_W – dp – final advection values in U, V, and W directions 
P_zb(c, f) – dp – particle’s depth at back, center, and forward time 
Pwc_wzb(c, f) – dp – w-coordinate depths at particle location 
Pwc_zb(c, f) – dp – rho-coordinate depths at particle location 
Uad, Vad, Wad – dp – U, V, and W advection values returned from FIND_CURRENTS 
x1, x2, x3 – dp – x-coordinate used to calculate 2nd, 3rd, and 4th Runga-Kutta positions 
Xpar – dp – x-coordinate of the particle before the current time step 
y1, y2, y3 – dp – y-coordinate used to calculate 2nd, 3rd, and 4th Runga-Kutta positions 
Ypar – dp – y-coordinate of the particle before the current time step 
z1, z2, z3 – dp – z-coordinate used to calculate 2nd, 3rd, and 4th Runga-Kutta positions 
Zpar – dp – z-coordinate of the particle  

 
 
3. Horizontal boundaries test 
 
Overview:  After particle positions have been updated due to horizontal advection and 
turbulence, the particle locations are tested to ensure that they have not left the model domain. 

 



  V. Execution: LTRANS.f90 

35 

Standard methods for dealing with horizontal boundaries in particle-tracking models (e.g., 
remove particle from routine, stick particle to boundary, place particle back at previous location, 
etc.) could not be applied because of the complicated nature of Chesapeake Bay shorelines and 
narrow tributaries. We developed reflective horizontal boundary condition routines to keep 
particles within the domain. For the boundary condition routines, boundary points of the 
mainland/sea boundary and each individual island are ordered to create closed polygons. 
Boundaries are taken to be halfway between water and land rho grid points. The trajectory of the 
particle is tested using the subroutine intersect_reflect from the Boundary Module. If the 
particle crosses over a horizontal boundary, it is reflected off the boundary it crosses with an 
angle of reflection that equals the angle of approach to the boundary. The distance that the 
particle is reflected is equal to the distance that the particle exceeded the boundary.  This is done 
a maximum of three times before the program writes an error message and discontinues.  If the 
trajectory is found to no longer cross any boundaries before three bounces, the “crossings” point-
in-polygon approach is used to ensure that the particle is inside the mainland/sea and outside 
island boundaries by using the subroutines mbounds and ibounds from the Boundary Module. 
 
Initialization:  The model boundaries are created by the subroutine createBounds in the 
Boundary Module, which is called in LTRANS.f90 after calling initGrid from the 
Hydrodynamic Module.  createBounds must be called after initGrid because it needs the values 
in rho_mask which are read in by initGrid.  Once createBounds has been called and the 
boundaries have been successfully created, the subroutines mbounds, ibounds, and 
intersect_reflect are used to determine if the particle is in the main boundaries, island 
boundaries, or must reflect off of any boundaries.     
 
Numerical Method:  The horizontal boundaries test uses three subroutines from the Boundary 
Module: mbounds, ibounds, and intersect_reflect (see the Boundary Module section for details 
on these subroutines).  The subroutine mbounds determines whether or not the particle location 
is within the main boundaries of the model.  The subroutine ibounds determines if the particle is 
within an island boundary.  The subroutine intersect_reflect determines where an intersection 
took place and where the particle will be once reflected off of the boundary.  Details on these 
subroutines can be found in the subroutine sections (see p. 68 for mbounds, p. 62 for ibounds, p. 
64 for intersect_reflect). 
 
The horizontal boundaries are tested to ensure that the particle is within the model domain in two 
different sections of the code.  The first test occurs at the beginning of the particle loop, and is 
only called on the very first iteration of the program.  It determines if the starting location for 
each particle is within the model boundaries.  The particle’s location is tested with the 
subroutines mbounds and ibounds.  If the particle is found to be either outside of the main 
boundaries or within island boundaries, the program writes “outside main bounds”, returns the 
particle number, and stops.  
 
Horizontal boundaries are tested for each particle at the end of the particle loop after the 
particle’s location has been updated due to advection, turbulence, and behavior to ensure that its 
new location is within the model boundaries.  
 



  V. Execution: LTRANS.f90 

36 

First, the subroutine intersect_reflect is called to determine whether the particle trajectory 
crosses model boundaries.  If an intersection occurs then it is called again using the intersection 
location and reflection location as the new particle start and end points.  If after being reflected 
three times the particle is still outside of the boundaries, the program prints “still out after 3rd 
reflection” and stops or sets the location of the particle equal to the location at the previous time 
step (if the user comments out the ‘stop’).  If the particle ends in bounds with three or fewer 
reflections, mbounds is called to determine if the particle’s new position is within main model 
boundaries.  If the particle’s new location is outside of the boundaries, the program prints an 
error message and stops.  If the particle is found to be within the main boundaries by mbounds, 
the program calls ibounds.  If ibounds finds that the particle is not in an island, the particle 
passes the test and the program moves on.  If the particle is in an island, the program prints an 
error message and stops.  
 
When ibounds and mbounds return that the particle is within the model boundaries, the program 
moves on with the final reflected location as the new location of the particle. 
 
Variable Definitions:  The following variables are used in this section: 

fintersectX, fintersectY – dp – x,y coordinates of intersection returned by intersect_reflect 
freflectX, freflectY – dp – x,y coordinates of reflected location returned by intersect_reflect 
in_island – integer – return variable of ibounds (1 – in and island, 0 – not in an island) 
inbounds – integer – return variable of mbounds (1 – in bounds, 0 – not in bounds) 
intersectf – integer – return variable of intersect_reflect (1 – intersection found, 0 – none) 
island – dp – return variable of ibounds; id of the island the particle is in 
newXpos, newYpos – dp – particles new x,y coordinates after advection and turbulence 
nXpos, nYpos – dp – x,y coordinates of the location the particle is heading to, passed to 

intersect_reflect 
P_xyz – dp – particle’s x,y,z coordinates before the current time step 
Reflects – integer – counter for the number of reflections made 
skipbound – integer – input/output variable of intersect_reflect used to ensure that the 

particle does not reflect two consecutive times off the same boundary 
Xpar, Ypar – dp – particle’s x,y coordinates before the current time step 
Xpos, Ypos – dp – input for intersect_reflect, containing x,y coordinates of the particle  

 
 
 
D. Output 
 
Overview:  The output can ultimately be used to plot and view the particles and compare the 
outcomes of different model runs.  There are two types of comma-delimited output files: para 
and endfile.  The para files are created periodically at set intervals throughout the running of the 
program and contain the particle locations at the current time.  The endfile file is created only at 
the end of the program and contains information regarding each particles’ start location, end 
location, and ending status. 
  
Initialization:  Nothing has to be initialized for the endfile file. For the para files, the initial 
values of several variables must be set to dictate when output of the para files occurs.  The 



  V. Execution: LTRANS.f90 

37 

variables time and printdt, which keep track of time passed, are initialized to zero. The variable 
dt is initialized to the number of seconds in the external (hydrodynamic model) time step, while 
idt is initialized to the number of seconds in the internal (particle tracking) time step.  Lastly, the 
variable iprint is initialized to the number of seconds between each time that data is to be written 
to a para file. Note that iprint should be a multiple of dt, since the output code is read at 
intervals of dt. 
 
Numerical Method:  The model prints para files on the first iteration of the external time step 
and every interval of iprint seconds after the initial print.  Each time the program reads the 
output section, the variable printdt is incremented by dt seconds (the external time step).  When 
printdt is equal to iprint, output files are created with the latest data and printdt is reset to zero. 
 
The variable prcount keeps track of the number of times that the program has gone through the 
external time step and is used to number the output files.  A para output file’s name is assembled 
using prefix2, counter2, and suffix2, which are written to buffer2 which is then read into 
filenm2.  Prefix2 is a four character array containing “para”, counter2 is an eight digit integer 
equal to 10,000,000 plus prcount, and suffix2 is a four character array containing “.csv”.  
filenm2 can then be used in open statements to create para files.   
 
When a para file is created it contains the current location of each particle and its status via color 
code.  It also contains salinity and temperature at the particle’s location from the previous 
internal time step (idt) if the variable SaltTempOn = .TRUE. in the LTRANS.inc include file.  
Before printing this information, the current location of each particle must be converted from its 
metric coordinates back to latitude and longitude.  The values in P_xyz are converted back to 
latitude and longitude and stored in P_nlatlon, leaving P_xyz unchanged.  The program can then 
cycle through and print each particle’s current depth, color number, longitude, and latitude, 
which are found in the variables P_xyz, color, and P_nlatlon.    
 
Before termination, the LTRANS program creates the file “endfile.csv”.  As they were for the 
para files, the metric coordinates in P_xyz are converted to latitude and longitude and stored in 
P_nlatlon.  If settlement is turned on, the program will then open the endfile file and write each 
particle’s starting habitat polygon identification number, ending habitat polygon number, 
settlement number (0 = did not settle, 1 = settled, 2 = dead), color code, longitude, and latitude.  
If settlement is turned off, the program only prints the color code, longitude, and latitude.  The 
information written to the endfile file comes from the variables startpoly, endpoly, settle, color 
(determined using function getColor), and P_nlatlon. 
 
Variable Definitions:  The following variables are used in this section: 

buffer2 – char. array – temporary holder of complete para filename 
color – integer – color code for Surfer/Scripter 
counter2 – integer – center (number) portion of the para output filename 
dt – integer, parameter – duration of the external time step (s) 
endpoly – integer – id number of the habitat polygon the particle ended on 
filenm2 – char. array – complete para output filename ‘para’ + counter2 + ‘.csv’ 
ii – integer – iteration variable for writing particle data to para files 
iprint – integer, parameter – interval between each print of para files (s) 



  V. Execution: LTRANS.f90 

38 

n – integer – iteration variable for particle loops 
numpar – integer, parameter – total number of particles 
p – integer – iteration variable for external time step 
prcount – integer – print counter 
prefix2 – char. array – first part of the para output filename: ‘para’ 
printdt – integer – seconds elapsed in model time since last para file printed 
P_nlatlon – dp – particle’s new location in latitude and longitude  
P_xyz – dp – particle’s x,y,z coordinates before the current time step 
startpoly – integer – id number of the habitat polygon the particle started on 
settle – integer – settlement status (0 = did not settle, 1 = settled, 2 = dead) 
suffix2 – char. array – end part of the para output filename: ‘.csv’ 
time – integer – amount of time that has passed in the model (s)  
 
 
 

E. Variable definitions for the main program 
AdvectX – dp –  the distance that a particle moves in one internal time step due to advection 

in the x-direction (m) 
AdvectY – dp –  the distance that a particle moves in one internal time step due to advection 

in the y-direction (m) 
AdvectZ – dp –  the distance that a particle moves in one internal time step due to advection 

in the z-direction (m) 
anykey – character – for error state read statement ‘Press Any Key’ 
Behav – dp –  the distance that a particle moves in one internal time step due to behavior (m) 
Behavior – integer – particle starting behavior (0 = passive, 1 = near-surface, 2 = near-

bottom, 3 = DVM, 4 = C. virginica oyster larvae, 5 = C. ariakensis oyster larvae, 6 = 
constant sinking velocity) 

buffer2 – char. array – temporary holder of complete para filename 
color – integer – color code for Surfer/Scripter 
counter2 – integer – center (number) portion of the para output filename 
days – real – number of days to run the model 
daytime – real – model time in days 
Delay – dp – time to delay particle release (s) 
deplvl – integer – lowest of the four consecutive s-levels closest to particle depth 
dt – integer, parameter – duration of the external time step (s) 
ele_err – integer – error ID returned from setEle 
endpoly – integer – id number of the habitat polygon the particle ended on 
ex – dp – back, center, and forward external times (s) 
filenm2 – char. array – complete para output filename ‘para’ + counter2 + ‘.csv’ 
fintersectX – dp – x- coordinate of intersection returned by intersect_reflect 
fintersectY – dp – y- coordinate of intersection returned by intersect_reflect 
freflectX – dp – x- coordinate of reflected location returned by intersect_reflect 
freflectY – dp – y- coordinate of reflected location returned by intersect_reflect 
HTurbOn – logical – .TRUE. if Horizontal Turbulence is to be turned on, else .FALSE. 
i – integer – iteration variable 
idt – integer, parameter – duration of the internal time step 



  V. Execution: LTRANS.f90 

39 

idum_call_count – dp – counter for number of times random number generator is called 
ii – integer – iteration variable for writing particle data to para files 
in_island – integer – return variable of ibounds (1 – in and island, 0 – not in an island) 
inbounds – integer – return variable of mbounds (1 – in bounds, 0 – not in bounds) 
inpoly – integer – return variable of settlement; returns 0 if particle does not settle and the 

habitat polygon id that it settles in if it does settle 
intersectf – integer – return variable of intersect_reflect (1 – intersection found, 0 – none) 
iprint – integer, parameter – interval between each print of para files (s) 
island – dp – return variable of ibounds; id of the island the particle is in 
it – integer – iteration variable for internal time step 
ix – dp – back, center, and forward internal times (s) 
j – integer – iteration variable 
k – integer – iteration variable 
kn1_u – dp – u-component advection currents at the 1st Runga-Kutta position  
kn1_v – dp – v-component advection currents at the 1st Runga-Kutta position 
kn1_w – dp – w-component advection currents at the 1st Runga-Kutta position 
kn2_u – dp – u-component advection currents at the 2nd Runga-Kutta position 
kn2_v – dp – v-component advection currents at the 2nd Runga-Kutta position 
kn2_w – dp – w-component advection currents at the 2nd Runga-Kutta position 
kn3_u – dp – u-component advection currents at the 3rd Runga-Kutta position 
kn3_v – dp – v-component advection currents at the 3rd Runga-Kutta position 
kn3_w – dp – w-component advection currents at the 3rd Runga-Kutta position 
kn4_u – dp – u-component advection currents at the 4th Runga-Kutta position 
kn4_v – dp – v-component advection currents at the 4th Runga-Kutta position 
kn4_w – dp – w-component advection currents at the 4th Runga-Kutta position 
maxpartdepth – dp – to ensure the depth used to calculate 2nd, 3rd, and 4th Runga-Kutta 

positions is not above vertical bounds 
minpartdepth – dp – to ensure the depth used to calculate 2nd, 3rd, and 4th Runga-Kutta 

positions is not below vertical bounds 
n – integer – iteration variable for particle loops 
newP_xyz – dp – new particle x,y,z locations after particle loop 
newXpos – dp – particles new x coordinates after advection and turbulence 
newYpos – dp – particles new y coordinates after advection and turbulence 
newZpos – dp – new z coordinate after advection and turbulence 
numpar – integer, parameter – total number of particles 
nXpos – dp – x coordinate of the location the particle is heading to, passed to 

intersect_reflect 
nYpos – dp – y coordinate of the location the particle is heading to, passed to 

intersect_reflect 
p – integer – iteration variable for external time step 
P_age – dp – the time at which the particle starts movement, the current age of the particle, 

and the age at which the particle stops movement (via ‘death’ or settlement) 
P_angle – dp– angle between x-coordinate and true east at particle location 
P_depth – dp – sea floor depth at the particle location 
P_latlon - dp – particle’s start location in latitude and longitude 
P_nlatlon – dp – particle’s new location in latitude and longitude 



  V. Execution: LTRANS.f90 

40 

P_Salt – dp – salinity at the particle’s location 
P_Temp – dp – temperature at the particle’s location 
P_U – dp – final advection value in U direction 
P_V – dp – final advection value in V direction 
P_W – dp – final advection value in W direction 
P_xyz – dp – particle’s x,y,z coordinates before the current time step 
P_zb – dp – particle’s depth at back internal time 
P_zc – dp – particle’s depth at center internal time 
P_zetab – dp – surface height at the particle location for back time 
P_zetac – dp – surface height at the particle location for center time 
P_zetaf – dp – surface height at the particle location for forward time 
P_zf – dp – particle’s depth at forward internal time 
parfile – character array – name and path (if needed) of the particle start location file 
prcount – integer – print counter 
prefix2 – char. array – first part of the para output filename: ‘para’ 
printdt – integer – seconds elapsed in model time since last para file printed 
Pwc_wzb – dp – w-coordinate depths at particle location for back time 
Pwc_wzc – dp – w-coordinate depths at particle location for center time 
Pwc_wzf – dp – w-coordinate depths at particle location for forward time 
Pwc_zb – dp – rho-coordinate depths at particle location for back time 
Pwc_zc – dp – rho-coordinate depths at particle location for center time 
Pwc_zf – dp – rho-coordinate depths at particle location for forward time 
reflect – dp – distance to reflect particle from surface or bottom if advection and turbulence 

moved the particle out of bounds 
reflects – integer – counter for the number of reflections made 
SaltTempOn – logical – .TRUE. if calculate salinity and temperature at particle location, 

else .FALSE. 
seconds – real – total number of seconds that the LTRANS model will run 
seed – integer – number used to initialize the random number generator Mersenne Twister 
settle – integer – settlement status (0 = did not settle, 1 = settled, 2 = dead) 
skipbound – integer – input/output variable of intersect_reflect used to ensure that the 

particle does not reflect two consecutive times off the same boundary 
startpoly – integer – id number of the habitat polygon the particle started on 
stepIT – integer – number of internal time steps per external time step 
stepT – integer – total number of external time steps 
suffix2 – char. array – end part of the para output filename: ‘.csv’ 
time – integer – amount of time that has passed in the model (s) 
TurbHx – dp –  the distance that a particle moves in one internal time step due to sub grid 

scale turbulence in the x-direction (m) 
TurbHy – dp –  the distance that a particle moves in one internal time step due to sub grid 

scale turbulence in the y-direction (m) 
TurbV – dp –  the distance that a particle moves in one internal time step due to sub grid 

scale turbulence in the z-direction (m) 
Uad – dp – U advection value returned from FIND_CURRENTS 
us – integer – number of depth levels in the rho, u, and v grids 
VAD – dp – V advection value returned from FIND_CURRENTS 



  V. Execution: LTRANS.f90 

41 

VTurbOn – logical – .TRUE. if Vertical Turbulence is to be turned on, else .FALSE. 
WAD – dp – W advection value returned from FIND_CURRENTS 
ws – integer – number of depth levels in the w grid 
x1 – dp – x-coordinate used to calculate 2nd Runga-Kutta position 
x2 – dp – x-coordinate used to calculate 3rd Runga-Kutta position 
x3 – dp – x-coordinate used to calculate 4th Runga-Kutta position 
Xpar – dp – particle’s x- coordinate before the current time step 
Xpos – dp – input for intersect_reflect, containing x coordinate of the particle 
y1 – dp – y-coordinate used to calculate 2nd Runga-Kutta position 
y2 – dp – y-coordinate used to calculate 3rd Runga-Kutta position 
y3 – dp – y-coordinate used to calculate 4th Runga-Kutta position 
Ypar – dp – particle’s y- coordinate before the current time step 
Ypos – dp – input for intersect_reflect, containing y coordinate of the particle 
z1 – dp – z-coordinate used to calculate 2nd Runga-Kutta position 
z2 – dp – z-coordinate used to calculate 3rd Runga-Kutta position 
z3 – dp – z-coordinate used to calculate 4th Runga-Kutta position 
Zpar – dp – particle’s z- coordinate before the current time step 
 
 
 

F. Subroutine FIND_CURRENTS 
 
Overview:  Subroutine FIND_CURRENTS is the only subroutine of the main LTRANS.f90 
program. It calculates the current velocities in the u-, v-, and w- directions at the particle location 
at a specific moment in time. 
 
Input Variables:  This subroutine has 16 variables used for input.  The variables Xpar, Ypar, 
and Zpar are the particle’s xyz coordinates.  Pwc_zb, Pwc_zc, Pwc_zf, Pwc_wzb, Pwc_wzc, 
and Pwc_wzf are the depths at the particle location on the rho and w grids for the external back, 
center, and forward times. P_zb, P_zc, and P_zf contain the depth of the particle at the external 
back, center, and forward times.  The variables ex and ix contain the external and internal time 
step values in seconds.  The variable p contains the number of the current iteration of the 
external time step; the subroutine uses p to determine if it is the first iteration, which is treated 
differently from subsequent iterations.  Lastly, the variable version contains the value 1, 2, or 3, 
which indicates which results—the back, center, or forward results—should be returned.  
 
Output Variables:  This subroutine has three output variables.  Uad, Vad, and Wad return the 
current velocity values for the u-, v-, and w- directions. 
  
Module parameters used: The subroutine uses the parameters us, ws and z0 from 
PARAM_MOD. 
 
Module procedures used: The subroutine uses the functions interp and WCTS_ITPI from the 
Hydrodynamic Module, the subroutine TSPSI and function HVAL from the Tension Module, 
and the subroutine linint and function polintd from the Interpolation Module. 
 



  V. Execution: LTRANS.f90 

42 

Numerical Method:  This subroutine interpolates to the x-y particle location along s-levels near 
the particle (the four closest to the particle) to create a profile of current velocities at the particle 
location. It then fits a tension spline and which it uses to determine the current velocities at the 
particle location for back, center, and forward times of the external time step. Polynomial 
interpolation in time is then used to calculate current velocities at the back, center and forward 
times of the internal time step.  
 
The subroutine first determines which four s-levels are the closest to the particle for both the rho 
and the w s-levels.  The subroutine checks if the particle is below each s-level, starting with the 
lowest and moving up through each s-level.  The first s-level below which the particle is found is 
the closest level above the particle.  This level, the one above it, and the two below it are taken as 
the four closest to the particle (two above and two below).  The two exceptions to this are if the 
particle is between the first two s-levels or the last two s-levels, in which case there will only be 
one s-level on one side, and three on the other. 
 
If the particle is between the lowest two s-levels, its advection values are affected by the bottom 
and are determined using log-layer calculation values.  At this point the advection values for 
back, center, and forward times of the external time step are calculated by log values for the 
particles that are within the lowest s-level.  Using these values, current velocities at the internal 
time steps are calculated using polynomial interpolation.  Depending on the value of version, 
either the back, center, or forward internal time step is calculated.  If version is 1, the back 
internal time step current velocity values will be calculated.  If version is 2, then the center 
current velocities are calculated, and if version is 3, the forward current velocities are calculated.   
 
If the particle is not between the lowest two s-levels, the advection values can be calculated 
using the subroutine WCTS_ITPI from the Hydrodynamic Module.  This subroutine uses the 
four closest s-levels and creates tension splines of the water column at back, center, and forward 
time using TSPACK (found in tension_module.f90).  The tension spline is then evaluated at the 
particle location.  If TSPACK fails to make a tension spline, then linear interpolation is used 
instead.  Once the advection values for back, center, and forward times have been calculated, the 
current velocities at the internal time steps are calculated using polynomial interpolation.  As 
with the method shown above for particles affected by the bottom, the value of version 
determines whether the subroutine will return either the back, center, or forward internal time 
step.   
 
The subroutine FIND_CURRENTS is then completed, and the current velocity values are 
returned in the variables UAD, VAD, and WAD.   
 
Variable Definitions:  The following variables are used in this subroutine: 

ex(3) - dp – external time step values in seconds for back, center, and forward 
ey(3) - dp – advection velocities at external time steps 
i - integer – used for iteration through do loops 
ii - integer – lowest of the four consecutive s-levels closest to particle depth on the rho grid 
iii - integer – lowest of the four consecutive s-levels closest to particle depth on the w grid 
ix(3) – dp - internal time step values in seconds for back, center, and forward times 
nN – integer, parameter – number of s-levels used in tension splines 



  V. Execution: LTRANS.f90 

43 

p - integer – external time step do loop iteration variable 
P_Ub - dp – u-velocity at particle location at back time 
P_Uc - dp – u-velocity at particle location at center time 
P_Uf - dp – u-velocity at particle location at forward time 
P_Vb - dp – v-velocity at particle location at back time 
P_Vc - dp – v-velocity at particle location at center time 
P_Vf - dp – v-velocity at particle location at forward time 
P_Wb - dp – w-velocity at particle location at back time 
P_Wc - dp – w-velocity at particle location at center time 
P_Wf - dp – w-velocity at particle location at forward time 
P_zb - dp – depth of particle at back time 
P_zc - dp – depth of particle at center time 
P_zf - dp – depth of particle at forward time 
Pwc_ub - dp – u-velocity at the lowest rho s-level at particle location at back time 
Pwc_uc - dp – u-velocity at the lowest rho s-level at particle location at center time 
Pwc_uf - dp – u-velocity at the lowest rho s-level at particle location at forward time 
Pwc_vb - dp – v-velocity at the lowest rho s-level at particle location at back time 
Pwc_vc - dp – v-velocity at the lowest rho s-level at particle location at center time 
Pwc_vf - dp – v-velocity at the lowest rho s-level at particle location at forward time 
Pwc_wb - dp – w-velocity at the second lowest w s-level at particle location at back time 
Pwc_wc - dp – w-velocity at the second lowest w s-level at particle location at center time 
Pwc_wf - dp – w-velocity at the second lowest w s-level at particle location at forward time 
Pwc_wzb(ws) - dp – z-coordinates of each w s-level at particle location at back time 
Pwc_wzc(ws) - dp – z-coordinates of each w s-level at particle location at center time 
Pwc_wzf(ws) - dp – z-coordinates of each w s-level at particle location at forward time 
Pwc_zb(us) - dp – z-coordinates of each rho s-level at particle location at back time 
Pwc_zc(us) - dp – z-coordinates of each rho s-level at particle location at center time 
Pwc_zf(us) - dp – z-coordinates of each rho s-level at particle location at forward time 
Uad - dp – u-direction advection return value 
us – integer, parameter – total number of rho s-levels 
Vad - dp – v-direction advection return value 
version - integer – input variable to determine what the subroutine returns 
version = 1 :  return advection at back time 
version = 2 :  return advection at center time 
version = 3 :  return advection at forward time 
Wad - dp – w-direction advection return value 
ws – integer, parameter – total number of w grid s-levels 
Xpar - dp – x-coordinate of particle 
Ypar - dp – y-coordinate of particle 
z0 - dp – roughness height of bay floor 
Zpar - dp – z-coordinate of particle 



  VI. Behavior Module 

44 

VI. Behavior Module (behavior_module.f90, BEHAVIOR_MOD)   
 
Overview:  The Behavior Module is used to assign biological or physical characteristics to 
particles. The module is called for each particle for each internal time step and returns the 
distance (in the vertical direction) that a particle moves due to behavior in that time step. 
Currently particle movement in the horizontal direction due to behavior is not implemented. In 
LTRANS v.1, particle characteristics can include a swimming/sinking speed component and a 
behavioral cue component that can depend upon particle age. The swimming/sinking speed 
component controls the speed of particle motion and can be constant or set with a function. The 
behavioral cue component regulates the direction of particle movement. For biological 
behaviors, a random component is added to the swimming speed and direction to simulate 
random variation in the movements of individuals (in behavior types 1 – 5, see list below). 
Physical characteristics, such as constant sinking velocity, can also be assigned to particles 
without the additional random movements (behavior type 6). The following behavior types are 
currently available in LTRANS and are specified using the Behavior parameter in the 
LTRANS.inc file: 

• Passive (no behavior): Behavior = 0. In this case, the Behavior Module is not executed. 
Particle motion is based on advection and, if turned on, horizontal and vertical 
turbulence. 

• Near-surface orientation: Behavior = 1. Particles swim up if they are deeper than 1 m 
from the surface.   

• Near-bottom orientation: Behavior = 2. Particles swim down if they are shallower than 1 
m from the bottom.   

• Diurnal vertical migration: Behavior = 3. Particles swim down if light levels at the 
particle location exceed a predefined threshold value.   

• Crassostrea virginica oyster larvae: Behavior = 4. Swimming speeds and direction of 
motion vary depending upon age (stage) according to field and laboratory observations 
(see North et al. 2008).  

• C. ariakensis oyster larvae: Behavior = 5. Swimming speeds and direction of motion 
vary depending upon age (stage) according to field and laboratory observations (see 
North et al. 2008). 

• Sinking velocity: Behavior = 6. Particles move up or down with constant sinking (or 
floating) speeds without individual random motion. Code that calculates salinity and 
temperature at the particle location is included (but commented out) as a basis for 
calculating density-dependent sinking velocities.   

 
Private Variables: The module contains eight variables accessible only to this module. Real 
timer acts as the timer for C. ariakensis downward swimming behavior. Integer array P_behave 
holds the integer specifying the behavior for each particle, and status holds the integer 
specifying the status (e.g., settled or dead) for each particle. Double precision arrays P_pediage, 
P_deadage, P_Sprev, P_zprev, and P_swim contain the age at which the particle will settle, the 
age at which the particle will die (stop moving), the salinity at the particle’s previous location, 
the depth at the particle’s previous location, and the particle’s swimming speed, respectively, for 
each particle. 
 



  VI. Behavior Module 

45 

Public Procedures: The following are the public subroutines and functions contained within the 
Behavior Module: subroutines Behave, initBehave, updateStatus, and function getColor. 
 
Private Procedures: This module has no private subroutines or functions. 
 
 
A. Subroutine Behave 
 
Overview: This subroutine returns the value of Behav, the distance (m) that a particle moves in 
one internal time step (idt).  
 
Input Variables: The subroutine takes 18 variables as input: Xpar (x-coordinate of the particle), 
Ypar (y-coordinate of the particle), Zpar (z-coordinate of the particle), Pwc_zb (z-coordinates 
of each rho s-level at particle location at back time), Pwc_zc (z-coordinates of each rho s-level at 
particle location at center time), Pwc_zf (z-coordinates of each rho s-level at particle location at 
forward time), P_zb (depth of particle at back time), P_zc (depth of particle at center time), P_zf 
(depth of particle at forward time), P_zetac (sea surface height at particle location), P_age 
(current age of the particle), P_depth (depth of the particle), n (current particle number), it 
(iteration number of the internal time step), ex (back, center, and forward external times), ix 
(back, center, and forward internal times), daytime (time since the beginning of the model run), 
and p (iteration variable for external time step). 
 
Output Variables: The subroutines outputs the variable Behav, the distance that a particle 
moves in the internal time step. 
 
Module parameters used: The subroutine uses 14 parameters from PARAM_MOD: us 
(number of depth levels in the rho, u, and v grids), dt (length of external time step), idt (length of 
internal time step), twistart (time of twilight when the sun started rising), twined (time of 
twilight when the sun finished sinking), Em (irradiance at solar noon), pi (value of mathematical 
constant PI), daylength (length of day), Kd (vertical light attenuation coefficient), thresh (light 
threshold that cues diurnal vertical migration behavior), Sgradient (salinity gradient threshold 
that cues larval behavior for oyster larvae behavior types), swimfast (maximum swimming 
speed), swimstart (age when swimming or sinking begins), and constant (sinking velocity for 
constant behavior type). 
 
Module procedures used: This subroutine uses the functions WCTS_ITPI from HYDRO_MOD 
and genrand_real1 from RANDOM_MOD. 
 
Private Variables Used: This subroutine uses the variables timer, P_behave, status, 
P_pediage, P_deadage, P_Sprev, P_zprev, and P_swim, which are private variables accessible 
only to the Behavior Module.  
 
Numerical Method: First, the subroutine calculates swimming speeds and values needed for the 
oyster larvae behaviors, and then Behav is calculated depending upon the specified behavior 
type (P_behave).  
 



  VI. Behavior Module 

46 

Initially, the particle swimming speed (P_swim(n,3)) is updated for each time step. If the age of 
the particle (P_age) is greater than or equal to the age when the swimming behavior starts 
(swimstart), then (P_swim(n,3)) is set to a number that is a function of particle age (if 
swimslow does not equal swimfast in the LTRANS.inc file) or a constant value (if swimslow 
equals swimfast). If the age of the particle is greater than or equal to the age at which particles 
reach maximum swimming speed and can settle (P_pediage), then the swimming speed is set 
equal to the maximum swimming speed (swimfast).  
 
Additional routines are executed if particle behavior simulates oyster larvae (P_behave = 4 or 5). 
If a particle is of pediveliger age and not dead, then the behavior code (P_behave) is set to 2 so 
that the particle has pediveliger-like bottom-oriented behavior. Also, the timer variable is 
decremented (see explanation below) and salinity at the particle location (P_S) is calculated.  
 
Next the velocity (speed and direction) of particle motion due to behavior (parBehav) is 
calculated depending upon the particle behavior type (as described below). Finally, velocity is 
multiplied by the duration of the internal time step (idt) to derive the distance (Behav) that the 
particle moves in that time step. The value for Behav includes distance as well as direction (with 
negative indicating movement down and positive indicating movement up). The following 
paragraphs contain explanations of the seven behavior types available in LTRANS: 
 
 
1. Passive (no behavior): Behavior = 0.  
In this case, the Behavior Module is not executed and no motion due to behavior is included in 
particle motion. Therefore, particle motion is based on advection and, if turned on, horizontal 
and vertical turbulence. To make particles simulate water motion with no behavior, specify the 
following parameters in the LTRANS.inc file:  HTurbOn = .TRUE., VTurbOn = .TRUE., and 
Behavior = 0.  
 
 
2. Near-surface orientation: Behavior = 1.  
A particle ‘swims’ up if it is deeper than 1 m from the surface and ‘swims’ randomly if it is 
within 1 m of the surface. Particle velocity (parBehav, m s-1) is determined by the particle 
swimming speed (P_swim(n,3)) multiplied by 1) a value that sets its direction (negpos = 1 for 
up, negpos = -1 for down), and 2) a random deviate (devB) between 0 and 1 which is used to 
simulate random variation in swimming speeds between individuals. The direction of motion 
(negpos) also includes a random component to simulate differences in swimming directions 
between individuals. A random deviate (dev1) between 0 and 1 is drawn and compared to the 
value of switch, which is set to be a number between 0 and 1. If the value of dev1 exceeds the 
value of switch, then particle direction is down (negpos = -1).  If the depth of the particle is 
deeper than 1 m from the surface, switch = 0.8 so that the particle has an 80% chance of 
swimming up and a 20% chance of swimming down in that time step. If the depth of the particle 
is within 1 m of the surface, switch = 0.5 so that the particle swims in random directions (with a 
50% chance of swimming up and a 50% chance of swimming down).  
 
3. Near-bottom orientation: Behavior = 2.  



  VI. Behavior Module 

47 

A particle ‘swims’ down if it is shallower than 1 m from the bottom and ‘swims’ randomly if it is 
within 1 m of the bottom. Particle velocity (parBehav, m s-1) is determined by the particle 
swimming speed (P_swim(n,3)) multiplied by 1) a value that sets its direction (negpos = 1 for 
up, negpos = -1 for down), and 2) a random deviate (devB) between 0 and 1 which is used to 
simulate random variation in swimming speeds between individuals. The direction of motion 
(negpos) also includes a random component to simulate differences in swimming directions 
between individuals. A random deviate (dev1) between 0 and 1 is drawn and compared to the 
value of switch, which is set to be a number between 0 and 1. If the value of dev1 exceeds the 
value of switch, then particle direction is down (negpos = -1).  If the depth of the particle is 
deeper than 1 m from the surface, switch = 0.2 so that the particle has a 20% chance of 
swimming up and an 80% chance of swimming down in that time step. If the depth of the 
particle is within 1 m of the bottom, switch = 0.5 so that the particle swims in random directions 
(with a 50% chance of swimming up and a 50% chance of swimming down). 
 
4. Diurnal vertical migration (DVM): Behavior = 3.  
A particle swims down if light levels at the particle location exceed a predefined threshold value. 
NOTE: this section of code is not universal! The equation for irradiance at the water's surface 
(E0) has not been published, was fit to light data from the Chesapeake Bay region, and initialized 
with values for September 1 at the latitude of 37.00 degrees. If you would like to use the DVM 
behavior, the calculation of light at the particle location must be adjusted for underwater 
irradiance at the location and time of the model runs, which depends upon both the available 
sunlight (e.g., angle of the sun) as well as the clarity of the water (e.g., the attenuation 
coefficient).  
 
The DVM section of the Behavior Module first calculates irradiance just below the water's 
surface (E0) using estimates of daylength (daylength), time since the sun started rising (tst) and 
irradiance at solar noon (Em). These values, which are derived from values set in the 
LTRANS.inc file, depend on the day of the year and latitude and are calculated with equations 
available in Kirk (1994) and Meeus (1998). It should be noted that these calculations assume that 
the LTRANS model simulations start at midnight. Once surface light levels are calculated, 
irradiance at the depth of the particle location (P_light, μE m-2 s-1) is calculated using E0 and an 
attenuation coefficient (Kd).  
 
Next the particle velocity is calculated by comparing the light at the particle location (P_light) to 
a user-defined threshold value that cues behavior (thresh, μE m-2 s-1). Particle velocity 
(parBehav, m s-1) is determined by the particle swimming speed (P_swim(n,3)) multiplied by 1) 
a value that sets its direction (negpos = 1 for up, negpos = -1 for down), and 2) a random deviate 
(devB) between 0 and 1 which is used to simulate random variation in swimming speeds 
between individuals. The direction of motion (negpos) also includes a random component to 
simulate differences in swimming directions between individuals. A random deviate (dev1) 
between 0 and 1 is drawn and compared to the value of switch, which is set to be a number 
between 0 and 1. If the value of dev1 exceeds the value of switch, then particle direction is down 
(negpos = -1).   
 
If the irradiance at the particle location (P_light) is greater than the threshold light value 
(thresh), then switch = 0.2 so that the particle has a 20% chance of swimming up and an 80% 



  VI. Behavior Module 

48 

chance of swimming down in that time step. If irradiance at the particle location is less than the 
threshold value, then switch = 0.5 so that the particle swims in random directions (with a 50% 
chance of swimming up and a 50% chance of swimming down). 
      
5. Oyster larvae (two species): Behavior = 4 and 5. 
Particle motion due to behavior depends upon the species of oyster larvae (4 = Crassostrea 
virginica and 5 = C. ariakensis) as well as the age (stage) of particles. LTRANS model 
simulations with these behaviors are described in North et al. (2008) and animated at 
http://northweb.hpl.umces.edu/videos_animations/Oyster_Larvae_Animations.htm.  
 
The oyster larvae behavior sub-model is parameterized with larval behaviors discerned in 
preliminary analysis of laboratory studies (Newell et al. 2005). All particles begin swimming 
when they are 0.5 days old (as trocophores) and continue swimming during the veliger stage. In 
the model runs of North et al. (2008), each particle is assigned a different veliger and pediveliger 
stage duration to simulate individual variation. The veliger stage ends at the time of P_pediage 
and the pediveliger stage ends at the time of P_deadage. In North et al. (2008), particles enter the 
pediveliger stage after ~13.5 days, and remain competent to settle for another ~7 days during 
which they search for suitable substrate. If they do not find suitable substrate within this time 
period, they are considered 'dead'. The code that assigns each particle a different stage duration 
occurs in the subroutine initBehave but is commented out so that all particles have the same 
P_pediage and P_deadage for use with other behavior types.  
 
 Swimming speeds of C. virginica and C. ariakensis larvae vary from 0 to ~3.0 mm s-1 over 
the course of the 2-3 week development from fertilized eggs to pediveligers ready for settlement 
(Mann and Rainer 1990, Kennedy 1996, Newell et al. 2005). In the larval transport model, the 
swimming speed of a particle is determined by its age. For particles from 0 to 0.5 days old, 
particles are assumed to be fertilized gametes and early trocophores that do not swim (i.e., 
swimming speed = 0). After 0.5 days, particles enter the late trocophore and veliger stages and 
begin to swim. From day 0.5 to the end of the veliger stage, their maximum swimming speed 
increases linearly from 0.5 mm s-1 to 3 mm s-1. To simulate random variation in the movements 
of individual oyster larvae, the maximum swimming speed is multiplied by a number drawn 
from a uniform random distribution between 0 and 1 so that particle swimming speed varies in 
each time step. During the pediveliger stage, the swimming speed is 3 mm s-1 and no random 
component is added (although there is a random component to the direction as explained below). 
The swimming speeds of C. virginica and C. ariakensis are treated with the same model 
formulation because laboratory results indicated that their speeds did not significantly differ 
(Newell et al. 2005).  
 
 The behavioral cue component of the behavior sub-model regulates the direction of particle 
movement. Preliminary analysis of laboratory studies (Newell et al. 2005) indicates that C. 
virginica larvae generally swim up in the presence of a halocline whereas C. ariakensis larvae 
generally swim down and remain near bottom. Laboratory results of Hidu and Haskin (1978) 
also indicate that C. virginica oyster larvae change behavior in response to salinity gradients. 
This plus information from discussions with R. Newell, J. Manuel, and V. Kennedy are used to 
assign the stage-dependent behaviors to C. virginica and C. ariakensis particles. Although oyster 
larvae tend to swim in a helical trajectory, all behavioral motion of particles is limited to the 



  VI. Behavior Module 

49 

vertical direction and is considered an integration of a 
helical swimming pattern. In addition, the randomly 
assigned upward and downward motion of particles is 
considered to be an integration of observed swimming 
and sinking behaviors.  
 
 To simulate random variation in the movements 
of individual oyster larvae, the direction of particle 
motion is assigned a random component, which is 
weighted so the particles have a tendency to move up 
or down depending on species and age of particle. 
Particle velocity (parBehav, m s-1) is determined by 
the particle swimming speed (P_swim(n,3)) 
multiplied by 1) a value that sets its direction (negpos 
= 1 for up, negpos = -1 for down), and 2) a random 
deviate (devB) between 0 and 1 which is used to 
simulate random variation in swimming speeds 
between individuals. The direction of motion 
(negpos) also includes a random component to 
simulate differences in swimming directions between 
individuals. A random deviate (dev1) between 0 and 
1 is drawn and compared to the value of switch, 
which is set to be a number between 0 and 1. If the 
value of dev1 exceeds the value of switch, then 
particle direction is down (negpos = -1). The stage- 
and species-specific values of switch are described 
below.  
 
 The change in depth distribution of C. virginica 
and C. ariakensis particles with development and in 
response to haloclines is summarized in Fig. 5. In the 
late trocophore and early veliger stage (0.5 to 1.5 d), 
particles of both species have a 90% chance of 
swimming up (switch = 0.1) to simulate the initial 
near-surface distribution of larvae observed by 
Newell and Manuel (pers. comm.). Once in the 
veliger stage, the behaviors differ between species 
and in the presence or absence of a halocline. In the 
absence of a halocline, C. virginica veliger-stage 
particles are assigned probabilities that shift their 
distribution from the upper layer to the lower layer as 
they increase in age, from a 51% chance of swimming 
up in each time step to a 51.7% chance of swimming 
down (switch is a linear function of particle age). 
This results in a gradual shift in the depth distribution 
of older particles, as has been observed (Andrews 

No Halocline Halocline 

D
ep

th

Day 0

Day 2

Day 4

Day 6

Day 8

Day 10

Day 12

Day 14

Day 16

No Halocline Halocline 

D
ep

th

Day 0

Day 2

Day 4

Day 6

Day 8

Day 10

Day 12

Day 14

Day 16

Day 0

Day 2

Day 4

Day 6

Day 8

Day 10

Day 12

Day 14

Day 16

Fig. 5. Depth distribution of C. virginica 
veligers (blue) and pediveligers (purple),  and 
C. ariakensis veligers (orange) and 
pediveligers (yellow) over time in the absence 
(left) or presence (right) of halocline. 



  VI. Behavior Module 

50 

1983, Baker 2003) and modeled in previous studies (Dekshenieks et al. 1996). In the absence of 
a halocline, C. ariakensis veliger-stage particles between 2.5 and 3.0 days old are assigned 
probabilities of swimming down that decrease from 70% to 50.05% (switch is a linear function 
of particle age) to gradually shift their distribution toward bottom (Fig. 5). After 3.5 days of age, 
particles are assigned 50.05% probability of swimming down (switch = 0.495) to simulate 
broadly dispersed, but weakly bottom-oriented, distributions in well-mixed conditions as 
observed by J. Manuel and R. Newell (pers. comm.).  
 
 In the presence of a halocline, the veliger-stage particles of the two species respond 
differently to the same salinity cue (Fig. 5). The presence of a halocline is determined by the 
change in the vertical gradient in salinity ( SΔ ) experienced by the particle. This is computed as 
the change in salinity (s) at the particle location divided by the change in depth of the particle (z) 
between the previous (n-1) and the present (n) time step: 
 

(6) 
( )
( )nn

nn

zz
ssS

−
−

=Δ
−

−

1

1  

If this gradient in salinity is greater than a threshold value, then C. virginica veliger-stage 
particles are cued to swim up with an 80% probability in that time step (switch = 0.80). This 
response, combined with the slight bottom-oriented shift as particles increased in age, results in 
aggregation of particles above the halocline (Fig. 5). Aggregations of C. virginica larvae above a 
halocline has been observed in several field studies (summarized by Kennedy 1996). If C. 
ariakensis veliger-stage particles pass through a salinity gradient, they are cued to swim down 
with 80% probability (switch = 0.20) for 2 hrs (using the timer variable) if they are not within 1 
m of the bottom. If the particles come within 1 m of the bottom within the 2-hr time period, the 
probability of swimming up or down is 50% (switch = 0.50). This simulates the strong bottom-
oriented behavior of C. ariakensis in the presence of a halocline as observed by Newell et al. 
2005.  
 
 Once the age of a particle (P_age) is greater than or equal to its P_pediage, the behavior 
type of the particle is changed to bottom-oriented (P_behave = 2). Pediveliger-age particles of 
both species have the same behavior: they swim down with 100% probability until within 1 m of 
bottom. Within 1 m of bottom, pediveliger particles have randomly directed motions with a 50% 
probability of swimming up or down (Fig. 5). Particles remain in the pediveliger stage until they 
either settle on a simulated oyster bar (if the Settlement Module is turned on) or reach the age at 
which they are no longer competent to settle (i.e., they die). At this point, particles stop moving 
to conserve computational resources.  
 
6. Sinking velocity: Behavior = 6.  
Particles move up or down with constant sinking (or floating) speeds without individual random 
motion. The velocity is specified using the variable wsink in the LTRANS.inc file. Code that 
calculates salinity and temperature at the particle location is included in this section (but is 
commented out) in case the user would like to calculate density at the particle location and 
density-dependent sinking velocities (e.g., Stokes velocity).   
   
 



  VI. Behavior Module 

51 

 
Variable Definitions:  The following variables are used in this subroutine: 

Behav – dp –  the distance that a particle moves in one internal time step due to behavior (m) 
btest – integer –  used to initiate random swimming (if btest = 0)  
constant – dp – sinking velocity for constant behavior type 
daylength – dp –  length of day (hr), set in LTRANS.inc 
daytime – real – time since the beginning of the model run (days) 
deltaS – dp –  change in salinity at particle location between previous and current time step 
deltaz – dp –  change in particle depth between previous and current time step  
deplvl – integer –  depth level 
dev1 – real – random deviate used to add individual variation to the direction of particle 

motion  
devB – real –  random deviate used to add individual variation to the swimming speed of 

particles  
dtime – dp –  time of day in hrs since midnight 
E0 – dp –  irradiance just below the water's surface (μE m-2 s-1) 
Em – dp – irradiance at solar noon (μE m-2 s-1)  
ex – dp – back, center, and forward external times (s) 
Kd – dp – vertical light attenuation coefficient 
ix – dp – back, center, and forward internal times (s) 
idt – integer – length of internal (particle tracking) time step (s) 
it – integer – iteration number of the internal time step 
n – integer – the current particle number 
negpos – real –  sets direction of particle motion (1 for up, -1 for down) 
p – integer – iteration variable for external time step 
P_age – dp – the current age of the particle (s) 
parBehav – dp – particle velocity (m s-1) 
P_behave – integer – Behavior type of each particle 
P_deadage – dp –  array of ages at which particles stop moving (i.e., dies) 
P_depth – dp – depth of the particle (m)      
P_light – dp – irradiance at the particle location (μE m-2 s-1) 
P_pediage – dp – array of ages at which particles reach maximum swimming speed and can 

settle (i.e., becomes a pediveliger for oyster larvae behavior types) 
P_S – dp – salinity at the particle location 
P_Sprev – dp –  Salinity at the previous location of the particle (for calculating salinity 

gradient experience by particle)  
P_swim – dp – matrix used to calculate linear change in swimming speed and store 

swimming speed value for each particle.  (n,1) = slope,  (n,2) = intercept,  (n,3) is 
swimming speed (m/s). 

Pwc_zb(us) - dp – z-coordinates of each rho s-level at particle location at back time 
Pwc_zc(us) - dp – z-coordinates of each rho s-level at particle location at center time 
Pwc_zf(us) - dp – z-coordinates of each rho s-level at particle location at forward time 
P_zb - dp – depth of particle at back time (m) 
P_zc - dp – depth of particle at center time (m) 
P_zf - dp – depth of particle at forward time (m) 
P_zetac – dp - sea surface height at particle location (m) 



  VI. Behavior Module 

52 

P_zprev – dp –  Depth at which particle was previously located (for calculating salinity 
gradient experience by particle) 

Sslope – dp –  salinity gradient that larvae experiences between the previous and current time 
step (psu m-1) 

Sgradient – dp –  the salinity gradient threshold that cues larval behavior (psu m-1) for oyster 
larvae behavior types. Specified in LTRANS.inc file. 

status – integer –  status of the particle (1 = first behavior (veliger), 2 = second behavior 
(pediveliger), 3 = settled, 4 =dead) for oyster larvae behavior types 

swimfast – dp –  maximum swimming speed (m s-1). Specified in LTRANS.inc file. 
swimslow – dp –  swimming speed when particle begins to swim (m s-1). Specified in 

LTRANS.inc file. 
swimstart – dp –  age (time) when swimming or sinking begins (s). Specified in 

LTRANS.inc file. 
switch – real – a number between 0 and 1 which controls the probability that a particle will 

swim up or down in any given time step 
switchslope – real – used to calculate switch with a linear function that depends on the 

particle age 
thresh – dp – light threshold that cues diurnal vertical migration behavior (μE m-2 s-1) 
timer – real –  timer used to count how long particles swim down for C. ariakensis behavior 

type 
tst – dp – time since twilight when the sun started rising (the beginning of the day) 
twiStart – dp – the time of twilight when the sun started rising (hr)  
twiEnd – dp – the time of twilight when the sun finished sinking (hr) 
us – integer – number of depth levels in the rho, u, and v grids 
wsink – dp –sinking velocity (m s-1), set in the LTRANS.inc file, for use by the sinking 

velocity behavior type (6) 
Xpar – dp – x-coordinate of the particle 
Ypar – dp – y-coordinate of the particle 
Zpar – dp – z-coordinate of the particle 

      
     
 
B.  Function getColor 
 
Overview: This function returns a status identification number that describes a particle's 
behavior type (0-6) or settled (7) or dead (8) status. These numbers are subsequently written to 
output files. The getColor function and associated color variable (see section V. D. Output) 
were developed to provide output that can be used to assign colors to particles in visualization 
routines such as Surfer/Scripter.   
 
Input Variables:  This function only has the input variable, n, which contains the current 
particle number.  The function determines the status of the particle specified by n. 
 
Output Variables:  The function returns an integer identification number for the particle 
indicating its behavior type or status. 
 



  VI. Behavior Module 

53 

Module parameters used: The function uses no parameters from PARAM_MOD. 
 
Module procedures used: The function uses no functions or subroutines from other modules. 
 
Private Variables Used: The function uses no private variables. 
 
Numerical Method:  The status identification number is assigned to the behavior type (0-6).  If 
the Settlement Module is turned off, the subroutine will end here.  If the Settlement Module is 
turned on, the functions SETTLED and DEAD are called from the Settlement Module to 
determine if the particle has settled or died.  If it has settled then the status identification number 
is updated to 7; if it has died, the color id is updated to 8.  The function then returns the final 
updated status identification number. 
 
Variable Definitions:  The following variables are used in this function: 

n – integer – the number of the current particle for which the status identification number is 
being determined 

P_behave – integer – Behavior type of each particle 
Settlementon  – logical – turns Settlement Module on (.TRUE.) or off (.FALSE.). Specified 

in LTRANS.inc file. 
 
 
 
C. Subroutine initBehave 
 
Overview: This subroutine initializes the matrices that contain information on particle attributes 
for the Behavior Module. 
 
Input Variables: The subroutine has no input variables. 
 
Output Variables: The subroutine has no output variables. 
 
Module parameters used: The subroutine uses the parameters Behavior (initial behavior type), 
swimfast (maximum swimming speed), swimslow (swimming speed when particle begins to 
swim), swimstart (age when swimming or sinking begins), pediage (age at which particle 
reaches maximum swimming speed and can settle), deadage (age at which particle stops 
moving/dies), Sgradient (salinity gradient threshold that cues larval behavior for oyster larvae 
behavior types), and settlementon (logical indicating whether the Settlement Module is on or 
not) from PARAM_MOD. 
 
Module procedures used: The subroutine uses the subroutine initSettlement from 
SETTLEMENT_MOD. 
 
Private Variables Used: The subroutine uses the variables timer, P_behave, status, 
P_pediage, P_deadage, P_Sprev, P_zprev, and P_swim, which are private variables accessible 
only to the Behavior Module.  
 



  VI. Behavior Module 

54 

Numerical Method: The subroutine initializes the matrices that contain information on the 
particle attributes, including behavior type for each particle (P_behave), the age at which a 
particle reaches maximum swimming speed and can settle if the Settlement Module is on 
(P_pediage), and the age at which a particle stops moving (P_deadage). If the particles simulate 
oyster larvae, P_pediage refers to the age at which a particle becomes a pediveliger and 
P_deadage refers to the age at which the particle dies. If you would like to assign a different 
P_pediage and P_deadage to each particle, the code can be added in this subroutine (see 
commented code for an example). Note that P_deadage can be used to stop particle motion for 
all behavior types and that P_pediage does not cause particles to settle if the Settlement Module 
is not on. Finally, P_deadage is used to stop calculating particle motion due to advection, 
turbulence and behavior in order to conserve computational resources if the particle position no 
longer needs to be tracked. 
 
The matrix P_swim is also populated in Subroutine initBehave. Initially, swimming speed 
(P_swim(n,3)) is set equal to zero in this subroutine. The other arrays in P_swim are used to 
calculate a linear change in swimming speed that depends upon particle age by specifying a 
slope (P_swim(n,1)) and intercept (P_swim(n,2)). The slope and intercept are defined by the 
parameters swimfast, swimslow, and swimstart which are specified in the LTRANS.inc file. To 
implement a constant swimming speed (for behavior types 1-3 that include random components 
to individual particle motions), set both swimslow and swimfast to the desired constant speed. 
To implement a constant sinking (or floating) velocity without individual variation, set the 
parameters Behavior = 6 and wsink equal to the desired velocity in the LTRANS.inc file.  
 
Additional variables are initialized for the oyster larvae behavior routines (timer, status, 
P_Srev, P_zprev). Finally, if the Settlement Module is turned on, this subroutine passes the age 
at which particles can settle (P_pediage) to the Settlement Module.  
   Variable Definitions:  The following variables are used in this subroutine: 

Behavior – integer – initial behavior type which is set in the LTRANS.inc file (0 = passive, 1 
= near-surface, 2 = near-bottom, 3 = diurnal vertical migration (DVM), 4 = C. virginica 
oyster larvae, 5 = C. ariakensis oyster larvae, 6 = sinking velocity) 

deadage – dp – dp –  age at which particle stops moving, set in the LTRANS.inc file 
P_behave – integer – Behavior type of each particle 
pediage – dp – age at which particle can settle, set in the LTRANS.inc file 
P_deadage – dp –  array of ages at which particles stop moving (i.e., die) 
P_pediage – dp – array of ages at which particles reach maximum swimming speed and can 

settle (i.e., becomes a pediveliger for oyster larvae behavior types) 
P_Sprev – dp –  Salinity at the previous location of the particle (for calculating salinity 

gradient experience by particle)  
P_swim – dp – matrix used to calculate linear change in swimming speed and store 

swimming speed value for each particle.  (n,1) = slope,  (n,2) = intercept,  (n,3) is 
swimming speed (m/s). 

P_zprev – dp –  Depth at which particle was previously located (for calculating salinity 
gradient experience by particle) 

Settlementon  – logical – turns Settlement Module on (.TRUE.) or off (.FALSE.). Specified 
in LTRANS.inc file. 



  VI. Behavior Module 

55 

Sgradient – dp –  the salinity gradient threshold that cues larval behavior (psu/m) for oyster 
larvae behavior types. Specified in LTRANS.inc file. 

status – integer –  status of the particle (1 = first behavior (veliger), 2 = second behavior 
(pediveliger), 3 = settled, 4 =dead) for oyster larvae behavior types 

swimfast – dp –  maximum swimming speed (m/s). Specified in LTRANS.inc file. 
swimslow – dp –  swimming speed when particle begins to swim (m/s). Specified in 

LTRANS.inc file. 
swimstart – dp –  age (time) when swimming or sinking begins (s). Specified in 

LTRANS.inc file. 
timer – real –  timer used to count how long particles swim down for C. ariakensis behavior 

type  
 
 
 
D. Subroutine updateStatus 
 
Overview: This subroutine determines whether a particle has died and updates its status 
accordingly. 
 
Input Variables: The subroutine takes two variables as input: P_age (the current age of the 
particle) and n (the number identifying the particle). 
 
Output Variables: The subroutine has no output variables. 
 
Module procedures used: The subroutine uses the functions SETTLED and DIE from 
SETTLEMENT_MOD. 
 
Private Variables Used: The subroutine uses the variables status and P_deadage, which are 
private variables accessible only to the Behavior Module.  
 
Numerical Method: The subroutine determines if a particle dies and updates the variables 
status and settle (via the subroutine DIE found in the Settlement Module). A particle is 
considered dead (and will stop moving) if its age (P_age) exceeds P_deadage.  
 
Variable Definitions:  The following variables are used in this subroutine: 

n – integer – the number identifying the current particle 
P_age – dp – the current age of the particle (s) 
P_deadage – dp –  age at which particle stops moving (i.e., dies) 
settle  – logical – the output variable of the Settled function (.TRUE. if the particle has 

"settled", and .FALSE. if not)  
status – integer –  status of the particle (1 = first behavior (veliger), 2 = second behavior 

(pediveliger), 3 = settled, 4 =dead) for oyster larvae behavior types 



  VII. Boundary Module 

56 

VII. Boundary Module (boundary_module.f90, BOUNDARY_MOD) 
 
Overview:  The Boundary Module contains all the variables and procedures necessary to create 
the model boundaries and to test if a particle has traveled outside the boundaries. 
 
Private Variables:  The module contains fourteen variables and one derived data type accessible 
only in this module.  The variable bnds is a one-dimensional allocatable array of the derived data 
type boundary.  In subroutine createBounds, bnds is allocated to the total number of boundary 
points.  For each boundary point, bnds contains data concerning whether the point lies on the U 
grid (onU) (if not on the U grid, the boundary point is implied to be on the V grid), the number 
of nodes from the left side (ii) and the bottom (jj) specifying the point’s location, and the number 
assigned to the polygon (poly), where 1 indicates the main water boundary polygon and all 
subsequent values indicate island boundary polygons.  The module also has variables for island 
hole identification numbers (hid), island hole edge point x- and y- coordinates (hx, hy), and 
habitat polygon edge point x- and y- coordinates (bx, by), which are one dimensional allocatable 
arrays.  A pair of two-dimensional allocatable arrays contains the x- and y- coordinates of the 
start and end points of every boundary segment in the model (bnd_x, bnd_y).  The module has 
five integer variables: the total number of boundary points (bnum), the number of boundary 
points that make up the water boundary polygon (maxbound), the number of boundary points 
that make up all of the island boundary polygons (maxisland), the total number of islands 
(numislands), and the total number of boundary segments that surround both the water and the 
islands (nbounds).  Lastly, the Boundary Module contains the logical variable BND_SET which 
is initialized to .FALSE. but switches to .TRUE. once the boundaries have been set. 
 
Public Procedures:  The following are the public subroutines and functions contained within the 
Boundary Module: subroutines createBounds, ibounds, intersect_reflect, mbounds, and 
function isBndSet. 
 
Private Procedures:  The following are the private subroutines and functions accessible only to 
the other procedures in the Boundary Module: subroutines add and getNext. 
 
 
 
A. Subroutine add 
 
Overview:  This subroutine is called by createBounds to add a boundary point to bnds, the array 
containing the boundary point information. 
 
Input Variables:  The subroutine has three input variables: isU, iii, and jjj.  The variable isU is 
logical and will be .TRUE. if the boundary point being added is on the U grid and .FALSE. if it 
is on the V grid.  The variables iii and jjj contain the i and j locations of the added point on the U 
or V grid. 
  
Input/Output Variables:  The subroutine has two variables used for input and output: polydone 
and done.  polydone is a flag to indicate whether the current polygon has been completed, and 
done is a flag to indicate that all the boundaries have been used. 



  VII. Boundary Module 

57 

 
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 
Private Variables Used:  This function uses the variables bnds and BND_SET, which are 
private variables accessible only to the procedures in the Boundary Module. 
 
Numerical Method:  This subroutine first checks if the point to be added is identical to the first 
point added for the current polygon.  If this is the case, the point is not added.  Instead, polydone 
is set to .TRUE. to indicate the current polygon has been completed, polynum is incremented, 
and polystart is reset to reflect what will be the first position of the next polygon, if there is a 
subsequent polygon.  If the total number of boundary points added (b) is equal to the total 
number of boundary points (bnum) then done is set to .TRUE. to indicate that all the boundary 
points have been added and BND_SET is switched to .TRUE. to indicate that the boundaries 
have been completed. 
 
If the boundary point passed in to add is not identical to the first point added for the current 
polygon, then b is incremented to the next boundary point location and bnds is updated at the b 
array location with the new point information.   
 
Variable Definitions:  The following variables are used in this subroutine:  

b – integer – number of boundary points added so far 
BND_SET – logical – .TRUE. if the boundaries have been created, else .FALSE. 
bnds – derived data type boundary – boundary point data; whether each point lies on the U 

grid (onU), as opposed to the V grid, its location on the respective grid in terms of 
nodes from the left side (ii) and nodes from the bottom (jj), and the id number of the 
polygon (poly) that the boundary point is a part of 

done – logical – .TRUE. if all the boundary points have been used, else .FALSE. 
iii – integer – i position on the grid of the point passed in 
isU – logical – .TRUE. if point passed in is on the U grid, .FALSE. if it is on the V grid 
jjj – integer – j position on the grid of the point passed in 
polydone – logical – .TRUE. if the current polygon has been finished, else .FALSE. 
polynum – integer – number of the current boundary polygon 
polystart – integer – location in bnds of the current polygon’s first boundary point 

 
 
 
B. Subroutine createBounds  
 
Overview:  This subroutine creates the model boundaries based on the land/sea masking of the 
rho grid and stores them in the variables bnd_x, bnd_y, bx, by, hid, hx, and hy. 
 
Input Variables:  The subroutine has no input variables. 
  
Output Variables:  The subroutine has no output variables.  



  VII. Boundary Module 

58 

  
Module parameters used:  The subroutine uses the parameters ui, uj, vi, and vj from the 
Parameter Module, which contain the dimensions of the rho, u, and v grids. 
 
Module procedures used:  The subroutine uses the subroutines getMask_Rho and getUVxy 
from the Hydrodynamic Module. 
 
Private Variables Used:  This function uses the variables bnds, bnum, BND_SET, bnd_x, 
bnd_y, bx, by, hid, hx, hy, maxbound, maxisland, nbounds, and numislands, which are 
private variables accessible only to the procedures in the Boundary Module. 
 
Numerical Method:  This subroutine creates the land/sea boundaries based on the masking of 
the Rho grid.  Boundary points are located at U and V grid points, which lie directly between the 
Rho grid points.  Any time adjacent Rho grid points are masked differently, i.e., one as water and 
one as land, the U or V grid point between those two points will be a boundary point.  At open 
ocean boundaries near the edge of the model grid, the U or V grid point between the two 
outermost Rho grid points will be used for the LTRANS boundary point. 
 
The subroutine assumes that there is only one body of water in the given masked Rho grid, i.e., 
land never separates two areas of water.  On the other hand, multiple islands may exist within the 
body of water.  When making boundaries, the subroutine traces around the body of water and 
then traces around any islands. 
 
The subroutine first determines the number of boundary points in the given masked Rho grid.  It 
does this by counting all the locations where either a land grid point and water grid point are 
adjacent (a land–water boundary) or the first and second points from the edge of the model grid 
are both masked as water (an open ocean boundary).  
 
The subroutine then determines the element form of each Rho element.  A Rho element is 
defined as a set of four adjacent Rho nodes that form a quadrilateral, as shown in the following 
illustration (Fig. 6): 
 

 

Fig. 6. This depicts a Rho element.  
The four corners, in blue, are the 
four Rho nodes that comprise the 
Rho element.  The U and V nodes, 
in orange and green respectively, lie 
directly between the Rho nodes.  
Their location is given in terms of i, 
position in the up/down direction, 
and j, position in the left/right 
direction. 

 



  VII. Boundary Module 

59 

The element form is determined based on which of its four nodes are masked as water and which 
are masked as land.  The series of element forms is illustrated below: 
 

 
 

The blue circles represent nodes masked as water; the green circles represent nodes masked as 
land.  The lines represent where the boundary lines will pass through each form.  Forms 6 and 9 
do not have lines because there are two possible ways for the boundaries to pass through them, as 
shown in forms 16 through 19.  They are referred to as ‘crosses’ because either water crosses 
through land or land crosses through water in these elements.  If an element with form 6 or 9 
exists, the subroutine solves for the direction of the boundary to reclassify the cross to the 
appropriate form 16 though 19.  It does this by testing which boundary direction makes a 
continuous boundary instead of leading to multiple unconnected islands. 
 
Once all the forms are determined and crosses solved, the boundaries can be made.  The 
subroutine searches through the elements starting in the lower left corner and takes the first 
element with water as the beginning of the boundary.  Because the form and direction of entry of 
each boundary element have already been determined, the subroutine is able to trace around the 
edge of the water, adding boundary points in the order they are encountered, until it returns to the 
initial boundary point. 
 
When the water boundary has been completed, the subroutine checks if all the boundary points 
have been included in the boundary.  If they have not all been used, it means the grid contains 
islands, so the subroutine finds an element that contains an unused boundary and begins 
following the edge of the island in the same way it followed the water boundary.  When the 
subroutine returns to the starting element of the island boundary, it again checks if all the 
boundary points have been included.  The process is repeated until all the boundaries have been 
used (i.e., all islands have been created). 
 
The subroutine must then link the boundaries that it has stored in bnds with the x- and y- 
coordinate locations of the U and V grid nodes and create the variables bnd_x, bnd_y, bx, by, 
hid, hx, and hy.  To do this, the subroutine calls the function getUVxy, which gets the x- and y- 
coordinates of the U and V grids from the Hydrodynamic Module and stores them in the 
variables x_u, x_v, y_u, and y_v.  To get the x- and y- coordinates of each boundary point, the 
subroutine converts the (i,j) location contained in bnds using either x_u and y_u or x_v and y_v, 
depending on whether the point is on the U or V grid (specified in bnds).  The locations are 
stored in bx and by if they are the boundary points of the first polygon (the water boundaries) 
and hx and hy if they are boundary points of additional polygons (island boundaries).  At the 



  VII. Boundary Module 

60 

same time, the values in hid are filled with island id numbers, which start at 1001 for the first 
island.  The boundary checking subroutines expect closed polygons, so the last boundary point of 
each polygon is made identical to the first.  Lastly, the variables bnd_x and bnd_y are filled with 
the x- and y- coordinates of the start and end points of every boundary segment in the model. 
 
Variables Definitions:  The following variables are used in this section: 

BND_SET – logical – set .TRUE. after the boundaries have been created 
bnd_x – dp – x- coordinate of the start and end points of every boundary segment 
bnd_y – dp – y- coordinate of the start and end points of every boundary segment 
bnds – derived data type boundary – boundary point data; whether each point lies on the U 

grid (onU) (as opposed to the V grid), the point’s location on the respective grid in 
terms of nodes from the left side (ii) and nodes from the bottom (jj), and the id number 
of the polygon (poly) that the boundary point is a part of 

bnum – integer – total number of boundary points in bnds 
bx – dp – x- coordinate of the main water boundary edge points 
by – dp – y- coordinate of the main water boundary edge points 
c – integer – counter used in filling bx, by, hid, hx, and hy 
crossnum – integer – counter for number of unsolved crosses 
deadend1 – logical – used when solving crosses, if the path that exited the cross from the left 

has reached a dead end deadend1 is set to .TRUE. to make the subroutine stop 
searching the left path  

deadend2 – logical – used when solving crosses, if the path that exited the cross from the 
right has reached a dead end deadend1 is set to .TRUE. to make the subroutine stop 
searching the right path 

dir – integer – direction the boundary left the previous element based on the numeric keypad 
(8-up, 6-right, 4-left, 2-down) 

dir1 – integer – when solving crosses, the direction from which the path that exited the cross 
from the left exited the previous element; based on the numeric keypad  

dir2 – integer – when solving crosses, the direction from which the path that exited the cross 
from the right exited the previous element; based on the numeric keypad 

done – logical – .TRUE. if all the boundaries have been completed, else .FALSE. 
ele – derived data type element – for each element, the form of that element (form) and 

whether or not the element has been used (used and unused).  The variable unused is 
for elements that are ‘cross’ elements and have two boundaries that pass through them; 
it is .TRUE. if the cross element has never been used and .FALSE. if it has been used at 
least once.  The variable used is for both regular and ‘cross’ elements; it is .FALSE. 
until an element has been completely used, i.e. used once by regular elements and used 
twice by ‘cross’ elements. 

found – logical – set .TRUE. to indicate a starting point has been located  
hid – dp –  island id number assigned to each island edge point 
hx – dp –  x- coordinate location of island edge points 
hy – dp –  y- coordinate location of island edge points 
i – integer – iteration variable 
ipos – integer – position of current element in terms of elements from the left when making 

boundaries 



  VII. Boundary Module 

61 

ipos1 – integer – when solving crosses, current position of the path that exited left in terms of 
elements from the left  

ipos2 – integer – when solving crosses, current position of the path that exited right in terms 
of elements from the left 

j – integer – iteration variable  
ipos – integer – position of current element in terms of elements from the bottom when 

making boundaries 
ipos1 – integer – when solving crosses, current position of the path that exited left in terms of 

elements from the bottom  
ipos2 – integer – when solving crosses, current position of the path that exited right in terms 

of elements from the bottom 
k – integer – iteration variable 
m – integer – iteration variable 
mask_rho – real – rho grid land/sea masking used to create boundaries 
maxbound – integer – total number of boundary points surrounding the main body of water 
maxisland – integer – total number of boundary points surrounding all the islands 
nbounds – integer – total number of boundary segments 
numislands – integer – total number of islands 
numpoly – integer – total number of boundary polygons (water boundaries polygon plus the 

total number of island polygons) 
oldcrossnum – integer – used when solving crosses to ensure that an endless loop is not 

encountered  
pend – integer – when filling the variables bx, by, hid, hx, and hy, location in bnds of the 

last boundary point of the current polygon 
polydone – logical – .TRUE. if the current polygon has been finished, else .FALSE.  
polysizes – integer – number of boundary points in each polygon 
pstart – integer – when filling the variables bx, by, hid, hx, and hy, location in bnds of the 

first boundary point of the current polygon 
STATUS – integer – used to test if allocation of variables was successful 
U – logical – sent to subroutine .ADD. with the value .TRUE. to indicate the boundary point 

is on the U grid  
ui – integer – number of nodes across u grid 
uj – integer – number of nodes down rho and u grids 
V – logical – sent to subroutine .ADD. with the value .FALSE. to indicate the boundary point 

is on the V grid 
vi – integer – number of nodes across rho and v grids 
vj – integer – number of nodes across u grid 
wf – logical – short for ‘waterfall’; indicates the boundary path is going through elements on 

the edge of the rho grid, i.e. the ‘open ocean’ boundary points 
wf1 – logical – when solving crosses indicates the path that exited the cross from the left is 

going through elements on the edge of the rho grid 
wf2 – logical – when solving crosses indicates the path that exited the cross from the right is 

going through elements on the edge of the rho grid 
x_u – real – x- coordinates of u grid nodes 
x_v – real – x- coordinates of v grid nodes 
y_u – real – y- coordinates of u grid nodes 



  VII. Boundary Module 

62 

y_v – real – y- coordinates of v grid nodes 
 
C. Subroutine getNext 
 
Overview:  This subroutine is called by createBounds to find the next element along the 
boundary when trying to determine the form of a ‘cross’ element. 
 
Input Variables:  The subroutine has just one variable that is used only for input, form, which 
contains an integer that represents the form of the current element. 
 
Input/Output Variables:  The subroutine has four variables used for input and output.  The 
variables i and j contain the location of the Rho element in which the boundary exists.  The 
variable wf is a logical variable that is .TRUE. if the boundary is currently an open ocean 
boundary.  Lastly, the variable dir contains an integer that indicates the direction from which the 
boundary exited the previous element. 
  
Output Variables:  The subroutine has no output variables.  
  
Module parameters used:  The subroutine uses the parameters uj and vi from the Parameter 
Module, which contain the dimensions of the rho grid. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 
Private Variables Used: The subroutine uses no private variables. 
 
Numerical Method:  This subroutine finds the next element, following the bounds clockwise 
around water.  This is accomplished based on the element’s location (i, j), whether or not the 
element is on the edge of the rho grid (wf), the direction the path is coming from (dir), and the 
form of the current element (form).  The subroutine simply finds the code associated with the 
given combination of wf, dir, and form and updates the element’s location (i, j), wf, and dir 
values appropriately. 
 
Variable Definitions:  The following variables are used in this subroutine:  

dir – integer – direction the boundary left the previous element based on the numeric keypad 
(8-up, 6-right, 4-left, 2-down) 

form – integer – value from 0 to 19 that represents the form of the current element, based on 
which of its four nodes are masked as water and which are masked as land 

i – integer – position of current element in terms of elements from the left 
j – integer – position of current element in terms of elements from the bottom 
wf – logical – .TRUE. if the element is on the edge of the Rho grid, else .FALSE. 

 
 
 
D. Subroutine ibounds 
 



  VII. Boundary Module 

63 

Overview:  Subroutine ibounds uses the point-in-polygon approach to determine if a particle is 
inside one of the islands within the model domain. 
 
Input Variables:  This subroutine has two input variables: the particle’s x- and y- location 
(clongx, claty). 
 
Output Variables:  This subroutine has two output variables.  The variable in_island contains 1 
if the particle was found within island boundaries and 0 if it was not.  The variable island 
contains the id number of the island that contains the particle, if applicable. 
  
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
 
Module procedures used:  The subroutine uses the function INPOLY from the Point-in-
Polygon Module. 
 
Private Variables Used:  This function uses the variables hid, hx, hy, maxisland, and 
numislands, which are private variables accessible only to procedures in the Boundary Module. 
 
Initialization:  The variable island is initialized to 0.0 to avoid returning an id accidentally 
passed to the subroutine.  The variable in_island is also initialized to 0 to prevent it from being 
passed a 1 accidentally when the particle is not on an island.  The variable i is initialized to 1 to 
be used as a counter to iterate through the island boundaries.  The variable isle is initialized to 
the island id of the first island.  Lastly, start is initialized to 0, because it contains the array 
location of the first island boundary point of the current island minus 1. 
 
Numerical Method:  This subroutine first checks if there are any islands in the model.  If there 
are no islands in the model, the subroutine skips to the end and returns the initialized zero values 
of in_island and island.  Otherwise, the subroutine iterates through the island boundary points 
until it reaches the end of an island.  At this point the array isbnds is allocated to the number of 
boundary points in that island and the location of the boundary points is read into isbnds. The 
particle location and island boundaries are passed to the Point-in-Polygon Module subroutine 
INPOLY to determine if the particle is inside the island’s boundaries.  As long as INPOLY 
returns .FALSE., indicating that the point is not in the polygon, the subroutine will continue until 
it tests all of the islands.  If at any point INPOLY returns .TRUE., the island id is stored in the 
output variable island and in_island is set to 1, to indicate that the particle is in an island.  
Otherwise, the initial zero values of in_island and island are returned. 
 
Variable Definitions:  The following variables are used in this subroutine:  

claty – dp – particle’s y- coordinate location  
clongx – cp –  particle’s x- coordinate location 
count – integer –  number of boundary points in the current island 
hid – dp –  island id number of each island edge point 
hx – dp –  x- coordinate location of island edge points 
hy – dp –  y- coordinate location of island edge points 
i – integer –  iteration variable 
in_island – integer –  return variable; 1 if particle is in an island, else 0 



  VII. Boundary Module 

64 

isbnds – dp –  array allocated to the number of edge points in the current island and filled 
with the x- and y- coordinates of the island edge points; to be passed to INPOLY 

island – dp –  return variable; island id number if particle is in an island, else 0 
isle – dp –  island id number of current island being checked 
j – integer –  iteration variable 
maxisland – integer –  total number of island edge points 
numislands – integer –  total number of islands 
start – integer – keeps track of the first location in hid, hx, and hy of the current island 

 
 
 
E. Subroutine intersect_reflect  
 
Overview:  Subroutine intersect_reflect calculates the intersection between the particle 
trajectory and the boundary line in a grid cell and then calculates the reflection, returning the 
new particle location.   
 
Input Variables:  This subroutine has four variables used only as input: the location of the 
particle before movement (Xpos, Ypos) and the location of the particle after movement (nXpos, 
nYpos). 
 
Output Variables:  The subroutine has five variables used solely for output.  The variables 
fintersectX and fintersectY contain the location at which the particle’s trajectory intersects the 
edge boundary.  The variables freflectX and freflectY contain the location of the particle after it 
reflects off the boundary.  Lastly, intersectf contains a 1 if an intersection occurs or a 0 if it does 
not. 
 
Input/Output Variables:  The variable skipbound is used for both input and output.  The value 
input through skipbound indicates that a certain boundary that should be skipped when the 
subroutine loops through the boundaries searching for an intersection.  The subroutine can also 
output a value in skipbound to be used as input for the subroutine if it is not reset before its next 
call.   
 
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
  
Private Variables Used:  This function uses the variables bnd_x, bnd_y, and nbounds, which 
are private variables accessible only to the procedures in the Boundary Module. 
 
Initialization:  The variables distBC, Mbc, Bbc, Mp, and Bp are initialized to 0.0.  The 
variables intersect and intersectf are initialized to 0.  Lastly, fintersectX, fintersectY, 
freflectX, freflectY, and dtest are all initialized to -999999.0. 
 
Numerical Method:  The subroutine first determines the x and y limits of the particle trajectory.  
The higher of the two values in Xpos and nXpos is stored in xhigh, and the lower is stored in 



  VII. Boundary Module 

65 

xlow.  The same is done for Ypos and nYpos, storing the limits in the variables yhigh and ylow.  
This allows the program to check that the intersection, if one occurs, is between the limits in the 
x and y directions. 
 
The subroutine then enters a loop that iterates through each individual boundary segment of the 
model domain.  To save time, the subroutine first checks if the boundary segment end points are 
both to the north, south, east, or west of the particle trajectory start and end points.  If so, the 
boundary is skipped because the particle cannot possibly cross the boundary.  Otherwise, 
bxhigh, bxlow, byhigh, and bylow are determined for the boundary segment in the same way 
that xhigh, xlow, yhigh, and ylow were determined for the particle trajectory. 
 
Since vertical lines have an undefined slope, they must be handled separately.  The subroutine 
therefore checks if either the particle trajectory or boundary segment is vertical.  If either is 
vertical, one of four scenarios takes place: 1) the particle trajectory is vertical and the boundary 
is horizontal, 2) the boundary is vertical and the particle trajectory is horizontal, 3) the particle 
trajectory is vertical and the boundary is not horizontal, or 4) the boundary is vertical and the 
particle trajectory is not horizontal.   
 
For the scenarios in which either the boundary or the trajectory is vertical and the other is 
horizontal, the place where the lines will intersect is already known.  If the intersection takes 
place between the endpoints of the boundary segment and within the trajectory of the particle, 
the reflection goes straight back in the direction from which it came.  If the intersection does fit 
those requirements, the subroutine moves on to check the next boundary line. 
 
In the situations where either the boundary or the trajectory is vertical and the other is not 
horizontal, an extra step is involved.  The x-coordinate of the point of intersection is known (it is 
the x-coordinate of the vertical line), but the y-coordinate must be calculated.  The slope and 
intercept are calculated, and then the x-coordinate of the vertical line is used to solve for y.  The 
subroutine then checks if the point of intersection lies between the endpoints of the trajectory and 
boundary segment and, if it is, calculates the reflection.  The reflection is on the line 
perpendicular to the boundary line that goes through the point (nXpos,nYpos) and is the same 
distance from the boundary line as that point but on the other side of the boundary line (see 
illustration below).  If the intersection does not take place within the requirements, the subroutine 
moves on to check the next boundary line.   
 
If neither the boundary segment nor particle trajectory is vertical, the subroutine calculates the 
slope and x-intercept of the particle trajectory and boundary segment and the point at which they 
intersect.  If this point of intersection occurs between the boundary segment endpoints, the 
reflected location is calculated.  The reflection lies on the line perpendicular to the boundary line 
that passes through (nXpos,nYpos), at the same distance from the boundary line as the original 
projected particle endpoint (see Fig. 7).  The line perpendicular to the boundary line through the 
point (nXpos,nYpos) and the distance from the point (nXpos,nYpos) to the boundary line are 
calculated.  Because the reflected point is the same distance from the boundary line, it is 
calculated as the point two times that distance from the point (nXpos,nYpos).  Since this 
description yields two points, the one closest to the boundary line is used. 
 



  VII. Boundary Module 

66 

If the boundary line is horizontal (east-west), the line perpendicular to it will be vertical and have 
an undefined slope.  It is therefore handled separately, and in fact it has a simple solution 
because the x-location of the reflection is the same as that of nXpos.   
 
For all of the boundary lines for which an intersection did not occur within the segment 
endpoints, the subroutine loops back to check the next boundary segment.  However, if an 
intersection did occur, the distance from the particle’s start location to its point of intersection is 
calculated.  If there have been no other boundary segments with an intersection closer, the 
coordinates of the intersection and the reflected location are stored in the appropriate output 
variables.  Also, intersectf is set equal to 1 to indicate that an intersection has occurred, and 
skipbound is set equal to the identification number of the boundary that was intersected so that it 
will be ignored when the next call to the subroutine checks that the reflected trajectory has not 
intersected another boundary. 
 
Even if an intersection is found, the subroutine continues to check the other boundaries in case 
there is a closer point of intersection, since it is possible for a particle’s trajectory to pass through 
a segment to go out of bounds and then through another one to come back in.  Once the proper 
reflected location has been calculated, the subroutine returns the values fintersectX, fintersectY, 
freflectX, and freflectY shown in the illustration above.  The new particle trajectory, from the 
intersect point to the reflected location, is then tested to make sure it does not intersect with 
another boundary.  

 
 
Fig. 7. Schematic of line segments used to calculate the intersection and reflection of particle 
trajectories when the boundary and/or particle trajectory lines are not horizontal or vertical.  
 
 
Variable Definitions:  The following variables are used in this subroutine: 

Bbc - dp – x intercept of current boundary line 
bBCperp - dp – x intercept of the line perpendicular to the current boundary line, going 

through the projected location of the particle (nXpos, nYpos) 
bcx1 - dp – x-position of 1st endpoint of current boundary segment 
bcx2 - dp – x-position of 2nd endpoint of current boundary segment 
bcy1 - dp – y-position of 1st endpoint of current boundary segment 



  VII. Boundary Module 

67 

bcy2 - dp – y-position of 2nd endpoint of current boundary segment 
bnd_x(2,nbounds)  - dp – x-coordinates of the boundary points 
bnd_y(2,nbounds)  - dp – y-coordinates of the boundary points 
Bp - dp – x intercept of the particle trajectory line 
bxhigh - dp – contains the higher x-coordinate of the two endpoints of the current segment 
bxlow - dp – contains the lower x-coordinate of the two endpoints of the current segment 
byhigh - dp – contains the higher y-coordinate of the two endpoints of the current segment 
bylow - dp – contains the lower y-coordinate of the two endpoints of the current segment 
crossk - dp – cross product for determining distance of particle from boundary 
d_Pinter - dp – distance from particle start location to the point of intersection with the 

current boundary line 
dist1 - dp – distance from the point of intersection to the first of two possible reflection 

locations 
dist2 - dp – distance from the point of intersection to the second of two possible reflection 

locations 
distBC - dp – length of current boundary segment 
dPBC - dp – distance from projected particle location (nXpos, nYpos) to boundary line 
dtest - dp – distance from particle start location to the nearest encountered point of 

intersection 
fintersectX - dp – x-position of the nearest encountered point of intersection 
fintersectY - dp – y-position of the nearest encountered point of intersection 
freflectX - dp – x-position of reflected location resulting from the nearest encountered point 

of intersection 
freflectY - dp – y-position of reflected location resulting from the nearest encountered point 

of intersection 
i - integer – used to iterate through the boundary segments 
intersctx - dp – x-position at which particle trajectory intersects current boundary segment 
interscty - dp – y-position at which particle trajectory intersects current boundary segment 
intersect - integer – flag integer; 0 if particle trajectory does not intersect current boundary 

segment, 1 if it does 
intersectf - integer – return variable; returns 1 if an intersection occurred, 0 if not 
Mbc - dp – slope of current boundary segment 
mBCperp - dp – slope of line perpendicular to current boundary segment 
Mp - dp – slope of particle trajectory 
nbounds - integer – total number of boundary segments 
nXpos - dp – projected new Xpos if no intersections occur 
nYpos - dp – projected new Ypos if no intersections occur 
rPxyzX - dp – reflected x-position after intersecting current boundary segment 
rPxyzY - dp – reflected y-position after intersecting current boundary segment 
rx1 - dp – x-position of first of two possible reflection locations 
rx2 - dp – x-position of second of two possible reflection locations 
ry1 - dp – y-position of first of two possible reflection locations 
ry2 - dp – y-position of second of two possible reflection locations 
skipbound - integer – outputs the number of the boundary segment intersected, so that it can 

be used as input on successive calls to the subroutine to skip that boundary segment 
skipboundi - integer – boundary number with the closest encountered point of intersection 



  VII. Boundary Module 

68 

xhigh - dp – the higher x-position between the particles old position and projected new 
position 

xlow - dp – the lower x-position between the particles old position and projected new 
position 

Xpos - dp – x-position of particle before movement 
yhigh - dp – the higher y-position between the particle’s old position and projected new 

position 
ylow - dp – the lower y-position between the particle’s old position and projected new 

position 
Ypos - dp – y-position of particle before movement 

 
 
 
F. Function isBndSet 
 
Overview:  The function isBndSet returns the value of BND_SET, which is .TRUE. if the 
boundaries have been created and .FALSE. if they have not yet been created.. 
 
Input Variables:  The function has no variables used for input. 
 
Output:  The function returns .TRUE. if the boundaries have been created and .FALSE. if they 
have not yet been created. 
 
Module parameters used: The function uses no parameters from PARAM_MOD. 
 
Module procedures used: The function uses no functions or subroutines from other modules. 
  
Private Variables Used:  The function uses the variable BND_SET, which is a private variable 
accessible only to the procedures in the Boundary Module. 
 
Numerical Method:  The function simply sets the return variable isBndSet to the logical value 
of BND_SET. 
 
Variable Definitions:  The following variables are used in this function:  

BND_SET – logical – .TRUE. if the boundaries have been created, else .FALSE. 
  
 
 
G. Subroutine mbounds 
 
Overview:  Subroutine mbounds uses the point-in-polygon approach to determine if a particle is 
inside the model domain.  The basic concept behind the point-in-polygon approach is that a ray 
shot out from a point in a polygon will cross an odd number of edges if it is within the polygon 
and an even number if it is not. 
 



  VII. Boundary Module 

69 

Input Variables:  This subroutine has two variables used only as input: the x- and y-coordinate 
location of the particle (Xpos, Ypos). 
 
Output Variables:  The output variable inbounds returns a 1 if the particle is found to be within 
the domain boundaries and a 0 if it is not. 
 
Module parameters used: The function uses no parameters from PARAM_MOD. 
 
Module procedures used:  The subroutine uses the function INPOLY from the Point-in-
Polygon Module. 
 
Private Variables Used:  This function uses the variables bx, by, and maxbound, which are 
private variables accessible only to the procedures in the Boundary Module. 
 
Numerical Method:  This subroutine basically reformats the main water boundary edge point 
coordinates into one variable (blatlon), which can be passed to the function INPOLY along with 
the particle’s x- and y- coordinates (Xpos, Ypos).  The output variable inbounds is initialized to 
zero, and if INPOLY returns .TRUE., indicating that the particle is inside the water boundaries, 
the value in inbounds is updated to 1. 
 
Variable Definitions:  The following variables are used in this subroutine:  

bx – dp – x- coordinate of the water edge points 
by – dp – y- coordinate of the water edge points 
blatlon – dp – x- and y- coordinates of the water edge points, formatted for INPOLY 
i – integer – iteration variable 
inbounds – integer – output variable; returns 1 if particle is in the water, else 0  
maxbound – integer – total number of water edge points 
Xpos – dp – particle’s x- coordinate 
Ypos – dp – particle’s y- coordinate 

 
 
 
H. Subroutine output_llBounds 
 
Overview:  Subroutine output_llBounds takes the boundaries stored in the variable bnds and 
converts them into blanking files (.bln) for Surfer/Scripter using latitude and longitude 
coordinates. 
 
Input Variables:  This subroutine has no variables used as input. 
 
Output Variables:  This subroutine has no variables used as output 
  
Module parameters used:  The subroutine uses the parameters ui, uj, vi and vj from the 
Parameter Module, which contain the dimensions of the u and v grids. 
 



  VII. Boundary Module 

70 

Module procedures used:  The subroutine uses the subroutine getUVxy from the 
Hydrodynamic Module.  It also uses the functions x2lon and y2lat from the Conversion Module. 
 
Private Variables Used:  This subroutine uses the variables bnds and bnum, which are private 
variables accessible only to the procedures in the Boundary Module. 
 
Numerical Method:  This subroutine first calls getUVxy to get the x- and y- coordinates of the 
u and v grid nodes.  It then calculates the number of boundary edge points in each boundary 
polygon.  If there are no islands in the model domain, then there will only be one boundary 
polygon.  The program then iterates through the boundary polygons and for each polygon writes 
a row containing the number of edge points in that polygon (plus one to close the polygon) and 
the number 1 to indicate a closed polygon, followed by rows containing the longitude and 
latitude of each boundary edge point in that polygon, ending with the longitude and latitude of 
the first edge point again in order to close the polygon. 
 
Variable Definitions:  The following variables are used in this subroutine:  

i – integer – iteration variable 
j – integer – iteration variable 
k – integer – iteration variable 
m – integer – iteration variable 
numpoly – integer – number of polygons 
pend – integer – location in bnds of the current polygon’s last edge point 
polysizes – integer – the number of boundary edge points in each polygon 
pstart – integer – location in bnds of the current polygon’s first edge point 
STATUS – integer – status ID returned from intrinsic function allocate 
x_u – real – x- coordinates of the u grid nodes 
x_v – real – x- coordinates of the v grid nodes 
y_u – real – y- coordinates of the u grid nodes 
y_v – real – y- coordinates of the v grid nodes 

  
 
 
I. Subroutine output_xyBounds 
 
Overview:  Subroutine output_xyBounds takes the boundaries stored in the variable bnds and 
converts them into blanking files (.bln) for Surfer/Scripter using x- and y- coordinates. 
 
Input Variables:  This subroutine has no variables used as input. 
 
Output Variables:  This subroutine has no variables used as output 
  
Module parameters used:  The subroutine uses the parameters ui, uj, vi and vj from the 
Parameter Module, which contain the dimensions of the u and v grids. 
 
Module procedures used:  The subroutine uses the subroutine getUVxy from the 
Hydrodynamic Module. 



  VII. Boundary Module 

71 

 
Private Variables Used:  This subroutine uses the variables bnds and bnum, which are private 
variables accessible only to the procedures in the Boundary Module. 
 
Numerical Method:  This subroutine first calls getUVxy to get the x- and y- coordinates of the 
u and v grid nodes.  It then calculates the number of boundary edge points in each boundary 
polygon.  If there are no islands in the model domain, then there will only be one boundary 
polygon.  The program then iterates through the boundary polygons and for each polygon writes 
a row containing the number of edge points in that polygon (plus one to close the polygon) and 
the number 1 to indicate a closed polygon, followed by rows containing the x- and y- coordinates 
of each boundary edge point in that polygon, ending with the x- and y- coordinates of the first 
edge point again in order to close the polygon. 
 
Variable Definitions:  The following variables are used in this subroutine:  

i – integer – iteration variable 
j – integer – iteration variable 
k – integer – iteration variable 
m – integer – iteration variable 
numpoly – integer – number of polygons 
pend – integer – location in bnds of the current polygon’s last edge point 
polysizes – integer – the number of boundary edge points in each polygon 
pstart – integer – location in bnds of the current polygon’s first edge point 
STATUS – integer – status ID returned from intrinsic function allocate 
x_u – real – x- coordinates of the u grid nodes 
x_v – real – x- coordinates of the v grid nodes 
y_u – real – y- coordinates of the u grid nodes 
y_v – real – y- coordinates of the v grid nodes 

 
 
 



  VIII. Conversion Module 

72 

VIII. Conversion Module (conversion_module.f90, CONVERT_MOD) 
 
Overview:  The Conversion Module contains all the procedures necessary to convert locations 
between latitude and longitude coordinates and metric (x and y) coordinates.  The conversions 
are done using equations from the sg_mercator.m and seagrid2roms.m matlab scripts that are 
found in Seagrid and are used to generate the ROMS model grid.  The module contains four 
interface blocks with two functions each.  One of the two functions accepts input of type real, 
and the other accepts input of type double precision.  Both functions return double precision 
output.  The four interface blocks cover the four necessary conversions:  longitude to x- 
coordinate, latitude to y- coordinate, x- coordinate to longitude, and y- coordinate to latitude. 
 
Module Parameters Used:  The Conversion Module uses three parameters that are set in the 
LTRANS.inc file.  These include the Earth’s equatorial radius (earth_radius), the radian 
conversion factor (RCF), and the value of the mathematical constant п (PI). 
 
Public Procedures:  The following are the public interfaces contained within the Conversion 
Module: lat2y, lon2x, x2lon, y2lat. 
 
 
 
A. Interface lat2y 
 
Overview:  Interface lat2y contains two functions, rlat2y and dlat2y, which both convert latitude 
to y-coordinates.  rlat2y accepts latitude in type real and dlat2y accepts latitude in type double 
precision, though both return the y- coordinate in the type double precision. 
 
Input Variables:  This interface has one input variable, the latitude to be converted (lat). 
 
Output:  The interface outputs the converted y- coordinate.  
 
Numerical Method:  This interface uses the following function to convert latitude to metric y- 
coordinates and then returns the value of y: 
 

RadusEarth
RCF
laty _*

24
tanlog ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=
π  

 
Variable Definitions:  The following variables are used in this interface: 

Earth_Radius – dp – Earth’s equatorial radius 
lat – dp – latitude that needs to be converted 
PI – dp – the mathematical constant п 
RCF – dp – radian conversion factor 

 
 
 
 



  VIII. Conversion Module 

73 

B. Interface lon2x 
 
Overview:  Interface lon2x contains two functions, rlon2x and dlon2x, which both convert 
longitude to x- coordinates.  rlon2x accepts longitude in type real and dlon2x accepts longitude 
in type double precision, though both functions return the x- coordinate in the type double 
precision. 
 
Input Variables:  This interface has one input variable, the longitude to be converted (lon). 
 
Output:  The interface outputs the converted x- coordinate.  
 
Numerical Method:  This interface uses the following function to convert longitude to metric x- 
coordinates and then returns the value of x: 
 

RadusEarth
RCF
lonx _*=  

 
Variable Definitions:  The following variables are used in this interface: 

Earth_Radius – dp – Earth’s equatorial radius 
lon – dp – longitude that needs to be converted 
RCF – dp – radian conversion factor 

 
 
 
C. Interface x2lon 
 
Overview:  Interface x2lon contains two functions, rx2lon and dx2lon, which both convert x- 
coordinates to longitude.  rx2lon accepts the x- coordinate in type real and dx2lon accepts the x- 
coordinate in type double precision, though both functions return the longitude in the type double 
precision. 
 
Input Variables:  This interface has one input variable, the x- coordinate to be converted (x). 
 
Output:  The interface outputs the converted longitude.  
 
Numerical Method:  This interface uses the following function to convert x- coordinates to 
longitude and then returns the value of lon: 
 

RCF
RadusEarth

xlon *
_

=  

 
Variable Definitions:  The following variables are used in this interface: 

Earth_Radius – dp – Earth’s equatorial radius 
x – dp – x- coordinate that needs to be converted 
RCF – dp – radian conversion factor 



  VIII. Conversion Module 

74 

D. Interface y2lat 
 
Overview:  Interface y2lat contains two functions, ry2lat and dy2lat, which both convert y- 
coordinates to latitude.  ry2lat accepts y- coordinates in type real and dy2lat accepts y- 
coordinates in type double precision, though both functions return the latitude in the type double 
precision. 
 
Input Variables:  This interface has one input variable, the y- coordinate to be converted (y). 
 
Output:  The interface outputs the converted latitude.  
 
Numerical Method:  This interface uses the following function to convert y- coordinates to 
latitude and then returns the value of lat: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

4
arctan*2 _ πRadiusEarth

y

eRCFlat  

 
Variable Definitions:  The following variables are used in this interface: 

Earth_Radius – dp – Earth’s equatorial radius 
y – dp – y- coordinate that needs to be converted 
PI – dp – the mathematical constant п 
RCF – dp – radian conversion factor 

 
 
 



  IX. Gridcell Module 

75 

IX. Gridcell Module (gridcell_module.f90, GRIDCELL_MOD) 
 
Overview:  The Gridcell Module contains the subroutine gridcell which is used for determining 
if a point lies within an element. 
 
Public Procedures:  The following are the public subroutines and functions contained within the 
Gridcell Module: subroutine Gridcell. 
 
 
A. Subroutine Gridcell 
 
Overview:  Subroutine gridcell serves two purposes.  When passed an element number through 
the optional argument checkele, it determines if a particle is in that particular element.  When the 
optional argument is omitted, the subroutine determines in which element the particle is currently 
located. 
 
Input Variables:  This subroutine requires five parameters as input variables: the total number 
of wet elements in the given grid (elements), the x- and y- locations of the four nodes in each of 
the elements (ele_x, ele_y), and the x- and y- position of the particle (Xpos, Ypos).  If only one 
element needs to be checked, the subroutine takes one additional parameter, checkele, which 
contains the element number to be checked. 
 
Output Variables:  The subroutine has two output parameters.  P_ele returns the element 
number in which the particle is found, if the particle is found.  The variable triangle returns a 1 
if the particle was found in an element and a 0 if it was not.  
 
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 
Private Variables Used: The subroutine uses no private variables. 
 
Numerical Method:  The subroutine first checks whether or not the optional argument checkele 
was present in the function call.  If it is present, then the variables elestart and eleend are both 
initialized to the value in checkele.  If it is not present, elestart is initialized to 1 and eleend is 
initialized to the value in elements.  The main loop in the subroutine iterates from elestart to 
eleend, so if checkele is present the subroutine will only check the element specified in 
checkele; otherwise, all the elements are checked.   
 
In each iteration, the subroutine first checks if the particle is completely north, south, east, or 
west of every node of the element.  If it is, the particle is not in the element and the program 
moves on to the next element.  If it is not, the subroutine then checks if the particle is directly on 
the element’s boundary points or on a horizontal boundary segment.  If it is, the particle is 
considered in the element, and the subroutine ends the loop and returns the current element 
number.  
 



  IX. Gridcell Module 

76 

If the element does not pass either of those checks, the subroutine uses a point-in-polygon 
approach to determine if the particle is in the element.  To do this, it loops through each of the 
element’s four boundary segments.  If a ray shot east from the particle goes through the current 
boundary segment, the corresponding position in the array counter is changed to 1 (counter has 
four positions, one associated with each boundary segment, initialized to 0).  After the subroutine 
has iterated through each boundary segment, the values in counter are summed and stored in 
total.  In this case, if the particle is in the element, the ray will have passed through only one of 
the boundary segments; if the particle is not in the element, the ray will have passed through 
either two or none of the segments.  Thus, if total contains an odd number, the program 
considers the particle in the element and ends the loop, returning the element number.  If total 
contains an even number, the particle is not in the element and the subroutine continues to the 
next element. 
 
Variable Definitions:  The following variables are used in this subroutine: 

bhighy - dp – y-position of the highest boundary point 
blowy - dp – y-position of the lowest boundary point 
bx1 - dp – x-position of the 1st end point of the current boundary segment 
bx2 - dp – x-position of the 2nd end point of the current boundary segment 
by1 - dp – y-position of the 1st end point of the current boundary segment 
by2 - dp – y-position of the 2nd end point of the current boundary segment 
checkele – integer – optional input argument that contains an element number and, when 

present, prompts the subroutine to check only that one element  
counter(4) - integer – array with a position associated with each boundary segment; each 

position contains 1 if a ray shot east from the particle passes through its associated 
boundary segment or 0 if it does not 

ele_x(4,elements) - dp – x-positions of all four nodes in every element 
ele_y(4,elements) - dp – y-positions of all four nodes in every element 
eleend – integer – number of the last element to check  
elements - integer – total number of elements 
elestart – integer – number of the first element to check 
i - integer – used to iterate through the elements 
p - integer – used to iterate through the four line segments of the element 
P_ele - integer – returns the ID number of the element that contains the particle 
slope - dp – slope of the current line segment 
total - integer – sum of the values in counter; if it is odd then the particle is in the element 
triangle - integer – return variable; 1 if particle is found to be in an element, 0 if not 
xintersect - dp – x intersect of current line segment 
Xpos - dp – x-position of the particle 
Ypos - dp – y-position of the particle 

 
 



  X. Horizontal Turbulence Module 

77 

X. Horizontal turbulence Module (hor_turb_module.f90, HTURB_MOD)  
 
Overview:  Hydrodynamic models do not simulate turbulent motion at scales smaller than the 
grid resolution of the model (e.g., 1 km).  In particle-tracking models, however, particles are 
moved in millimeter to centimeter steps—much smaller than the hydrodynamic model grid scale.  
It is necessary to add a random component to particle motion in order to reproduce turbulent 
diffusion that occurs at the scale of particle motion (Visser 1997, Brickman and Smith 2001). A 
random walk model is used to simulate turbulent particle motion in the horizontal direction (x- 
and y- directions) because LTRANS was developed to use output from a hydrodynamic model 
with constant horizontal diffusivity (Li et al. 2005). For hydrodynamic models with variable 
horizontal diffusivity, a random displacement model (Visser 1997) should be used. See Vertical 
Turbulence Module section for an example of a random displacement model.   
 
Public Procedures:  The following are the public subroutines and functions contained within the 
Horizontal Turbulence Module: subroutine HTurb. 
 
 
 
A. Subroutine HTurb 
 
Overview:  This subroutine calculates the horizontal turbulence in the x- and y- directions. 
 
Input Variables:  The subroutine HTurb has no input variables. 
  
Output Variables:  The subroutine returns the horizontal displacement (m) in the x-and y-
directions during one internal time step through the variables TurbHx and TurbHy. 
  
Module parameters used:  The subroutine uses the parameter ConstantHTurb from the 
Parameter Module, which contains the value of constant horizontal diffusivity. 
 
Module procedures used:  The subroutine uses the function norm from the Norm Module. 
 
Private Variables Used: The subroutine uses no private variables. 
 
Initialization: This module must be ‘turned on’ in the LTRANS.inc include file by setting the 
parameter HTurbOn = .TRUE. In addition, the constant value of horizontal diffusivity must be 
set in LTRANS.inc in the parameter ConstantHTurb. 
 
Numerical Method:  When horizontal diffusivity is constant, the random displacement model 
defaults to a random walk model (Visser 1997): 

  [ ] 2
11

1 2 tKrRxx nn δ−
+ +=  

where K = horizontal diffusivity evaluated at ( nx ). For the LTRANS development, K was equal 
to 1 m2 s-1, the same constant horizontal diffusivity that was used in the ROMS model of 
Chesapeake Bay (Li et al. 2005).  
 



  X. Horizontal Turbulence Module 

78 

Variable Definitions:  The following variables are used in this section: 
ConstantHTurb – dp, parameter – constant horizontal diffusivity 
devX – real - the random deviate in the x-direction 
devY – real - the random deviate in the y-direction 
r – real – the standard deviation of the random deviate 
TurbHx – dp - displacement in x-direction due to horizontal turbulence during internal time 

step 
TurbHy – dp - displacement in y-direction due to horizontal turbulence during internal time 

step  
 
 



  XI. Hydrodynamic Module 

79 

XI. Hydrodynamic Module (hydrodynamic_module.f90, HYDRO_MOD) 
 
Overview:  The Hydrodynamic Module handles all code related to the NetCDF hydrodynamic 
model input files, as well as the Rho, U, and V grid elements created based on the input from 
those files. 
 
Module Parameters Used:  The Hydrodynamic Module uses several parameters from the 
Parameter Module, including the total number of particles (numpar), the Rho, U, V, and W grid 
dimension variables (ui, uj, vi, vj, us, ws), the number of time steps per input file (tdim), the 
total number of Rho, U, and V grid nodes (rho_nodes, u_nodes, v_nodes), the total number of 
Rho, U, and V grid ‘elements’ (max_rho_elements, max_u_elements, max_v_elements), and 
the total number of wet (containing at least one water masked node) Rho, U, and V grid 
‘elements’ (rho_elements, u_elements, v_elements). 
 
Private Variables:  The module contains eighty variables accessible only in this module and the 
subroutines and functions within it: 

COUNTr – integer – array of integers specifying the number of indices to read in along each 
dimension; used when reading in one time step worth of data (excludes zeta data) 

COUNTz – integer – array of integers specifying the number of indices to read in along each 
dimension; used when reading in one time step worth of zeta data  

CS – real – s-level stretching curves for the Rho grid  
CSW – real – s-level stretching curves for the W grid 
depth – real – sea floor depth at each Rho node location 
filenm – character array – concatenated hydrodynamic input file name 
GRD_SET – logical – set .TRUE. when the grid has been read in, else .FALSE.  
iint – integer – keeps track of which input file to open (0 = file 1, 1 = file 2, etc.) 
Khb – real – vertical diffusivity at the hydrodynamic back time step 
Khc – real – vertical diffusivity at the hydrodynamic center time step 
Khf – real – vertical diffusivity at the hydrodynamic forward time step 
mask_rho – real – land/sea masking of the Rho grid in (i,j) location format 
P_r_element – integer – Rho element that each particle is in 
P_u_element – integer – U element that each particle is in 
P_v_element – integer – V element that each particle is in 
r_Adjacent – integer – array containing, for each element, its own Rho element id followed 

by the element ids of all the Rho elements that share a node with that element 
r_ele_x – dp – x-coordinate location of the four nodes in each wet Rho element 
r_ele_y – dp – y-coordinate location of the four nodes in each wet Rho element 
RE – integer – the four Rho node numbers that make up each wet Rho element 
rho_angle – dp – angle between Rho node’s x-coordinate and true east direction (radian) 
rnode1 – integer – 1st of 4 Rho nodes that make up the Rho element containing the particle 
rnode2 – integer – 2nd of 4 Rho nodes that make up the Rho element containing the particle 
rnode3 – integer – 3rd of 4 Rho nodes that make up the Rho element containing the particle 
rnode4 – integer – 4th of 4 Rho nodes that make up the Rho element containing the particle 
rx – dp – x- coordinate location of all the Rho nodes 
ry – dp – y- coordinate location of all the Rho nodes 
saltb – real – salinity at the hydrodynamic back time step 



  XI. Hydrodynamic Module 

80 

saltc – real – salinity at the hydrodynamic center time step 
saltf – real – salinity at the hydrodynamic forward time step 
SC – real – s-level coordinates for the Rho grid 
SCW – real – s-level coordinates for the W grid 
STARTr – integer – array specifying the index in a variable from which the first data values 

will be read; used when reading in one time step worth of data (excludes zeta data) 
STARTz – integer – array specifying the index in the zeta variable from which the first data 

values will be read; used when reading in one time step worth of zeta data 
stepf – integer – keeps track of the location in the current hydrodynamic file of the forward 

time step 
t – dp – binary interpolation variable 
tempb – real – temperature at the hydrodynamic back time step 
tempc – real – temperature at the hydrodynamic center time step 
tempf – real – temperature at the hydrodynamic forward time step 
tOK – integer – stores method of interpolation for current particle (1 = binary interpolation 

of 1st triangle, 2 = binary interpolation of 2nd triangle, 3 = inverse weighted distance) 
u – dp – binary interpolation variable 
u_Adjacent – integer – array containing, for each element, its own U element id followed by 

the element ids of all the U elements that share a node with that element 
u_ele_x – dp – x-coordinate location of the four nodes in each wet U element 
u_ele_y – dp – y-coordinate location of the four nodes in each wet U element 
UE – integer – the four U node numbers that make up each wet U element 
unode1 – integer – 1st of 4 U nodes that make up the U element containing the particle 
unode2 – integer – 2nd of 4 U nodes that make up the U element containing the particle 
unode3 – integer – 3rd of 4 U nodes that make up the U element containing the particle 
unode4 – integer – 4th of 4 U nodes that make up the U element containing the particle 
Uvelb – real – u- component velocity at the hydrodynamic back time step 
Uvelc – real – u- component velocity at the hydrodynamic center time step 
Uvelf – real – u- component velocity at the hydrodynamic forward time step 
ux – dp – x- coordinate location of all the U nodes 
uy – dp – y- coordinate location of all the U nodes 
v_Adjacent – integer – array containing, for each element, its own V element id followed by 

the element ids of all the V elements that share a node with that element 
v_ele_x – dp – x- coordinate location of the four nodes in each wet V element 
v_ele_y – dp – y- coordinate location of the four nodes in each wet V element 
VE – integer – the four V node numbers that make up each wet V element 
vnode1 – integer – 1st of 4 V nodes that make up the V element containing the particle 
vnode2 – integer – 2nd of 4 V nodes that make up the V element containing the particle 
vnode3 – integer – 3rd of 4 V nodes that make up the V element containing the particle 
vnode4 – integer – 4th of 4 V nodes that make up the V element containing the particle 
Vvelb – real – v- component velocity at the hydrodynamic back time step 
Vvelc – real – v- component velocity at the hydrodynamic center time step 
Vvelf – real – v- component velocity at the hydrodynamic forward time step 
vx – dp – x- coordinate location of all the V nodes 
vy – dp – y- coordinate location of all the V nodes 
Wgt1 – dp – weight of 1st node when interpolating via inverse weighted distance 



  XI. Hydrodynamic Module 

81 

Wgt2 – dp – weight of 2nd node when interpolating via inverse weighted distance 
Wgt3 – dp – weight of 3rd node when interpolating via inverse weighted distance 
Wgt4 – dp – weight of 4th node when interpolating via inverse weighted distance 
Wvelb – real – w- component velocity at the hydrodynamic back time step 
Wvelc – real – w- component velocity at the hydrodynamic center time step 
Wvelf – real – w- component velocity at the hydrodynamic forward time step 
x_u – real – x- coordinate location of the U grid in (i,j) location format 
x_v – real – x- coordinate location of the V grid in (i,j) location format 
y_u – real – y- coordinate location of the U grid in (i,j) location format 
y_v – real – y- coordinate location of the V grid in (i,j) location format 
zetab – real – zeta value at the hydrodynamic back time step 
zetac – real – zeta value at the hydrodynamic center time step 
zetaf – real – zeta value at the hydrodynamic forward time step 
 
 
 

Public Procedures:  The following are the public subroutines and functions contained within the 
Settlement Module: Function getInterp, Subroutine getMask_Rho, Function 
getP_r_element, Subroutine getR_ele, Function getSlevel, Subroutine getUVxy, Function 
getWlevel, Subroutine initGrid, Subroutine initHydro, Function interp, Subroutine setEle, 
Subroutine setInterp, Subroutine updateHydro, Function WCTS_ITPI. 
 
 
A. Function getInterp 
 
Overview:  The function getInterp returns the interpolated value at the particle's location using 
the interpolation variables t, tOK, u, Wgt1, Wgt2, Wgt3, and Wgt4, stored from a call to 
subroutine setInterp, and the hydrodynamic variables that have been read in by initHydro and 
updateHydro. 
 
Input Variables:  The function has one required input variable and one optional input variable.  
It must be passed a character array containing the variable name to interpolate (var).  For 
variables with different s-levels, the optional variable i must be present to indicate which s-level 
to interpolate from. 
  
Output:  The function returns the interpolated value at the particle’s location of the given data 
type.  
 
Module parameters used: The function uses no parameters from PARAM_MOD. 
 
Module procedures used: The function uses no functions or subroutines from other modules. 
  
Private Variables Used:  The function uses the variables depth, KHb, KHc, KHf, rho_angle, 
rnode1, rnode2, rnode3, rnode4, saltb, saltc, saltf, t, tempb, tempc, tempf, tOK, u, Wgt1, 
Wgt2, Wgt3, Wgt4, zetab, zetac, and zetaf which are private variables accessible only to the 
procedures in the Hydrodynamic Module. 



  XI. Hydrodynamic Module 

82 

 
Numerical Method:  This subroutine begins by checking var to determine which data values to 
use for interpolation: depth, KHb, KHc, KHf, rho_angle, saltb, saltc, saltf, tempb, tempc, 
tempf, zetab, zetac, or zetaf.  The appropriate data values at the four rho node locations that 
make up the rho element containing the particle are assigned to the variables v1, v2, v3, and v4.  
The method of interpolation and the values necessary to use that method of interpolation (having 
already been determined by setInterp) are then used with these variables to determine the 
interpolated value and return it. 
 
Variables Definitions:  In addition to a subset of the private variables defined on p. 79, the 
following variables are used in this section: 

i – integer – optional input variable; s-level to interpolate to 
v1 – dp – value at rnode1 to interpolate from 
v2 – dp – value at rnode2 to interpolate from 
v3 – dp – value at rnode3 to interpolate from 
v4 – dp – value at rnode4 to interpolate from 

 
 
 
B. Subroutine getMask_Rho 
 
Overview:  This subroutine returns the values in the Hydrodynamic Module private variable 
mask_rho.  The subroutine allows createBounds in the Boundary Module to make the 
boundaries based on the rho grid land/sea masking. 
 
Input Variables:  The subroutine has no input variables. 
  
Output Variables:  The subroutine has just one output variable, mask, which returns the rho 
masking. 
  
Module parameters used:  The subroutine uses the parameters vi and uj from the Parameter 
Module, which contain the dimensions of the rho grid. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 
Private Variables Used:  The subroutine uses the variables mask_rho and GRD_SET which 
are private variables accessible only to the procedures in the Hydrodynamic Module. 
 
Numerical Method:  The subroutine first checks if the grid data has been read in.  If it has, the 
values in mask_rho are transferred to the output variable mask and the subroutine returns.  If 
the grid data has not been read in, error messages are printed to the screen saying the program 
cannot continue.  The program then waits for user response and, upon receiving it, stops. 
 
Variables Definitions:  In addition to a subset of the private variables defined on p. 79, the 
following variables are used in this section: 

anykey – character – for error state read statement ‘Press Any Key’ 



  XI. Hydrodynamic Module 

83 

mask – real – return variable; copy of mask_rho 
uj – integer – number of nodes down rho grid 
vi – integer – number of nodes across rho grid 

 
 
 
C. Function getP_r_element 
 
Overview:  This function returns the id of the rho element in which the particle is currently 
located.  The subroutine allows the settlement subroutine in the Settlement Module to narrow its 
search to only the habitat polygons in the same element as the particle.  The subroutine setEle, 
also located in the Hydrodynamic Module, must be called prior to calling this function at each 
iteration to ensure that the correct value is stored in P_r_element. 
 
Input Variables:  The function has just one input variable, n, which contains the number of the 
particle whose rho element is to be returned. 
  
Output:  The function outputs the id of the rho element the particle is currently in.  
 
Module parameters used: The function uses no parameters from PARAM_MOD. 
 
Module procedures used: The function uses no functions or subroutines from other modules. 
  
Private Variables Used:  The function uses the variable P_r_element which is a private 
variable accessible only to the procedures in the Hydrodynamic Module. 
 
Numerical Method:  This function finds the rho element id for the given particle number stored 
in P_r_element and returns it. 
 
Variables Definitions:  The following variables are used in this section: 

n – integer – particle number whose rho element is to be returned 
P_r_element – integer – Rho element that each particle is in  

 
 
 
D. Subroutine getR_ele 
 
Overview:  This subroutine returns the values in the variables r_ele_x and r_ele_y.  The 
subroutine allows the subroutine createPolySpecs in the Settlement Module to determine which 
habitat polygons are in each element.  
 
Input Variables:  The subroutine has no input variables. 
  
Output Variables:  The subroutine has two output variables, ele_x and ele_y, which return the 
x- and y- locations of the four nodes in each of the wet rho elements.  
  



  XI. Hydrodynamic Module 

84 

Module parameters used:  The subroutine uses the parameter rho_elements from the 
Parameter Module, which contains the total number of wet rho elements. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 
Private Variables Used:  The subroutine uses the variables GRD_SET, r_ele_x, and r_ele_y, 
which are private variables accessible only to the procedures in the Hydrodynamic Module. 
 
Numerical Method:  The subroutine first checks if the grid data has been read in.  If it has, the 
values in r_ele_x and r_ele_y are transferred to the output variables ele_x and ele_y, and the 
subroutine returns.  If the grid data has not been read in, error messages are printed to the screen 
saying the program cannot continue.  The program then waits for user response and, upon 
receiving it, stops. 
 
Variables Definitions:  The following variables are used in this section: 

anykey – character – for error state read statement ‘Press Any Key’ 
ele_x – dp – return variable; copy of r_ele_x 
ele_y – dp – return variable; copy of r_ele_y 
r_ele_x – dp – x- coordinate location of the four nodes in each wet Rho element 
r_ele_y – dp – y- coordinate location of the four nodes in each wet Rho element 

 
 
 
E. Function getSlevel 
 
Overview:  This function returns the depth of the given s-level. 
 
Input Variables:  The function has three input variables: the zeta and depth values at the 
location where the s-level depth is needed (zeta, depth) and the number of the s-level of which 
the depth is needed (i). 
  
Output:  The function returns the depth of the given s-level.  
  
Module parameters used:  The function uses the parameter hc from the Parameter Module, 
which contains the minimum hydrodynamic model depth. 
 
Module procedures used: The function uses no functions or subroutines from other modules. 
 
Private Variables Used:  The function uses the variables SC and CS which are private variables 
accessible only to the procedures in the Hydrodynamic Module. 
 
Numerical Method:  The function uses equation 2.16 from Song and Haidvogel (1994) to 
convert s-level coordinates to z-coordinates.   
 
Variables Definitions:  The following variables are used in this section: 

CS – real – s-level stretching curves for the Rho grid 



  XI. Hydrodynamic Module 

85 

depth – dp – sea floor depth at the location where the s-level depth is to be calculated 
hc – real, parameter – minimum hydrodynamic model depth 
i – integer – s-level at which to calculate depth 
SC – real – s-level coordinates for the Rho grid 
zeta – dp – zeta value at the location where the s-level depth is to be calculated 

 
 
 
F. Subroutine getUVxy 
 
Overview:  This subroutine returns the values in the variables x_u, y_u, x_v, and y_v.  The 
subroutine allows createBounds in the Boundary Module to make the boundaries at the U and V 
grid node locations. 
 
Input Variables:  The subroutine has no input variables. 
  
Output Variables:  The subroutine has four output variables: the x- and y- coordinate locations 
of the U and V grid nodes (ux, uy, vx, vy).  
  
Module parameters used:  The subroutine uses the parameters ui, uj, vi, and vj from the 
Parameter Module, which contain the dimensions of the U and V grids. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 
Private Variables Used:  The subroutine uses the variables GRD_SET, x_u, x_v, y_u, and y_v, 
which are private variables accessible only to the procedures in the Hydrodynamic Module. 
 
Numerical Method:  The subroutine first checks if the grid data has been read in.  If it has, the 
values in x_u, x_v, y_u and y_v are transferred to the output variables ux, vx, uy and vy, and the 
subroutine returns.  If the grid data has not been read in, error messages are printed to the screen 
saying the program cannot continue.  The program then waits for user response and, upon 
receiving it, stops. 
 
Variables Definitions:  The following variables are used in this section: 

anykey – character – for error state read statement ‘Press Any Key’ 
ux – real – return variable; copy of x_u 
uy – real – return variable; copy of y_u 
vx – real – return variable; copy of x_v 
vy – real – return variable; copy of y_v 
x_u – real – x- coordinate location of the U grid in (i,j) location format 
x_v – real – x- coordinate location of the V grid in (i,j) location format 
y_u – real – y- coordinate location of the U grid in (i,j) location format 
y_v – real – y- coordinate location of the V grid in (i,j) location format 

 
 
 



  XI. Hydrodynamic Module 

86 

 
G. Function getWlevel 
 
Overview:  This function returns the depth of the given w grid s-level. 
 
Input Variables:  The function has three input variables: the zeta and depth values at the 
location where the w grid s-level depth is needed (zeta, depth) and the number of the w grid s-
level of which the depth is needed (i). 
  
Output:  The function returns the depth of the given w grid s-level.  
  
Module parameters used:  The function uses the parameter hc from the Parameter Module, 
which contains the minimum hydrodynamic model depth. 
 
Module procedures used: The function uses no functions or subroutines from other modules. 
 
Private Variables Used:  The function uses the variables SCW and CSW, which are private 
variables accessible only to the procedures in the Hydrodynamic Module. 
 
Numerical Method:  The function uses equation 2.16 from Song and Haidvogel (1994) to 
convert s-level coordinates to z-coordinates.   
 
Variables Definitions:  The following variables are used in this section: 

CSW – real – s-level stretching curves for the W grid 
depth – dp – sea floor depth at the location where the w grid s-level depth is to be calculated 
hc – real, parameter – minimum hydrodynamic model depth 
i – integer – w grid s-level at which to calculate depth 
SCW – real – s-level coordinates for the W grid 
zeta – dp – zeta value at the location where the w grid s-level depth is to be calculated 

 
 
 
H. Subroutine initGrid 
 
Overview:  This subroutine reads in the grid information to create all the element variables. 
 
Input Variables:  The subroutine has no input variables. 
  
Output Variables:  The subroutine has no output variables.  
  
Module parameters used:  The subroutine uses the parameters NCgridfile, prefix, suffix, and 
filenum from the Parameter Module, which contain the path (if needed) and file name of the 
NetCDF model grid input file, the path (if needed) and first part of the file name of the 
hydrodynamic input files, the number in the first hydrodynamic input file, and the final part of 
the file name of the hydrodynamic input files. 
 



  XI. Hydrodynamic Module 

87 

Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 
Private Variables Used: The subroutine uses no private variables. 
 
Numerical Method:  The subroutine first opens the NetCDF model grid input file (NCgridfile) 
and reads in the grid information that does not change throughout the run of the model: depth, x- 
and y- coordinates of the Rho, U, and V grids, land/sea masking of the Rho, U, and V grids, and 
the angle between the x- coordinate and true east direction in radians at the rho nodes.  Next, the 
subroutine opens the first hydrodynamic input file and reads in the s-level variables: CS, CSW, 
SC, and SCW.   
 
The remainder of the subroutine creates the grid nodes and elements used throughout LTRANS.  
First, the angle and mask variables (angle, mask_rho, mask_u, and mask_v) are converted 
from the two-dimensional format with which they were read in to a one-dimensional format 
(rho_angle, rho_mask, u_mask, and v_mask), giving each grid node a single node number 
rather than its previous (i,j) location.  Next, the variables r_ele, u_ele, and v_ele are created with 
the node numbers that make up the four corners of each element.  Then the elements with no 
nodes masked as water are removed and the remaining ‘wet’ elements are stored in the variables 
RE, UE, and VE.  The x- and y- coordinate variables for the Rho, U and V grids are then 
converted to the new node number format and stored in the variables rx, ry, ux, uy, vx, and vy.  
Finally, variables that hold the x- and y- coordinates of all four nodes in each wet element are 
created: r_ele_x, r_ele_y, u_ele_x, u_ele_y, v_ele_x, v_ele_y.  The last section of the subroutine 
creates variables that hold, for each element, the element’s own element number followed by the 
element numbers of all the elements that share a node with that element (r_Adjacent, 
u_Adjacent, and v_Adjacent).  These variables are used to restrict search algorithms in 
subroutine setEle when finding where a particle may be located after one time step. 
 
Variables Definitions:  In addition to a subset of the private variables defined on p. 79, the 
following variables are used in this section: 

angle – real – angle between Rho node’s x-coordinate and true east direction (radian) in (i,j) 
location format 

count – integer – used in conversions from (i,j) location formats to node number formats 
filenum – integer, parameter – number in the first hydrodynamic input file name  
i – integer – iteration variable 
inele – integer – when finding ‘wet’ elements, initialized to zero, but switched to one if any 

of an element’s four nodes are masked as water 
j – integer – iteration variable 
m – integer – used to count adjacent elements when finding adjacent elements 
mask_u – real – land/sea masking of the U grid in (i,j) location format 
mask_v – real – land/sea masking of the V grid in (i,j) location format 
max_rho_elements – integer, parameter – maximum number of rho grid elements  
max_u_elements – integer, parameter – maximum number of u grid elements 
max_v_elements – integer, parameter – maximum number of v grid elements 
NCgridfile – character array, parameter – name and path (if needed) of the NetCDF grid file 
NCID – integer – NetCDF ID used in NetCDF functions 



  XI. Hydrodynamic Module 

88 

prefix – character array, parameter – first part of hydrodynamic input file name (and path if 
needed) 

rho_elements – integer, parameter – total number of wet rho elements  
rho_mask – integer – land/sea masking of the Rho grid in node number format 
romdepth – real – sea floor depth of the rho grid in (i,j) location format 
STATUS – integer – status ID returned from NetCDF functions 
suffix – character array, parameter – final part of the hydrodynamic input file name 
u_ele – integer – node numbers for each u element 
u_elements – integer, parameter – total number of wet u elements  
u_mask – integer – land/sea masking of the u grid in node number format 
UE – integer – the four Rho node numbers that make up each wet U element 
ui – integer – number of nodes across the u grid 
uj – integer – number of grids down the rho and u grids 
v_ele – integer – node numbers for each v element 
v_elements – integer, parameter – total number of wet rho elements 
v_mask – integer – land/sea masking of the v grid in node number format 
VE – integer – the four Rho node numbers that make up each wet V element 
vi – integer, parameter – number of nodes across the rho and v grids 
VID – integer – variable ID used in NetCDF functions 
vj – integer, parameter – number of nodes down the v grid 
x_rho – real – x- coordinate location of the Rho grid in (i,j) location format 
y_rho – real – y- coordinate location of the Rho grid in (i,j) location format 

 
 
 
I. Subroutine initHydro 
 
Overview:  This subroutine is called prior to the first iteration through the external time step 
loop of LTRANS.f90.  It reads in the initial hydrodynamic data for the back, center, and forward 
time steps from the first three time steps of the first ROMS sequential output file.  This data 
includes U, V, and W velocities, salinity, temperature, zeta, and vertical diffusivity.  
 
Input Variables:  The subroutine has no input variables. 
  
Output Variables:  The subroutine has no output variables.  
  
Module parameters used:  The subroutine uses the parameters filenum, prefix, suffix, ui, uj, 
us, vi, vj and ws from the Parameter Module, which contain the three parts that make up the file 
names of the ROMS sequential output files. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 
Private Variables Used:  The subroutine uses the variables countr, countz, filenm, iint, KHb, 
KHc, KHf, saltb, saltc, saltf, startr, startz, stepf, tempb, tempc, tempf, Uvelb, Uvelc, Uvelf, 
Vvelb, Vvelc, Vvelf, Wvelb, Wvelc, Wvelf, zetab, zetac and zetaf which are private variables 
accessible only to the procedures in the Hydrodynamic Module. 



  XI. Hydrodynamic Module 

89 

 
Numerical Method:  The subroutine begins by initializing the hydrodynamic input file counting 
variable (iint) to zero, indicating that the model is using input from the first ROMS sequential 
output file.  It then stores the file name of the first ROMS sequential output file in the variable 
filenm by combining prefix, the current file number (iint + filenum), and suffix.  Next, the 
variables stepb, stepc, and stepf are initialized to 1, 2, and 3 respectively to represent the first 
three time steps in the file.  Note that stepf is a private variable of the Hydrodynamic Module to 
be shared with updateHydro.  This is different from the local variables stepb and stepc because 
when an update occurs, the back and center time steps get their data from the previous center and 
future time steps and only the forward time step reads in new data. 
 
Using the NF90_OPEN command the first ROMS sequential output file is opened and the first 
three time steps of data are read in.  Since the subroutine is only read in one time step at a time, 
the START and COUNT variables are prepared for each read in.  Once the zeta, salinity, 
temperature, vertical diffusivity, and U-, V- and W- component velocities have been read in, they 
must be converted from (i,j) location format to node numbers and stored in the private variable 
equivalents of the local variables into which they were first read. 
 
Variables Definitions:  In addition to a subset of the private variables defined on p. 79, the 
following variables are used in this section: 
count – integer – used in conversions from (i,j) location formats to node number formats 

counter – integer – number in the concatenated ROMS sequential output file name 
countr – integer – array of integers specifying the number of indices to read in along each 

dimension; used when reading in one time steps worth of data (excludes zeta data) 
countz – integer – array of integers specifying the number of indices to read in along each 

dimension; used when reading in one time steps worth of zeta data  
filenum – integer, parameter – number in the first hydrodynamic input file name 
i – integer – iteration variable 
j – integer – iteration variable 
k – integer – iteration variable 
NCID – integer – NetCDF ID used in NetCDF functions 
prefix – character array, parameter – first part of hydrodynamic input file name (and path if 

needed) 
romKHb – real – vertical diffusivity at the hydrodynamic back time step in (i,j) location 

format 
romKHc – real – vertical diffusivity at the hydrodynamic center time step in (i,j) location 

format 
romKHf – real – vertical diffusivity at the hydrodynamic forward time step in (i,j) location 

format 
romSb – real – salinity at the hydrodynamic back time step in (i,j) location format 
romSc – real – salinity at the hydrodynamic center time step in (i,j) location format 
romSf – real – salinity at the hydrodynamic forward time step in (i,j) location format 
romTb – real – temperature at the hydrodynamic back time step in (i,j) location format 
romTc – real – temperature at the hydrodynamic center time step in (i,j) location format 
romTf – real – temperature at the hydrodynamic forward time step in (i,j) location format 



  XI. Hydrodynamic Module 

90 

romUb – real – u- component velocity at the hydrodynamic back time step in (i,j) location 
format 

romUc – real – u- component velocity at the hydrodynamic center time step in (i,j) location 
format 

romUf – real – u- component velocity at the hydrodynamic forward time step in (i,j) location 
format 

romVb – real – v- component velocity at the hydrodynamic back time step in (i,j) location 
format 

romVc – real – v- component velocity at the hydrodynamic center time step in (i,j) location 
format 

romVf – real – v- component velocity at the hydrodynamic forward time step in (i,j) location 
format 

romWb – real – w- component velocity at the hydrodynamic back time step in (i,j) location 
format 

romWc – real – w- component velocity at the hydrodynamic center time step in (i,j) location 
format 

romWf – real – w- component velocity at the hydrodynamic forward time step in (i,j) 
location format 

romZb – real – zeta at the hydrodynamic back time step in (i,j) location format 
romZc – real – zeta at the hydrodynamic center time step in (i,j) location format 
romZf – real – zeta at the hydrodynamic forward time step in (i,j) location format 
startr – integer – array specifying the index in a variable from which the first data values 

will be read; used when reading in one time steps worth of data (excludes zeta data) 
startz – integer – array specifying the index in the zeta variable from which the first data 

values will be read; used when reading in one time steps worth of zeta data 
STATUS – integer – status ID returned from NetCDF functions 
stepb – integer – initial time dimension location of the back time step 
stepc – integer – initial time dimension location of the center time step 
stepf – integer – keeps track of the location in the current hydrodynamic file of the forward 

time step 
suffix – character array, parameter – final part of the hydrodynamic input file name 
ui – integer – number of nodes across the u grid 
uj – integer – number of grids down the u grid 
us – integer – number of depth levels in the rho, u, and v grids 
vi – integer, parameter – number of nodes across the rho and v grids 
VID – integer – variable ID used in NetCDF functions 
vj – integer, parameter – number of nodes down the v grid 
ws – integer, parameter – number of depth levels in the w grid  

 
 
 
J. Function interp 
 
Overview:  This function determines the method of interpolation and returns the interpolated 
value at the particle’s location using the hydrodynamic variables read in by initHydro and 
updateHydro.  The function uses bilinear interpolation to interpolate values at the nodes of a 



  XI. Hydrodynamic Module 

91 

quadrilateral to a point located within the quadrilateral.  In the rare case that the t/u values of 
bilinear interpolation are undefined, the inverse weighted difference is employed.  This function 
is completely independent of setInterp and getInterp, and in no way affects either procedure. 
 
Input Variables:  The function has three required input variables and one optional input 
variable.  It must be passed the x- and y- coordinates of the particle location that is being 
interpolated to and a character array containing the name of the variable to interpolate (var).  For 
variables with different s-levels, the optional variable i must be present to indicate which s-level 
to interpolate from. 
  
Output:  The function returns the interpolated value at the particle’s location of the given data 
type. 
 
Module parameters used: The function uses no parameters from PARAM_MOD. 
 
Module procedures used: The function uses no functions or subroutines from other modules. 
  
Private Variables Used:  The function uses the variables depth, KHb, KHc, KHf, rho_angle, 
rnode1, rnode2, rnode3, rnode4, rx, ry, saltb, saltc, saltf, tempb, tempc, tempf, unode1, 
unode2, unode3, unode4, Uvelb, Uvelc, Uvelf, ux, uy, vnode1, vnode2, vnode3, vnode4, 
Vvelb, Vvelc, Vvelf, vx, vy, Wvelb, Wvelc, Wvelf, zetab, zetac, and zetaf, which are private 
variables accessible only to the procedures in the Hydrodynamic Module. 
 
Numerical Method:  This subroutine begins by checking var to determine which data values to 
use for interpolation: depth, KHb, KHc, KHf, rho_angle, saltb, saltc, saltf, tempb, tempc, 
tempf, Uvelb, Uvelc, Uvelf, Vvelb, Vvelc, Vvelf, Wvelb, Wvelc, Wvelf, zetab, zetac, or zetaf.  
The appropriate data values at the four nodes that make up the element containing the particle are 
assigned to the variables v1, v2, v3, and v4.  Next, the x- and y- locations of the nodes must be 
set in x1, x2, x3, x4, y1, y2, y3, and y4.  Depending on which value is being interpolated, these 
are the locations of the nodes of either the Rho, U or V grid element that the particle is in, 
previously determined by a call to setEle.   The subroutine then determines the interpolation 
method, interpolates, and returns. 
 
Bilinear interpolation is the best way to interpolate a value, but it is used for triangles, and the 
subroutine starts with a quadrilateral.  The quadrilateral is therefore divided into two triangles, 
where nodes 1, 2, and 3 compose the first triangle and nodes 1, 3, and 4 compose the second 
triangle.  Bilinear interpolation values for the first triangle are calculated and stored in the 
variables t and u, and the result of interpolating to the particle is stored in vp.  If the values in t 
and u are both above zero and their sum is below 1, the subroutine is complete and it returns.   
 
However, if either t or u is below zero, or their sum is above one, bilinear interpolation of the 
first triangle failed (i.e., the particle is not in that triangle or the result is undefined).  If this is the 
case, the values in t and u are replaced by bilinear interpolation values for the second triangle, 
and the result in vp is recalculated.  Once again, the values in t and u are tested to ensure that 
they are both above zero and their sum is below 1.  If this is true the subroutine is complete and it 
returns. 



  XI. Hydrodynamic Module 

92 

 
However, if the bilinear interpolation fails for the second triangle, the subroutine resorts to using 
inverse weighted distance.  The subroutine finds the distance from the particle to each of the four 
nodes of the element.  Each of these distances is divided by the sum of all four distances to 
determine the weight of each node.  These weights are then used to calculate the interpolated 
value at the particle, vp, and the subroutine returns. 
 
Variables Definitions:  In addition to a subset of the private variables defined on p. 79, the 
following variables are used in this section: 

anykey – character – for error state read statement ‘Press Any Key’ 
Dis1 – dp – distance from the particle to the element’s 1st node 
Dis2 – dp – distance from the particle to the element’s 2nd node 
Dis3 – dp – distance from the particle to the element’s 3rd node 
Dis4 – dp – distance from the particle to the element’s 4th node 
i – integer – optional input variable; s-level to interpolate to 
RUV – integer – variable to indicate which grid to use (1 = Rho, 2 = U, 3 = V) 
TDis – dp – sum of the distances from the particle to each of the four nodes 
tt – dp – binary interpolation variable 
uu – dp – binary interpolation variable 
v1 – dp – value at 1st element node to interpolate from 
v2 – dp – value at 2nd element node to interpolate from 
v3 – dp – value at 3rd element node to interpolate from 
v4 – dp – value at 4th element node to interpolate from 
var – character array – data type to interpolate from 
vp – dp – interpolated value at the particle’s location 
vx – dp – x- coordinate location of all the V nodes 
vy – dp – y- coordinate location of all the V nodes 
x1 – dp – x- coordinate of 1st element node to interpolate from 
x2 – dp – x- coordinate of 2nd element node to interpolate from 
x3 – dp – x- coordinate of 3rd element node to interpolate from 
x4 – dp – x- coordinate of 4th element node to interpolate from 
xp – dp – x- coordinate of the particle being interpolated to 
y1 – dp – y- coordinate of 1st element node to interpolate from 
y2 – dp – y- coordinate of 2nd element node to interpolate from 
y3 – dp – y- coordinate of 3rd element node to interpolate from 
y4 – dp – y- coordinate of 4th element node to interpolate from 
yp – dp – y- coordinate of the particle being interpolated to 

 
 
 
K. Subroutine setEle 
 
Overview:  This subroutine determines which Rho, U and V grid elements in which a particle is 
located.  When passed the optional argument first with the value .TRUE., the subroutine iterates 
through all the wet elements of each grid and finds the elements containing the particle.  If first 



  XI. Hydrodynamic Module 

93 

is not present or has the value .FALSE. then the subroutine only checks the elements adjacent to 
the element the particle was in during the last time step. 
 
Input Variables:  The subroutine has three required input variables and one optional input 
variable.  It requires the x- and y- coordinates of the particle (Xpar, Ypar) and the particle 
number (n).  The optional argument (first) is a logical variable that when .TRUE. indicates that 
it is the first iteration and all the elements must be searched and when .FALSE. indicates that it is 
a subsequent iteration and the search can be restricted to elements adjacent to the particle’s last 
known element locations.  If not present, the subroutine defaults to the latter process. 
  
Output Variables:  The subroutine has one optional output variable.  The integer variable err, 
when present, returns the error status of the subroutine.  The error status value of zero indicates 
no error, while the values one, two and three indicate an error occurred finding the Rho, U, or V 
grid element, respectively, when searching all the elements, and values of four, five and six 
indicate an error occurred finding the Rho, U, or V grid element, respectively, when just 
searching adjacent elements. 
  
Module parameters used:  The subroutine uses the parameters rho_elements, u_elements, and 
v_elements from the Parameter Module, which contain the total numbers of wet rho, u and v 
grid elements. 
 
Module procedures used:  The subroutine uses the subroutine gridcell from the Gridcell 
Module. 
 
Private Variables Used:  The subroutine uses the variables P_r_element, P_u_element, 
P_v_element, r_Adjacent, r_ele_x, r_ele_y, RE, rnode1, rnode2, rnode3, rnode4, 
u_Adjacent, u_ele_x, u_ele_y, UE, unode1, unode2, unode3, unode4, v_Adjacent, v_ele_x, 
v_ele_y, VE, vnode1, vnode2, vnode3, and vnode4, which are private variables accessible only 
to the procedures in the Hydrodynamic Module. 
 
Numerical Method:  The subroutine first initializes error to zero, indicating that no errors have 
occurred.  Then, if the variable first was present in the function call and contained the value 
.TRUE., the subroutine calls gridcell for the rho, u and v grids to search all the elements and 
determine which elements the particle is in.  If gridcell cannot find an element the particle is in 
then the value in error is changed to reflect which grid that gridcell had problems with (1 = Rho, 
2 = U, 3 = V).  If there were errors on multiple grids the highest error number will be saved.  If 
first was not present in the function call or it contained the value .FALSE., the subroutine checks 
if the particle is still in the element it was last in.  If not, it checks the elements adjacent to the 
one it was last in.  These checks are made with calls to gridcell for the rho, u and v grids with the 
additional optional argument checkele present to indicate the one element to search.  If the 
particle was not found in the same element as before or in any of its adjacent elements, then the 
value in error is changed to reflect with which grid the subroutine had problems (4 = Rho, 5 = 
U, 6 = V).  If there were errors on multiple grids the highest numbered error number will be 
saved.  Once the Rho, U and V grid elements have been found, the values in rnode1, rnode2, 
rnode3, rnode4, unode1, unode2, unode3, unode4, vnode1, vnode2, vnode3, and vnode4 are 



  XI. Hydrodynamic Module 

94 

updated to reflect the node numbers of the four nodes that make up the Rho, U and V grid 
elements. 
 
Variables Definitions:  In addition to a subset of the private variables defined on p. 79, the 
following variables are used in this section: 

anykey – character – for error state read statement ‘Press Any Key’ 
checkele – integer – used when checking adjacent elements;  prompts gridcell to check only 

the element number it contains when included in the call to the subroutine 
err – integer – optional output variable; returns the error status id of the subroutine 
error – integer – keeps track of the error status id within the subroutine 
first – logical – optional input variable; when present passed to fst 
fst – logical – when .TRUE. indicates all the elements must be search, and when .FALSE. 

indicates the search can be restricted to adjacent elements.  Set equal to first when 
present and when not defaults to .FALSE. 

i – integer – iteration variable 
n – integer – particle number whose elements are being found 
oP_ele – integer – holds the current element number (rho, u, or v) when cycling through 

adjacent elements in r_Adjacent, u_Adjacent, or v_Adjacent 
P_ele – integer – holds the element number returned from gridcell when cycling through 

adjacent elements in r_Adjacent, u_Adjacent, or v_Adjacent 
P_r_ele – integer – holds the rho element number returned from gridcell when cycling 

through all the rho elements 
P_u_ele – integer – holds the u element number returned from gridcell when cycling through 

all the u elements 
P_v_ele – integer – holds the v element number returned from gridcell when cycling through 

all the v elements 
RE – integer – the four Rho node numbers that make up each wet Rho element 
rho_elements – integer, parameter – total number of wet rho elements  
triangle – return variable from gridcell; 0 = not in an element, 1 = in an element 
u_elements – integer, parameter – total number of wet u elements 
UE – integer – the four U node numbers that make up each wet U element 
v_elements – integer, parameter – total number of wet v elements 
VE – integer – the four V node numbers that make up each wet V element 
Xpar – dp – x- coordinate of the particle 
Ypar – dp – y- coordinate of the particle 

 
 
 
L. Subroutine setInterp 
 
Overview:  This subroutine determines the best method of interpolation at the particle’s location 
on the rho grid and stores that method, along with the values necessary to use that method, for 
later interpolation by the function getInterp.  Since the same particle location and rho node 
locations are used to interpolate several variables, the interpolation values can be saved by this 
subroutine and used repeatedly by getInterp.  The subroutine setEle must be called prior to 
calling setInterp so that the correct element will be used for interpolation. 



  XI. Hydrodynamic Module 

95 

 
Input Variables:  The subroutine has three input variables: the x- and y- coordinates of the 
particle (xp, yp) and the particle number (n). 
  
Output Variables:  The subroutine has no output variables.  
 
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
  
Private Variables Used:  The subroutine uses the variables rnode1, rnode2, rnode3, rnode4, 
rx, ry, t, tOK, u, Wgt1, Wgt2, Wgt3, and Wgt4, which are private variables accessible only to 
the procedures in the Hydrodynamic Module. 
 
Numerical Method:  The subroutine begins by setting the x- and y- locations of the rho nodes in 
x1, x2, x3, x4, y1, y2, y3, and y4.  The subroutine then determines the interpolation method, 
stores the interpolation values, and returns. 
 
Bilinear interpolation is the best way to interpolate a value, but it is used for triangles, and the 
subroutine starts with a quadrilateral.  The quadrilateral is therefore divided into two triangles, 
where nodes 1, 2, and 3 compose the first triangle and nodes 1, 3, and 4 compose the second 
triangle.  Bilinear interpolation values for the first triangle are calculated and stored in the 
variables t and u, and tOK is set to 1 to indicate that the current method is bilinear interpolation 
of the first triangle.  If the values in t and u are both above zero and their sum is below 1, the 
subroutine is complete and it returns.   
 
However, if either t or u is below zero, or their sum is above one, bilinear interpolation of the 
first triangle failed (i.e., the particle was not in that triangle or the result is undefined).  If this is 
the case, the values in t and u are replaced by bilinear interpolation values for the second triangle 
and tOK is updated to 2, indicating that the current method is bilinear interpolation of the second 
triangle.  Once again, the values in t and u are tested to ensure that they are both above zero and 
their sum is below 1.  If this is true the subroutine is complete and it returns. 
 
However, if the bilinear interpolation fails for the second triangle, the subroutine resorts to using 
inverse weighted distance.  The subroutine finds the distance from the particle to each of the four 
nodes of the element.  Each of these distances is divided by the sum of all four distances to 
determine the weight of each node.  These weights are then stored in the variables Wgt1, Wgt2, 
Wgt3, and Wgt4, tOK is set equal to 3 to indicate that inverse weighted distance was used, and 
the subroutine returns. 
 
Variables Definitions:  In addition to a subset of the private variables defined on p. 79, the 
following variables are used in this section: 

Dis1 – dp – distance from the particle to the element’s 1st node 
Dis2 – dp – distance from the particle to the element’s 2nd node 
Dis3 – dp – distance from the particle to the element’s 3rd node 
Dis4 – dp – distance from the particle to the element’s 4th node 



  XI. Hydrodynamic Module 

96 

t – dp – binary interpolation variable 
TDis – dp – sum of the distances from the particle to each of the four nodes 
tOK – integer – stores method of interpolation for current particle (1 = binary interpolation 

of 1st triangle, 2 = binary interpolation of 2nd triangle, 3 = inverse weighted distance) 
u – dp – binary interpolation variable 
x1 – dp – x- coordinate of 1st element node to interpolate from 
x2 – dp – x- coordinate of 2nd element node to interpolate from 
x3 – dp – x- coordinate of 3rd element node to interpolate from 
x4 – dp – x- coordinate of 4th element node to interpolate from 
xp – dp – x- coordinate of the particle being interpolated to 
y1 – dp – y- coordinate of 1st element node to interpolate from 
y2 – dp – y- coordinate of 2nd element node to interpolate from 
y3 – dp – y- coordinate of 3rd element node to interpolate from 
y4 – dp – y- coordinate of 4th element node to interpolate from 
yp – dp – y- coordinate of the particle being interpolated to 

 
 
 
M. Subroutine updateHydro 
 
Overview:  This subroutine is called at the beginning of all but the first two iterations through 
the external time step loop of LTRANS.f90.  It updates the hydrodynamic data for the back, 
center, and forward time steps by storing the center values in the back variables, storing the 
forward values in the center variables, and lastly reading in the new forward values from a 
ROMS sequential output file.  If the end of a ROMS sequential output file is reached, the 
subroutine will open the next file and begin reading from it.  The data read in includes U, V, and 
W velocities, salinity, temperature, zeta, and vertical diffusivity. 
 
Input Variables:  The subroutine has no input variables. 
  
Output Variables:  The subroutine has no output variables.  
  
Module parameters used:  The subroutine uses the parameters filenum, prefix, suffix, ui, uj, 
us, vi, vj, ws, and tdim from the Parameter Module, which contain the values necessary to 
construct the ROMS sequential file names and the dimensions of the variables contained in the 
files. 
 
Private Variables Used:  The subroutine uses the variables countr, countz, filenm, iint, KHb, 
KHc, KHf, saltb, saltc, saltf, startr, startz, stepf, tempb, tempc, tempf, Uvelb, Uvelc, Uvelf, 
Vvelb, Vvelc, Vvelf, Wvelb, Wvelc, Wvelf, zetab, zetac and zetaf, which are private variables 
accessible only to the procedures in the Hydrodynamic Module. 
 
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 



  XI. Hydrodynamic Module 

97 

Numerical Method:  The subroutine first compares stepf, which keeps track of the ‘forward’ 
time step, to tdim, the total number of time steps in each hydrodynamic model output file.  If 
stepf is less than tdim, the forward time step has not yet passed the final time step of the output 
file, so stepf is merely incremented.  However, if stepf is not less than tdim, the netcdf file for 
the next time period must be opened.  The filename for the next netcdf file is found and written 
to the variable filenm. Once the correct filename is stored in filenm, it can be used to open the 
NetCDF file and read in data from the next hydrodynamic model output file.  
 
The program then loops through the different s-levels and nodes, storing the center values in the 
back variables and the forward values in the center variables. Next, the new forward variables 
are read in from the netcdf file using stepf to extract data from the correct time step. Since the 
subroutine is only read in one time step at a time, the START and COUNT variables are 
prepared for each read in.  Once the zeta, salinity, temperature, vertical diffusivity, and U- V- 
and W- component velocities have been read in, they must be converted from (i,j) location 
format to node numbers and stored in the private variable equivalents of the local variables into 
which they were first read. 
 
Variables Definitions:  In addition to a subset of the private variables defined on p. 79, the 
following variables are used in this section: 

count – integer – used in conversions from (i,j) location formats to node number formats 
counter – integer – number in the concatenated ROMS sequential output file name 
countr – integer – array of integers specifying the number of indices to read in along each 

dimension; used when reading in one time steps worth of data (excludes zeta data) 
countz – integer – array of integers specifying the number of indices to read in along each 

dimension; used when reading in one time steps worth of zeta data  
filenum – integer, parameter – number in the first hydrodynamic input file name 
i – integer – iteration variable 
j – integer – iteration variable 
k – integer – iteration variable 
NCID – integer – NetCDF ID used in NetCDF functions 
prefix – character array, parameter – first part of hydrodynamic input file name (and path if 

needed) 
romKHf – real – vertical diffusivity at the hydrodynamic forward time step in (i,j) location 

format 
romSf – real – salinity at the hydrodynamic forward time step in (i,j) location format 
romTf – real – temperature at the hydrodynamic forward time step in (i,j) location format 
romUf – real – u- component velocity at the hydrodynamic forward time step in (i,j) location 

format 
romVf – real – v- component velocity at the hydrodynamic forward time step in (i,j) location 

format 
romWf – real – w- component velocity at the hydrodynamic forward time step in (i,j) 

location format 
romZf – real – zeta at the hydrodynamic forward time step in (i,j) location format 
startr – integer – array specifying the index in a variable from which the first data values 

will be read; used when reading in one time steps worth of data (excludes zeta data) 



  XI. Hydrodynamic Module 

98 

startz – integer – array specifying the index in the zeta variable from which the first data 
values will be read; used when reading in one time steps worth of zeta data 

STATUS – integer – status ID returned from NetCDF functions 
stepf – integer – keeps track of the location in the current hydrodynamic file of the forward 

time step 
suffix – character array, parameter – final part of the hydrodynamic input file name 
tdim – integer, parameter – size of the time dimension used in the ROMS sequential 

hydrodynamic input files 
ui – integer – number of nodes across the u grid 
uj – integer – number of grids down the u grid 
us – integer – number of depth levels in the rho, u, and v grids 
vi – integer, parameter – number of nodes across the rho and v grids 
VID – integer – variable ID used in NetCDF functions 
vj – integer, parameter – number of nodes down the v grid 
ws – integer, parameter – number of depth levels in the w grid  

 
 
 
N. Function WCTS_ITPI 
 
Overview:  This function creates a water column tension spline at back, center, and forward 
hydrodynamic time, then uses polynomial interpolation to determine internal time values to get 
the final value of the particle in space and time.  The name of this function is derived from the 
initials of Water Column Tension Spline, Internal Time Polynomial Interpolation.  The return 
value can be the value at back time, the value at center time, the value at forward time, or a 
weighted average of the three with center weighing four times as much as back and forward.  
This is dependent on the value passed into the function through the variable v which contains an 
integer from one to four indicating the version of output to return (1 = back, 2 = center, 3 = 
forward, 4 = weighted average). 
 
Input Variables:  The function has fifteen input variables.  It is passed a character array 
containing the variable name (without b, c, or f) to interpolate (var), the x- and y- coordinates of 
the particle (Xpos, Ypos), the lowest number of the four s-levels closest to the particle’s depth 
(deplvl), the z-coordinates of each rho s-level at the particle location at back, center and forward 
time (Pwc_zb, Pwc_zc, Pwc_zf), the total number of s-levels (slvls), the depth of the particle at 
back, center and forward time (P_zb, P_zc, P_zf), the external time step values in seconds for 
back, center, and forward time (ex), the internal time step values in seconds for back, center, and 
forward time (ix), the current iteration of the external time loop (p), and the version of output to 
return (v).  Note that depending on the variable that is being interpolated, s-levels in the above 
descriptions could instead refer to w grid s-levels. 
  
Output:  The function returns the interpolated value at the particle’s location at back time, center 
time, forward time, or a weighted average of the three with center time weighing four times as 
much as back and forward times.  Which value is returned depends on the value passed to the 
function through the variable v (1 = back, 2 = center, 3 = forward, 4 = weighted average).  
 



  XI. Hydrodynamic Module 

99 

Module parameters used: The function uses no parameters from PARAM_MOD. 
  
Module procedures used:  The function uses the subroutine TSPSI and function HVAL from 
TSPACK in the Tension Spline Module, as well as linint and polintd from the Interpolation 
Module. 
 
Private Variables Used: The function uses no private variables. 
 
Numerical Method:  The function begins by taking the variable name passed in through var, 
concatenating b, c, or f on the end and storing it in the variables varb, varc, and varf.  The 
function then interpolates the values along the four s-levels closest to the x-y location of the 
particle. Next, TSPACK fits a tension spline to the four points in the water column and uses it to 
calculate the value at the particle’s location. This occurs for the each of the water column 
profiles from the back, center, and forward times of the external time step. These values are 
stored in the variable ey which is passed to the function polintd.  If it is the first iteration of the 
external time step, the three values stored in ey are back time, back time (again), and center time, 
rather than back time, center time, and forward time.  Next, a polynomial is used to interpolate 
the external time step salinity values to the particle’s location at back, center, and forward time 
of the internal time step. The current value at the particle’s location is then determined using a 
weighted average of these three values, with center time being weighted four times as heavily as 
back or forward time. The function then returns the value at back time, center time, forward time, 
or the weighted average, depending on the value of v.  
 
Variables Definitions:  The following variables are used in this section: 

abb_vb – dp – abridged version of particle water column variables at the back time step (e.g. 
Pwc_Sb), containing the data for the 4 sigma levels closest to the particle’s depth 

abb_vc – dp – abridged version of particle water column variables at the center time step 
(e.g. Pwc_Sc), containing the data for the 4 sigma levels closest to the particle’s depth 

abb_vf – dp – abridged version of particle water column variables at the forward time step 
(e.g. Pwc_Sf), containing the data for the 4 sigma levels closest to the particle’s depth 

abb_zb – dp – abridged version of Pwc_zb, containing the data for just the 4 sigma levels 
closest to the particle’s depth 

abb_zc – dp – abridged version of Pwc_zc, containing the data for just the 4 sigma levels 
closest to the particle’s depth 

abb_zf – dp – abridged version of Pwc_zf, containing the data for just the 4 sigma levels 
closest to the particle’s depth 

anykey – character – for error state read statement ‘Press Any Key’ 
deplvl – integer – lowest of the four consecutive s-levels (or w s-levels) closest to particle 

depth 
ex – dp – external time step values in seconds for back, center, and forward 
ey – dp – value at external time steps 
i – integer – iteration variable 
IER – integer – error indicator or iteration count (for TSPACK) 
ix – dp – internal time step values in seconds for back, center, and forward times 
nN – integer, parameter – number of s-levels used in tension splines 
p – integer – external time step do loop iteration variable 



  XI. Hydrodynamic Module 

100 

P_V – dp – weighted average of the values at the particle’s location at back, center, and 
forward internal time, with center time being weighted four times more heavily than 
back of forward time 

P_vb – dp – value at the particle’s location in the water column at back external time 
P_vc – dp – value at the particle’s location in the water column at center external time 
P_vf – dp – value at the particle’s location in the water column at forward external time 
P_zb – dp – z- coordinate of the particle at back time 
P_zc – dp – z- coordinate of the particle at center time 
P_zf – dp – z- coordinate of the particle at forward time 
Pwc_zb – dp – z-coordinates of each rho s-level at particle location at back time 
Pwc_zc – dp – z-coordinates of each rho s-level at particle location at center time 
Pwc_zf – dp – z-coordinates of each rho s-level at particle location at forward time 
SigErr – integer – indicates error that TSPACK failed to converge 
SIGM – dp – array containing tension factors from TSPSI 
slope – dp – return variable of linint, not used in this function 
slvls – integer – number of s-levels of the grid being used 
v – integer – version of output (1 = back, 2 = center, 3 = forward, 4 = weighted average) 
var – character array – input variable; data type to interpolate from 
varb – character array – data type to interpolate from, specific for back time step 
varc – character array – data type to interpolate from, specific for center time step 
varf – character array – data type to interpolate from, specific for forward time step 
vb – dp – value at the particle’s location in the water column at the back internal time step 
vc – dp – value at the particle’s location in the water column at the center internal time step 
vf – dp – value at the particle’s location in the water column at the forward internal time step 
Xpos – dp – x- coordinate of the particle 
YP – dp – array containing derivatives from TSPSI 
Ypos – dp – y- coordinate of the particle 

 
 
 



  XII. Interpolation Module 

101 

XII. Interpolation Module (interpolation_module.f90, INT_MOD) 
 
Overview:  The Interpolation Module contains two procedures that interpolate data.  Subroutine 
linint uses linear interpolation, while subroutine polintd uses polynomial interpolation. 
 
Public Procedures:  The following are the public subroutines and functions contained within the 
Interpolation Module: subroutine linint and function polintd. 
 
 
A. Subroutine linint 
 
Overview:  This subroutine uses linear interpolation to estimate a value (y) at a specified 
location (x-coordinate) based on two arrays of the same size that contain a series of x-y pairs. 
The array with x-values must be in strictly increasing order. 
 
Input Variables:  The subroutine has four input variables: an array of data (ya), the array 
containing the strictly increasing locations of those data (xa), the size of the two arrays (n), and 
the point location (x) within the range of the locations in xa array. 
  
Output Variables:  The subroutine has two output variables: the interpolated value (y) and the 
slope of the line used for linear interpolation (m). 
 
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 
Private variables used: The subroutine uses no private variables. 
  
Numerical Method:  The subroutine first uses a binary search algorithm to find the xa array 
point locations directly above and below the point that is being interpolated to (x).  Then, the 
equation of the line that passes through these two points (paired with their corresponding ya 
values) is calculated and used to interpolate x to its corresponding y value.  Once the slope is 
stored in m and the interpolated value stored in y, the subroutine returns. 
 
Variables Definitions:  The following variables are used in this section: 

b – dp – x intercept of the line used for linear interpolation 
jhi – integer – used in binary search algorithm; once the algorithm is finished, holds the array 

location directly above the point being interpolated to 
jlo – integer – used in binary search algorithm; once the algorithm is finished, holds the array 

location directly below the point being interpolated to 
k – integer – used in binary search algorithm, holds the midpoint location to be checked next 
m – dp – slope of the line used for linear interpolation 
n – integer – number of array locations in xa and ya 
x – dp – location to be interpolated to 
xa – dp – locations of the data in ya to be interpolated from 
y – dp – linearly interpolated value at the location x 



  XII. Interpolation Module 

102 

ya – dp – data at the locations in xa to be interpolated from 
 
 
 
 
B. Function polintd 
 
Overview:  This function creates a polynomial using three points (in increasing order) and 
interpolates to a given location that lies within those three points. 
 
Input Variables:  The function has four input variables: the array of y-coordinates (ya), the 
array containing the strictly increasing x-coordinates (xa), the size of the two arrays (n), and the 
location to be interpolated to (x). 
  
Output:  The function returns the double precision value calculated by polynomial interpolation 
at the given location x. 
 
Module parameters used: The function uses no parameters from PARAM_MOD. 
 
Module procedures used: The function uses no functions or subroutines from other modules. 
 
Private Variables Used: The function uses no private variables. 
  
Numerical Method:  This subroutine first determines which of the locations in the array xa are 
closest to the point being interpolated to.  Next, the value of the variable c is calculated to be 
used in the final equation for polynomial interpolation.  Then the values of a and b are 
calculated, dependent on which location in xa was closest to x.  The a, b, and c values are then 
used in the final polynomial interpolation equation, along with the location to be interpolated to 
(x) and the values in xa and ya at the closest array location.  The value returned from the final 
polynomial equation is then returned from the function. 
 
Variables Definitions:  The following variables are used in this section: 

a – dp – calculated value for polynomial interpolation 
b – dp – calculated value for polynomial interpolation 
c – dp – calculated value for polynomial interpolation 
dif – dp – distance from x to the closest xa location 
dift – dp – when finding closest xa location; distance from x to the current xa location 
i – integer – iteration variable 
n – integer – number of array locations in xa and ya 
ns – integer – index of xa that is closest to x 
x – dp – location to be interpolated to 
xa – dp – locations of the data in ya to be interpolated from 
ya – dp – data at the locations in xa to be interpolated from 
 
 

 



  XIII. Norm Module 

103 

XIII. Norm Module (norm_module.f90, NORM_MOD) 
 
Overview:  The Norm Module contains the function Norm, which returns a random number (a 
‘deviate’) drawn from a normal distribution with zero mean and unit variance (i.e., standard 
deviation = 1). 
 
Public Procedures:  The following are the public subroutines and functions contained within the 
module: Function norm. 
 
 
 
A. Function norm 
 
Overview:  This function returns a random number (a ‘deviate’) drawn from a normal 
distribution with zero mean and unit variance (i.e., standard deviation = 1).  
 
Input Variables:  The function has no input variables. 
  
Output:  The function returns the random deviate. 
  
Module parameters used:  The subroutine uses the parameter PI from the Parameter Module, 
which contains the value of the mathematical constant п. 
 
Module procedures used:  The subroutine uses the function genrand_real1 from the Mersenne 
Twister program in the Random Number Generator Module (random_module.f90). 
 
Private Variables Used: The subroutine uses no private variables. 
 
Numerical Method:  For a description of the basic equation, see the Box-Muller transform 
section in Wikipedia (http://en.wikipedia.org/wiki/Box-Muller_transform). Note that the function 
gasdev from Press et al. (1992) is based on the polar version of the Box-Muller transform and is 
more computationally efficient (but is not strictly open source as is the function Norm).  
 
Output from the function Norm passed the following tests for normal distributions:  
Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling (SAS 9.1., n = 1,000,000). Fig. 
8 contains a histogram of the deviates used in these tests.  
 
Variable Definitions:  The following variables are used in this function: 

dev1 - real – a random deviate drawn from a uniform distribution between 0 and 1 
dev2 - real – a random deviate drawn from a uniform distribution between 0 and 1 
pi - real – the value of the mathematical constant π 

 
 
 
 



  XIII. Norm Module 

104 

 
 
 
 
 
 

Fig. 8. Histogram of deviates derived from 1,000,000 calls of the function norm. The 
blue line indicates the expected value based on the formula for the normal curve.  



  XIV. Parameter Module 

105 

XIV. Parameter Module (parameter_module.f90, PARAM_MOD) 
 
Overview:  The Parameter Module reads in the two include files, LTRANS.inc and GRID.inc, 
making the parameters declared in the include files available to all the other modules.  The user 
therefore only needs to change parameter values in the include files before rerunning a model, 
rather than having to recompile. 
 
Parameters:  The following are the parameters read in from LTRANS.inc and GRID.inc: 

Behavior – integer – particle starting behavior (0 = passive, 1 = near-surface, 2 = near-
bottom, 3 = DVM, 4 = C. virginica oyster larvae, 5 = C. ariakensis oyster larvae, 6 = 
constant sinking velocity) 

constant – dp – Sinking velocity for behavior type 6 
ConstantHTurb – dp – value of constant horizontal diffusivity (m2/s) 
daylength – dp – length of daytime (hr); for diurnal vertical migration behavior type 
days – real – number of days to run the model 
Delay – dp – time to delay particle release (s) 
dt – integer – length of external time step; interval between hydrodynamic inputs (s) 
Earth_Radius – dp – equatorial radius 
Em – dp – irradiance at solar noon 
filenum – integer – number in the first hydrodynamic input file name 
habitatfile – character array – name and path (if needed) of habitat polygon input file 
hc – real – minimum hydrodynamic model depth; used in s-level transformations 
hedges – integer – number of hole edge points in holefile 
holefile – character array – name and path (if needed) of input file containing hole data 
holesExist – logical – .TRUE. if holes exist in any habitat and will need to be read in 
HTurbOn – logical – .TRUE. if Horizontal Turbulence is to be turned on, else .FALSE. 
idt – integer – length of internal (particle tracking) time step (s) 
iprint – integer – interval in model time to wait between each output file (s) 
Kd – dp – vertical attenuation coefficient 
max_rho_element – integer – maximum number of rho grid elements 
max_u_element – integer – maximum number of u grid elements 
max_v_element – integer – maximum number of v grid elements 
maxholeid – integer – highest hole id number used 
maxpolyid – integer – highest habitat polygon id number used 
MaxSwim – dp – maximum swimming speed that a particle may reach 
minholeid – integer – lowest hole id number used 
minpolyid – integer – lowest habitat polygon id number used 
NCgridfile – character array – name and path (if needed) of the NetCDF grid file 
numpar – integer – total number of particles 
parfile – character array – name and path (if needed) of the particle start location file 
pedges – integer – number of habitat polygon edge points in habitatfile 
PI – dp – the mathematical constant п 
prefix – character array – first part of hydrodynamic input file name (and path if needed) 
p2 – integer – number of depth levels to proliferate to in Vertical Turbulence Module 
RCF – dp – radian conversion factor 



  XIV. Parameter Module 

106 

rho_elements – integer – total number of wet rho elements (i.e. elements with at least one 
node masked as water) 

rho_nodes – integer – total number of rho nodes 
SaltTempOn – logical – .TRUE. if calculate salinity and temperature at particle location, 

else .FALSE. 
seed – integer – number used to initialize the random number generator Mersenne Twister 
settlementon – logical - .TRUE. if the model is to use the Settlement Module, else .FALSE. 
startDepth – dp – depth at which to start all the particles (-m) 
suffix – character array – final part of the hydrodynamic input file name 
tdim – integer – size of the time dimension used in the hydrodynamic input files 
thresh – dp – light threshold that cues behavior 
twined – dp – time of twilight end (hr) 
twistart – dp – time of twilight start (hr) 
u_elements – integer – total number of wet u elements (i.e. elements with at least one node 

masked as water) 
u_nodes – integer - total number of u nodes 
ui – integer – number of nodes across the u grid 
uj – integer – number of grids down the u grid 
us – integer – number of depth levels in the rho, u, and v grids 
v_elements – integer – total number of wet v elements (i.e. elements with at least one node 

masked as water) 
v_nodes – integer - total number of v nodes 
vi – integer – number of nodes across the v grid 
vj – integer – number of nodes down the v grid 
VTurbOn – logical – .TRUE. if Vertical Turbulence is to be turned on, else .FALSE. 
ws – integer – number of depth levels in the w grid 
z0 – dp – ROMS roughness parameter 

 
 



  XV. Point-in-Polygon Module 

107 

XV. Point-in-Polygon Module (point_in_polygon_module.f90, PIP_MOD) 
 
Overview:  The Point-in-Polygon Module contains one function, INPOLY, which determines if 
a point is inside or outside an irregularly shaped polygon using the ‘crossings method’, a ‘point-
in-polygon’ technique.  A ray, parallel to the x-coordinate axis, is shot from the point to the east. 
The number of times the ray intersects with the line segments of the polygon is calculated. If the 
number of intersections is odd, then the particle is within the polygon. If the number is even, then 
the particle is outside the polygon boundaries. 
  
Public Procedures:  The following are the public subroutines and functions contained within the 
Point-in-Polygon Module: Function INPOLY. 
 
 
A. Function INPOLY 
 
Overview:  This function checks if a point is within the boundaries of an irregularly shaped 
polygon. 
 
Input Variables:  The function INPOLY has four required input variables and one optional 
input variable.  It is passed the x- and y- locations (x,y) of the current particle, the number of 
edge points of the irregular polygon (n), and the x- and y- locations of the edge points (e).  It 
may also be passed the logical variable onin which if .TRUE. indicates that a particle on an edge 
is considered to be in the polygon and if .FALSE. indicates that a particle on an edge is 
considered to be outside the polygon.  If onin is not included, the function defaults to treating a 
particle on an edge as being inside the polygon. 
  
Output:  The function returns the logical value .TRUE. if the point is found to be inside the 
polygon and .FALSE. if it is found to be outside. 
 
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
 
Private Variables Used: The subroutine uses no private variables. 
  
Numerical Method:  The first thing this function does is determine the value of onout, which if 
.TRUE. indicates that if the point is on an edge, it is out of bounds, and if .FALSE. indicates that 
a point on an edge is in bounds.  If onin is present in the function call, then onout is the opposite 
of onin.  If it is not present, the default value is .FALSE..  Next, the output variable inpoly is 
initialized to .TRUE. and the variable crossed, which counts the number of times the ray shot 
east from the point crosses polygon boundaries,  is initialized to zero.  The function is set up such 
that the output variable is initialized to .TRUE. and remains .TRUE. until proven .FALSE. 
 
The first loop in function INPOLY determines whether each edge point is above, below, or 
shares the same y- coordinate with the point.  If any edge point lies directly on the ray east from 
the point then on is set to .TRUE., indicating that an additional loop is going to be needed (see 



  XV. Point-in-Polygon Module 

108 

next paragraph).  If any edge point shares the same x- and y- coordinate with the point then the 
function will return.  The value returned is dependent on onout; if onout is .TRUE. then it 
returns .FALSE., else it returns .TRUE.. 
 
The next section of code covers the situation where one or more of the edge points lands on the 
ray shot east from the point.  The function must check the edge points before and after the edge 
point that lies on the ray.  If one is above and one is below then crossed is incremented; if they 
are both above or both below, crossed is not incremented as the ray does not actually cross the 
edge.  The code can handle situations in which the edge point is the first or last in the polygon or 
multiple consecutive edge points lie on the ray.  This section also handles the situation in which 
one edge point is on the ray and either the edge point before or the edge point after is not on, 
above, or below the ray, meaning that the edge crosses directly over the point.  If this occurs, 
then the function returns dependent on onout; if onout is .TRUE. then it returns .FALSE., else it 
returns .TRUE.. 
 
The last section of code iterates through each of the edge segments.  If the edge points that make 
up an edge segment are either both above, both below, or both to the left of the point, then the 
edge segment cannot cross the ray.  If both are to the right of the point, with one above and one 
below then the edge segment crosses the ray and crossed is incremented.  If the two edge points 
are on opposite sides of the point, both horizontally and vertically, then the equation of the line 
segment must be calculated and the equation solved for the point’s y-coordinate.  If the 
intersection occurs on the ray then crossed is incremented. 
 
Lastly, INPOLY uses the mod function to determine if an odd or even number of crosses was 
counted.  If the number of crosses was odd, the point is not in the polygon so the output variable 
inpoly is set to .FALSE. and returned.  Otherwise, the function returns the initial output variable 
value of .TRUE.. 
 
Variables Definitions:  The following variables are used in this section: 

b – dp – x intercept of linear equation for edge segment 
crossed – integer – counter for number of times ray crosses boundaries 
e – dp – x- and y- coordinates of edge points 
first – logical – used for rare situation where the first edge point is on the ray, stays .TRUE. 

until an edge point is found that is not on the ray 
hilo – integer – keeps track of whether each edge point is above (1), below (-1), or equal to 

(0) the y- coordinate of the point; used when an edge point lies on the ray 
i – integer – iteration variable 
ix – dp – x- coordinate of the intersection between the ray and a boundary segment 
j – integer – iteration variable 
m – dp – slope of linear equation for edge segment 
n – integer – number of edge points in the polygon passed in through e 
on – logical – initialized to .FALSE., set .TRUE. if an edge point is on the ray, to indicate 

that the second block of code needs to be run 
onin – logical – optional input variable to tell function whether or not a point on an edge 

segment is in bounds 



  XV. Point-in-Polygon Module 

109 

onout – logical – actual variable used to determine output if the point is on an edge; .FALSE. 
indicates that a particle on an edge is considered in bounds and .TRUE. indicates that 
such a particle is out of bounds.  If onin is present in the function call, onout is the 
opposite logical value.  If onin is not present, then onout defaults to .FALSE.. 

x – dp – x- coordinate of the point 
y – dp – y- coordinate of the point 

  



  XVI. Random Number Module 

110 

XVI. Random Number Module (random_module.f90, RANDOM_MOD) 
 
Overview: The following Mersenne Twister (MT) program, mt19937ar.f, is used to generate   
random numbers between 0 and 1 from a uniform distribution. The Mersenne Twister is a fast 
random number generator with a period of 219937-1. It was downloaded from the following 
website: 
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/FORTRAN/mt19937ar.f 
 
See the Mersenne Twister Home Page for more information:  
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.  
 
The license web page for the Mersenne Twister (http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/MT2002/elicense.html) indicates that “Until 2001/4/6, MT had been distributed under 
GNU Public License, but after 2001/4/6, we decided to let MT be used for any purpose, 
including commercial use. 2002-versions mt19937ar.c, mt19937ar-cok.c are considered to be 
usable freely.”  
 
This program was converted to F90 by Zachary Schlag for use in LTRANS. The header text 
from the program is below. The program is first initialized in LTRANS.f90 with subroutine 
init_genrand and then the function genrand_real1 is used to generate random deviates in the 
Behavior, Horizontal Turbulence and Vertical Turbulence Modules.  
 
Input Variable:  This program has just one input variable, seed, which is the number used to 
initialize the Mersenne Twister. The value of seed is set in the LTRANS.inc file.  
 
Output:  The function genrand_real1 returns a random number drawn from a uniform 
distribution between 0 and 1. 
 
Variables Definitions:  The following variable is used in this section: 

seed – integer – is the number used to initialize the Mersenne Twister. 
 
! ************* Mersenne Twister **************** 
! 
!  A C-program for MT19937, with initialization improved 2002/1/26. 
!  Coded by Takuji Nishimura and Makoto Matsumoto. 
! 
!  Before using, initialize the state by using init_genrand(seed)   
!  or init_by_array(init_key, key_length). 
! 
!  Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, 
!  All rights reserved.                           
!  Copyright (C) 2005, Mutsuo Saito, 
!  All rights reserved.                           
! 
!  Redistribution and use in source and binary forms, with or without 
!  modification, are permitted provided that the following conditions 
!  are met: 



  XVI. Random Number Module 

111 

!    1. Redistributions of source code must retain the above copyright 
!       notice, this list of conditions and the following disclaimer. 
! 
!    2. Redistributions in binary form must reproduce the above copyright 
!       notice, this list of conditions and the following disclaimer in the 
!       documentation and/or other materials provided with the distribution. 
! 
!    3. The names of its contributors may not be used to ENDorse or promote  
!       products derived from this software without specific prior written  
!       permission. 
! 
!  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
!  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
!  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
!  A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
!  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
!  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
!  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
!  PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 
!  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
!  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
!  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
! 
! 
!  Any feedback is very welcome. 
!  http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html 
!  email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) 
! 
!----------------------------------------------------------------------- 
!  FORTRAN77 translation by Tsuyoshi TADA. (2005/12/19) 
! 
!  FORTRAN90 translation by Zachary Schlag (2008/08/29) 
! 
!     ---------- initialize routines ---------- 
!  SUBROUTINE init_genrand(seed): initialize with a seed 
!  SUBROUTINE init_by_array(init_key,key_length): initialize by an array 
! 
!     ---------- generate FUNCTIONs ---------- 
!  INTEGER FUNCTION genrand_int32(): signed 32-bit INTEGER 
!  INTEGER FUNCTION genrand_int31(): unsigned 31-bit INTEGER 
!  DOUBLE PRECISION FUNCTION genrand_real1(): [0,1] with 32-bit resolution 
!  DOUBLE PRECISION FUNCTION genrand_real2(): [0,1) with 32-bit resolution 
!  DOUBLE PRECISION FUNCTION genrand_real3(): (0,1) with 32-bit resolution 
!  DOUBLE PRECISION FUNCTION genrand_res53(): (0,1) with 53-bit resolution 
! 
!  This program uses the following non-standard intrinsics. 
!    ishft(i,n): If n>0, shifts bits in i by n positions to left. 
!                If n<0, shifts bits in i by n positions to right. 
!    iand (i,j): Performs logical AND on corresponding bits of i and j. 
!    ior  (i,j): Performs inclusive OR on corresponding bits of i and j. 
!    ieor (i,j): Performs exclusive OR on corresponding bits of i and j. 



  XVII. Settlement Module 

112 

XVII. Settlement Module (settlement_module.f90, SETTLEMENT_MOD) 
 
Overview:  The Settlement Module handles all code related to the settlement routine.  This 
includes reading in the habitat polygons and holes, creating variables containing the 
specifications of the habitat polygons and holes, keeping track of the settlement status of every 
particle, and checking if the particle is within a habitat polygon and can settle.  The module uses 
a point-in-polygon approach to determine if a particle is within the boundaries of any of the 
habitat polygons or holes. 
 
Module Parameters Used:  The Settlement Module uses several parameters from the Parameter 
Module.  These include the total number of particles (numpar), the total number of wet rho 
elements (rho_elements), the minimum and maximum hole id numbers (minholeid, maxholeid), 
the minimum and maximum habitat polygon id numbers (minpolyid, maxpolyid), the total 
number of habitat polygon edges (pedges), the total number of hole edges (hedges), and the 
habitat polygon and hole file names (habitatfile, holefile). 
 
Private Variables:  The module contains ten variables and one derived data type accessible only 
in this module.  The habitat polygon array, polys, has attributes for id number, center longitude, 
center latitude, edge longitude, and edge latitude for each habitat polygon.  The hole array, holes, 
has similar attributes for each hole, but it also includes a sixth attribute to keep track of in which 
habitat polygon the hole is located.  The variables maxbdis and maxhdis contain the maximum 
distance from the center of each habitat polygon and hole to its furthest edge point. The array 
settle contains the settlement status of each particle (0 = not settled, 1 = settled, 2 = dead).  The 
array settletime contains the age at which the particles are competent to settle.  The variables 
polyspecs and holespecs contain the position in the polys and holes arrays at which the 
attributes for each habitat polygon or hole, respectively, begin to be listed, along with the number 
of edge points that make up that particular habitat polygon or hole.  The variables elepolys and 
polyholes are both of derived data type polyPerEle and consist of an integer numpoly and an 
allocatable integer array poly of size numpoly when allocated.  The variable elepolys contains, 
in numpoly, the number of habitat polygons within each element, and for elements where 
numpoly > 0, it contains in the array poly the id numbers of all the habitat polygons within that 
element.  The variable polyholes contains, in numpoly, the number of holes within each habitat 
polygon, and for habitat polygons where numpoly > 0, it contains in the array poly the id 
numbers of all the holes within that habitat polygon. 
 
Initialization: LTRANS is set up so that the Settlement Module must be ‘turned on’ in the 
LTRANS.inc include file by setting the parameter settlementon = .TRUE.   
 
Private Procedures:  The following are the private subroutines and functions accessible only to 
the other procedures in the Settlement Module: subroutines createPolySpecs, hsettle, and 
psettle.  
 
Public Procedures:  The following are the public subroutines and functions contained within the 
Settlement Module: functions DEAD and SETTLED, and subroutines DIE, initSettlement, 
readinHabitat, and settlement.  
 



  XVII. Settlement Module 

113 

A. Subroutine createPolySpecs 
 
Overview:  This subroutine fills the variables polyspecs, elepolys, holespecs, and polyholes 
with information to allow the program to check settlement more quickly.  The variable polyspecs 
contains, for every habitat polygon, the location in array polys of the first edge point and the 
number of edge points.  The variable holespecs contains the same information for hole edge 
points in the variable holes.  The variables elepolys and polyholes are both of derived data type 
polyPerEle, consisting of an integer numpoly and an allocatable integer array poly of size 
numpoly when allocated.  The variable elepolys will contain, in numpoly, the number of habitat 
polygons within each element, and for elements where numpoly > 0, it will contain the id 
numbers of all the habitat polygons within that element in poly.  The variable polyholes will 
contain, in numpoly, the number of holes within each habitat polygon in the variable numpoly, 
and for habitat polygons where numpoly > 0, it will contain the id numbers of all the holes 
within that habitat polygon in poly. 
 
Input Variables:  The subroutine createPolySpecs has no input variables. 
 
Output Variables:  The subroutine createPolySpecs has no output variables.  
  
Module parameters used:  This subroutine uses the parameters rho_elements and holesExist 
from the Parameter Module.  The parameter rho_elements contains the total number of wet rho 
elements (rho elements that contain water) in the model.  The logical parameter holesExist 
contains the value .TRUE. if holes exist in the habitat polygons, and .FALSE. if there are no 
holes in the habitat. 
  
Module procedures used:  This subroutine calls getR_ele from the Hydrodynamic Module, 
gridcell from the Gridcell Module, and inpoly from the Point-in-Polygon Module. 
 
Private Variables Used: The subroutine uses the private variables polys, maxbdis, holes, 
polyspecs, holespecs, and poly, which are accessible only to this module. 
 
Numerical Method:  This subroutine first calls getR_ele to get the x- and y- locations of the rho 
elements in the variables r_ele_x, and r_ele_y, which will be used to fill elepolys.  Next, 
polyspecs is filled by iterating through the variable polys and storing the array position of the 
first edge of each habitat polygon and the number of edges in each habitat polygon. 
 
The subroutine must then iterate through each of the elements in order to fill elepolys.  For each 
element the variables count and polynums are initialized to 0.  They will be used to count the 
habitat polygons and contain the id numbers of the habitat polygons, respectively, in this 
particular element. The subroutine then iterates through all the habitat polygon edges.  If any of 
the edges of a habitat polygon are in the element, count is incremented and the habitat polygon’s 
id is stored in polynums.  If none are, the subroutine checks if any of the four element nodes are 
in that habitat polygon.  This is done in case either an entire element lies within a habitat polygon 
or a habitat polygon edge crosses through an element without actually having an edge point in 
the element.  If an element edge point is in the habitat polygon then count is incremented and the 
habitat polygon’s id is stored in polynums.   After all the habitat polygons have been tested, the 



  XVII. Settlement Module 

114 

number in count can be transferred to numpoly in elepolys for the current element.   If there 
were any habitat polygons in the current element, poly in elepolys takes on the value of count 
and the habitat polygon ids are transferred from polynums to poly in elepolys. 
 
If there are any holes that exist in the habitat polygons then holespecs and polyholes need to be 
filled as well.  The variable holespecs is filled in the same way as polyspecs by iterating through 
holes and storing the array position of each hole’s first edge point and the total number of edge 
points in each hole.  Since the habitat polygon id that contains a given hole is read in with each 
hole edge point, the subroutine can iterate through the hole edge points for each habitat polygon 
and, if a hole is in the polygon, increment count and store the hole id in polynums.  After all the 
holes have been tested, the number in count is transferred to numpoly in polyholes for the 
current habitat polygon.   If there were any holes in the current habitat polygon then poly in 
polyholes is allocated as length count and the hole ids are transferred from polynums. 
 
Variables Definitions:  The following variables are used in this section: 

check – logical – increases efficiency in checking if element nodes are in the habitat polygon 
or hole; if none of the nodes are within range of the polygon then check is .FALSE. and 
the test is skipped, else check is .TRUE. and the normal test occurs 

checkele – integer – rho element id passed to gridcell when filling elepolys 
count – integer – used to count polygons when filling elepolys and polyholes 
dis – dp – distance from element node to polygon center, tested against the maximum 

distance for the current habitat polygon in maxbdis, used with check 
elepolys – derived data type polyPerEle - the number of habitat polygons within each 

element is stored in the variable numpoly.  For elements where numpoly > 0, the array 
poly is allocated to size numpoly and contains the id numbers of all the habitat 
polygons within that element. 

holes – dp – id number, center longitude, center latitude, edge longitude, edge latitude, and 
associated habitat polygon id number for each hole 

holesExist – logical, parameter – .TRUE. if there are holes in habitat, .FALSE. if not 
holespecs – integer – the starting location in holes of each hole along with the number of 

edge points that make up that particular hole 
i – integer – iteration variable 
j – integer – iteration variable 
k – integer – iteration variable 
maxbdis – dp – maximum distance from the center of each habitat polygon to its farthest 

edge point 
maxhdis – dp – maximum distance from the center of each hole to its farthest edge point 
P_ele – integer – return variable from gridcell that is unused by createPolySpecs 
poly – dp – allocatable array, allocated to the number of edge points in the current habitat 

polygon when checking if the element nodes are in the polygon 
polyholes – derived data type polyPerEle – number of holes within each habitat polygon is 

stored in the variable numpoly.  For habitat polygons where numpoly > 0, the array 
poly is allocated to size numpoly and contains the id numbers of all the holes within 
that habitat polygon 



  XVII. Settlement Module 

115 

polynums – integer – array to temporarily contain the id numbers of all the habitat polygons 
in the current element, or holes in the current habitat polygon, before being transferred 
into elepolys or polyholes 

polys – dp – id number, center longitude, center latitude, edge longitude, and edge latitude 
for each habitat polygon 

polyspecs – integer – the starting location in polys of each habitat polygon along with the 
number of edge points that make up that particular polygon 

r_ele_x – dp – x-location of the four nodes in each element 
r_ele_y – dp – y-location of the four nodes in each element 
rho_elements – integer, parameter – number of wet rho elements 
triangle – integer – return variable from gridcell, 1 if in the element, 0 if not 

 
 
 
B. Function DEAD 
 
Overview:  This function checks if the settlement status of the current particle is set to 2, 
meaning the particle has died. 
 
Input Variables:  The function has just one input variable.  It is passed the particle id number of 
the current particle (n). 
  
Output:  The function returns the logical value .TRUE. if the current particle has died and 
.FALSE. if it has not. 
 
Module parameters used: The function uses no parameters from PARAM_MOD. 
 
Module procedures used: The function uses no functions or subroutines from other modules. 
  
Private Variables Used:  This function uses the variable settle which is a private variable 
accessible only to the procedures in the Settlement Module. 
 
Numerical Method:  This function initializes the output to .FALSE..  If the particle has died, the 
output is changed to .TRUE.. 
 
Variables Definitions:  The following variables are used in this section: 

n – integer – id number of the current particle  
settle – integer – array containing the settlement status of every particle 
DEAD – logical – the function output variable 

 
 
 
C. Subroutine DIE 
 
Overview:  This subroutine changes the settlement status of the current particle to 2, meaning 
the particle has died. 



  XVII. Settlement Module 

116 

 
Input Variables:  The subroutine has just one input variable.  It is passed the particle id number 
of the current particle (n). 
  
Output Variables:  This subroutine has no output. 
 
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
 
Module procedures used: The subroutine uses no functions or subroutines from other modules. 
  
Private Variables Used:  This function uses the variable settle which is a private variable 
accessible only to the procedures in the Settlement Module. 
 
Numerical Method:  The subroutine simply sets the value of settle for the current particle to 2, 
the settlement status of a dead particle. 
 
Variables Definitions:  The following variables are used in this section: 

n – integer – id number of the current particle  
settle – integer – array containing the settlement status of each particle 

 
 
 
D. Subroutine hsettle 
 
Overview:  This subroutine checks if the current particle is within the boundaries of any holes in 
a particular habitat polygon. 
 
Input Variables:  The subroutine hsettle has two input variables, the x- and y- locations (Px,Py) 
of the current particle. 
  
Input/Output Variables:  The subroutine has one variable that is used for both input and 
output: holein.  It is passed the id of the habitat polygon to check for holes.  The value it returns 
is 0 if the particle is not in a hole or the id of the hole if it is in one.  
 
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
  
Module procedures used:  This subroutine calls INPOLY from the Point-in-Polygon Module. 
 
Private Variables Used: The subroutine uses the private variables polyholes, holespecs, poly, 
holes, and maxhdis, which are accessible only to this module. 
 
Numerical Method:  The subroutine first initializes polyin to the value passed in through 
holein, then gives holein a value of zero to prepare it for use as output.  The subroutine then 
checks polyholes to see if there are any holes in the current habitat polygon.  If there are not, the 
subroutine ends.  If holes do exist in the current habitat polygon, then the subroutine iterates 
through the holes in that polygon, whose ids are stored in polyholes.  For each hole, the location 



  XVII. Settlement Module 

117 

and number of edge points of that hole are retrieved from holespecs, the array polybnds is 
allocated to the number of edge points, and the edge point x- and y- coordinates are read in from 
holes.  Once that is done the subroutine can check if the particle is inside the hole by calling 
INPOLY with optional argument onin set to .FALSE. so that, if the particle is on an edge, it is 
not considered to be inside the hole.  If the particle is found to be inside a hole, the subroutine 
exits, returning the id of the hole it is in through the variable holein.  If all the holes are checked 
and the particle is not in any hole, then the subroutine returns with a zero in holein. 
 
Variables Definitions:  The following variables are used in this section: 

dis – dp – distance from the particle’s location to the hole’s center location, tested against the 
maximum distance for the current hole in maxhdis 

holein – integer – input/output variable; inputs the habitat polygon to check; outputs the id of 
the hole if the particle is in a hole, or zero if it is not in a hole 

holes – dp – id number, center longitude, center latitude, edge longitude, edge latitude, and 
associated habitat polygon id number for each hole 

holespecs – integer – the starting location in holes of each hole along with the number of 
edge points that make up that particular hole 

i – integer – iteration variable 
j – integer – iteration variable 
maxhdis – dp – maximum distance from the center of each hole to its farthest edge point 
polybnds – dp – allocatable array, allocated to the number of edge points in the hole that is 

currently being checked 
polyholes – derived data type polyPerEle – number of holes within each habitat polygon is 

stored in the variable numpoly.  For habitat polygons where numpoly > 0, the array 
poly is allocated to size numpoly and contains the id numbers of all the holes within 
that habitat polygon 

polyin – integer – holds the id of the habitat polygon passed in by holein 
Px – dp – x- location of the particle 
Py – dp – y- location of the particle 
size – integer – the number of edge points that make up the hole currently being checked, 

obtained from holespecs 
start – integer – the location in holes of the first edge point of the hole currently being 

checked, obtained from holespecs 
 
 
 
E. Subroutine initSettlement 
 
Overview:  This subroutine initializes the Settlement Module. 
 
Input Variables:  The subroutine initSettlement has one input variable, the double precision 
array P_pediage, which indicates at what age the particles are competent to settle.  The values in 
P_pediage are transferred to the private Settlement Module variable settletime. 
  
Output Variables:  The module has no output variables. 
  



  XVII. Settlement Module 

118 

Module parameters used:  This subroutine uses the parameter numpar from the Parameter 
Module, which contains the total number of particles.  This parameter is used by the whole 
module and as such does not need its own USE statement in this subroutine. 
 
Module procedures used:  This subroutine calls readinHabitat and createPolySpecs which are 
both private subroutines also located in the Settlement Module. 
 
Private Variables Used: The subroutine uses no private variables. 
 
Numerical Method:  initSettlement starts by initializing the variable settle to 0, meaning that all 
of the particles begin not settled.  Next, it initializes the values in settletime by transferring the 
values from the input variable P_pediage.  Lastly, it calls the two private subroutines 
readinHabitat and createPolySpecs which read in the habitat polygons and holes and create 
special variables containing details about the habitat and holes to speed up the settlement routine. 
 
Variables Definitions:  The following variables are used in this section: 

n – integer – iteration variable 
numpar – integer, parameter – total number of particles 
P_pediage – dp – age at which particles become pediveligers and are competent to settle 
settle – integer – settlement status of each particle (0 = not settled, 1 = settled, 2 = dead) 
settletime – dp – age at which the particles are competent to settle 

 
 
 
F. Subroutine psettle 
 
Overview:  This subroutine checks if the current particle is within the boundaries of any habitat 
polygons in a particular rho element. 
 
Input Variables:  Subroutine psettle has three input variables: the x- and y- locations (Px,Py) of 
the current particle and the rho element in which to search (R_ele). 
  
Output Variables:  The subroutine has one output variable.  It returns the variable polyin which 
contains the id of the habitat polygon in which the particle lies or, if it is not in any habitat 
polygon, the value zero.   
 
Module parameters used: The subroutine uses no parameters from PARAM_MOD. 
  
Module procedures used:  This subroutine calls INPOLY from the Point-in-Polygon Module. 
 
Private Variables Used: The subroutine uses the private variables elepolys, polyspecs, poly, 
polys, and maxbdis, which are accessible only to this module. 
 
Numerical Method:  The subroutine begins by initializing polyin to zero.  It then checks 
elepolys to see if there are any habitat polygons in the current rho element.  If there are not, the 
subroutine ends.  If holes do exist in the current rho element, the subroutine iterates through the 



  XVII. Settlement Module 

119 

habitat polygons in that element whose ids are stored in elepolys.  For each habitat polygon, the 
location and number of edge points of that polygon are retrieved from polyspecs, the array 
polybnds is allocated to the number of edge points, and the edge point x- and y- coordinates are 
read in from polys.  The subroutine can then check if the particle is inside the habitat polygon by 
calling INPOLY.  If the particle is found to be inside a habitat polygon, the subroutine exits, 
returning the id of the polygon it is in through the variable polyin.  If all the habitat polygons are 
checked and the particle is not in a habitat polygon, the subroutine returns with polyin still set to 
its initial zero. 
 
Variables Definitions:  The following variables are used in this section: 

dis – dp – distance from particle’s location to the current habitat polygon’s center location, 
tested against the maximum distance for the current polygon in maxbdis 

elepolys – derived data type polyPerEle – number of habitat polygons within each rho 
element is stored in the variable numpoly.  For elements where numpoly > 0, the array 
poly is allocated to size numpoly and contains the id numbers of all the habitat 
polygons within that rho element 

i – integer – iteration variable 
j – integer – iteration variable 
maxbdis – dp – maximum distance from the center of each habitat polygon to its farthest 

edge point 
polybnds – dp – allocatable array, allocated to the number of edge points in the habitat 

polygon that is currently being checked 
polyin – integer – output variable; holds the id of the habitat polygon containing the particle, 

or zero if the particle is not within a habitat polygon 
polys – dp – id number, center longitude, center latitude, edge longitude, and edge latitude, 

for each habitat polygon 
polyspecs – integer – the starting location in polys of each habitat polygon along with the 

number of edge points that make up that particular polygon 
Px – dp – x- location of the particle 
Py – dp – y- location of the particle 
size – integer – the number of edge points that make up the habitat polygon currently being 

checked, obtained from polyspecs 
start – integer – the location in polys of the first edge point of the habitat polygon currently 

being checked, obtained from polyspecs 
 
 
 
G. Subroutine readinHabitat 
 
Overview:  This subroutine reads in the habitat polygon and hole locations. 
 
Input Variables:  The subroutine has no input variables. 
  
Output Variables:  The subroutine has no output variables 
  



  XVII. Settlement Module 

120 

Module parameters used:  This subroutine uses the logical parameter holesExist from the 
Parameter Module, which contains the value .TRUE. if holes exist in the habitat polygons, and 
.FALSE. if there are no holes in habitat.  It also borrows from the Parameter Module the 
parameters habitatfile and holefile which contain in character arrays the name and path (if 
needed) of the habitat polygon and hole input files. 
  
Module procedures used:  This subroutine calls lon2x and lat2y from the Conversion Module.   
 
Private Variables Used: The subroutine uses private variables polys, holes, maxbdis, and 
maxhdis, which are accessible only to this module. 
 
Numerical Method:  The subroutine starts by opening the habitat polygon input file, 
habitatfile.  It iterates through each habitat polygon, reading the habitat polygon information 
into the variable P_lonlat.  The longitude and latitude just read in are then converted to x- and y- 
coordinates, using the functions lon2x and lat2y, and saved in the variable polys.  This is 
followed by a loop that determines the distance from the center of each habitat polygon to its 
farthest edge point and saves that information in maxbdis to increase the efficiency of other 
search routines.  If holesExist is .TRUE., indicating that holes exist in habitat, then the same 
process is repeated for holes.  The hole information is initially read from the hole file, holefile, 
into H_lonlat and then converted and stored in holes.  The distance from the center to the 
farthest edge point for each hole is then calculated and stored in the variable maxhdis. 
 
Variables Definitions:  The following variables are used in this section: 

curpoly – integer – id of the current polygon, used when calculating maxbdis and maxhdis 
dise – dp – distance from the center of the current polygon to the current polygon edge point, 

used when calculating maxbdis and maxhdis 
H_lonlat – dp – latitude and longitude hole data read in from holefile 
habitatfile – character array, parameter – the file and path (if needed) of the habitat polygon 

data 
hedges – integer, parameter – total number of hole edges 
holefile – character array, parameter – the file and path (if needed) of the hole data 
holes – dp – id number, center longitude, center latitude, edge longitude, edge latitude, and 

associated habitat polygon id number for each hole 
holesExist – logical, parameter – .TRUE. if there are holes in the habitat, else .FALSE. 
i – integer – iteration variable 
maxbdis – dp – maximum distance from the center of each habitat polygon to its farthest 

edge point 
maxhdis – dp – maximum distance from the center of each hole to its farthest edge point 
P_lonlat – dp – latitude and longitude habitat polygon data read in from habitatfile 
pedges – integer, parameter – total number of habitat polygon edges 
polys – dp – id number, center longitude, center latitude, edge longitude, and edge latitude 

for each habitat polygon 
 
 
 
H. Function SETTLED 



  XVII. Settlement Module 

121 

 
Overview:  This function checks if the settlement status of the current particle is set to 1, 
meaning the particle has settled. 
 
Input Variables:  The function has one input variable, the particle id number of the current 
particle (n). 
  
Output:  The function returns the logical value .TRUE. if the current particle has settled, and 
.FALSE. if it has not. 
 
Module parameters used: The function uses no parameters from PARAM_MOD. 
 
Module procedures used: The function uses no functions or subroutines from other modules. 
  
Private Variables Used:  This function uses the variable settle which is a private variable 
accessible only to the procedures in the Settlement Module. 
 
Numerical Method:  The function initializes the output to .FALSE..  If the particle has settled, 
the output is changed to .TRUE.. 
 
Variables Definitions:  The following variables are used in this section: 

n – integer – id number of the current particle 
settle – integer – array containing the settlement status of each particle 
SETTLED – logical – the output variable of the Settled function (.TRUE. if the particle has 

"settled", and .FALSE. if not)  
 
 
 
 
I. Subroutine settlement 
 
Overview:  This subroutine checks if the current particle is able to settle at its present age and 
location. 
 
Input Variables:  The subroutine settlement has four input variables: the age (P_age), number 
(n), and x- and y- locations (Px,Py) of the current particle. 
  
Output Variables:  The subroutine has one output variable.  It returns the variable inpoly which 
contains 0 if the particle cannot settle or, if the particle can settle, the id of the habitat polygon in 
which it settles.  
  
Module parameters used:  This subroutine uses the logical parameter holesExist from the 
Parameter Module, which contains the value .TRUE. if holes exist in the habitat polygons and 
.FALSE. if there are no holes in the habitat. 
  



  XVII. Settlement Module 

122 

Module procedures used:  This subroutine calls getP_r_element from the Hydrodynamic 
Module.  It also calls psettle and hsettle which are both private subroutines also located in the 
Settlement Module. 
 
Private Variables Used: This subroutine uses the private variable settle, which is accessible 
only to this module. 
 
Numerical Method:  The first thing settlement does is call getP_r_element to find out which rho 
element the current particle is in.  inpoly is initialized to 0 to indicate that the particle has not 
settled.  Next, the particle’s age is checked to see if it is greater than the age at which the particle 
is competent to settle.  If the particle is not old enough to settle, the subroutine exits.  Otherwise, 
it calls psettle, which checks if the particle is in any of the habitat polygons in the same element 
as the particle.  If it is not in a habitat polygon then the subroutine exits.  If it is in a habitat 
polygon and holes exist in habitat polygons, hsettle is called to find out if it is in a hole in the 
habitat polygon.  If it is found to be in a hole, then inpoly is reset to 0; otherwise, inpoly is set to 
the id of the habitat polygon in which it is settling, and settle is set to 1 for the current particle, to 
change the settlement status of this particle to settled. 
 
Variables Definitions:  The following variables are used in this section: 

n – integer – iteration variable 
inpoly – integer – output variable; returns 0 if particle does not settle and the habitat polygon 

id that it settles in if it does settle 
P_age – dp – input variable; the current age of the particle (s) 
polyin – integer – used for output from psettle and hsettle 
Px – dp – particle’s x- coordinate 
Py – dp – particle’s y- coordinate 
R_ele – integer – stores the id number of the rho element the current particle is in after it is 

returned from getP_r_element 
 
 
 



  XVIII. Tension Spline Module 

123 

XVIII. Tension Spline Module (tension_module.f90, TENSION_MOD) 
 
Overview: The Tension Spline Module is use to fit a tension spline curve to a water column 
profile of water properties at the particle location. This module uses a modified version of 
Tension Spline Curve Fitting Package (TSPACK). TSPACK (TOMS/716) was created by 
Robert J. Renka (renka@cs.unt.edu, Department of Computer Science and Engineering, 
University of North Texas) and is available for download from http://www. netlib.org and 
http://portal.acm.org/citation.cfm?id=151277. TSPACK fits tension splines to data that preserve 
the concavity and monotonicity of the data (Fig. 3). The routines in TSPACK are highly 
articulate and produce excellent profiles, although they may be somewhat computationally 
demanding because an individual tension factor is estimated for each segment of the profile. The 
tests of the random displacement model for vertical sub-grid scale turbulence (North et al. 
2006a) were undertaken with TSPACK. Occasionally, the curve fitting method would fail to 
converge. In the North et al. (2006a) simulations, this occurred 0.0004% of the time, or once in 
244,500 calls to TSPACK. In these rare cases, simple linear interpolation of the vertical profile 
was used to avoid program pause. LTRANS also uses simple interpolation to avoid program 
pause if TSPACK fails to converge.   
 

TSPACK is copyrighted by the Association for Computing Machinery (ACM). With the 
permission of Dr. Renka and ACM, TSPACK was modified for use in LTRANS by removing 
unused code and call variables and updating it to Fortran 90. If you would like to use LTRANS 
with the modified TSPACK software, please read and respect the ACM Software Copyright and 
License Agreement (http://www.acm.org/publications/policies/softwarecrnotice). For 
noncommercial use, ACM grants "a royalty-free, nonexclusive right to execute, copy, modify 
and distribute both the binary and source code solely for academic, research and other similar 
noncommercial uses" subject to the conditions noted in the license agreement. Note that if you 
plan commercial use of LTRANS with the modified TSPACK software, you must contact ACM 
at permissions@acm.org to arrange an appropriate license. It may require payment of a license 
fee for commerical use. 
 

This program was modified by Zachary Schlag for use in LTRANS. The following 
subroutines and functions from TSPACK are used in LTRANS: subroutines TSPSI, SIGS, 
SNHCSH, YPC1, and functions HVAL, HPVAL, STORE, INTRVL. The header text within 
the modified TSPACK provides extensive documentation for the subroutines, functions and 
variables used within this module. This text is reproduced below.  

 
 
 
 
 
 
 
 
 
 
 



  XVIII. Tension Spline Module 

124 

***************************** TSPACK DOCUMENTATION *********************************** 
 
!         TSPACK:  Tension Spline Curve Fitting Package 
! 
!                              Robert J. Renka 
!                                  05/27/91 
! 
!        I.  INTRODUCTION 
! 
!             The primary purpose of TSPACK is to construct a smooth 
!        function which interpolates a discrete set of data points. 
!        The function may be required to have either one or two con- 
!        tinuous derivatives, and, in the C-2 case, several options 
!        are provided for selecting end conditions.  If the accuracy 
!        of the data does not warrant interpolation, a smoothing func- 
!        tion (which does not pass through the data points) may be 
!        constructed instead.  The fitting method is designed to avoid 
!        extraneous inflection points (associated with rapidly varying 
!        data values) and preserve local shape properties of the data 
!        (monotonicity and convexity), or to satisfy the more general 
!        constraints of bounds on function values or first derivatives. 
!        The package also provides a parametric representation for con- 
!        structing general planar curves and space curves. 
! 
!             The fitting function h(x) (or each component h(t) in the 
!        case of a parametric curve) is defined locally, on each 
!        interval associated with a pair of adjacent abscissae (knots), 
!        by its values and first derivatives at the endpoints of the 
!        interval, along with a nonnegative tension factor SIGMA 
!        associated with the interval (h is a Hermite interpolatory 
!        tension spline).  With SIGMA = 0, h is the cubic function 
!        defined by the endpoint values and derivatives, and, as SIGMA 
!        increases, h approaches the linear interpolant of the endpoint 
!        values.  Since the linear interpolant preserves positivity, 
!        monotonicity, and convexity of the data, h can be forced to 
!        preserve these properties by choosing SIGMA sufficiently 
!        large.  Also, since SIGMA varies with intervals, no more 
!        tension than necessary is used in each interval, resulting in 
!        a better fit and greater efficiency than is achieved with a 
!        single constant tension factor. 
! 
! 
!        II.  USAGE 
! 
! 
!             TSPACK must be linked to a driver program which re- 
!        serves storage, reads a data set, and calls the appropriate 
!        procedures selected from those described below in section 
!        III.B.  Header comments in the software prodecures provide 
!        details regarding the specification of input parameters and 
!        the work space requirements.  It is recommended that curves 



  XVIII. Tension Spline Module 

125 

!        be plotted in order to assess their appropriateness for the 
!        application.  This requires a user-supplied graphics package. 
! 
! 
!        III.  SOFTWARE 
! 
!        A)  Code 
! 
!             The code was originally written in 1977 ANSI Standard  
!        Fortran.  Variable and array names conform to the following 
!        default typing convention:  I-N for type INTEGER and A-H or  
!        O-Z for type REAL.  There are no conventions used for LOGICAL  
!        or DOUBLE PRECISION variables.  There are many procedures.   
!        Each consists of the following sections: 
! 
!            1)  the procedure name and parameter list with spaces sepa- 
!                rating the parameters into one to three subsets: 
!                input parameters, I/O parameters, and output parame- 
!                ters (in that order); 
!            2)  type statements in which all parameters are typed 
!                and arrays are dimensioned; 
!            3)  a heading with the name of the package, identifica- 
!                tion of the author, and date of the author's most 
!                recent modification to the procedure; 
!            4)  a description of the procedure's purpose and other rel- 
!                evant information for the user; 
!            5)  input parameter descriptions and output parameter 
!                descriptions in the same order as the parameter 
!                list; 
!            6)  a list of other procedures required (called either 
!                directly or indirectly); 
!            7)  a list of intrinsic functions called, if any; and 
!            8)  the code, including comments. 
! 
!             Note that it is assumed that floating point underflow 
!        results in assignment of the value zero.  If not the default, 
!        this may be specified as either a compiler option or an 
!        operating system option.  Also, overflow is avoided by re- 
!        stricting arguments to the exponential function EXP to have 
!        value at most SBIG=85.  SBIG, which appears in DATA statements 
!        in the evaluation functions, HVAL, and HPVAL, must be decreased  
!        if it is necessary to accomodate a floating point number system  
!        with fewer than 8 bits in the exponent. No other system  
!        dependencies are present in the code. 
! 
!            The procedure that solves nonlinear equations, SIGS,  
!        includes diagnostic print capability which allows the iteration  
!        to be traced.  This can be enabled by altering logical unit  
!        number LUN in a DATA statement in the relevant procedure. 
! 
!        B)  Procedure Descriptions 



  XVIII. Tension Spline Module 

126 

! 
!             The software procedures are divided into three categories, 
!        referred to as level 1, level 2, and level 3, corresponding to 
!        the hierarchy of calling sequences:  level 1 procedures call 
!        level 2 procedures which call level 3 procedures.  For most 
!        applications, the driver need only call two level 1 prodedures 
!        -- one from each of groups (a) and (b).  However, additional 
!        control over various options can be obtained by directly 
!        calling level 2 procedures.  Also, additional fitting methods, 
!        such as parametric smoothing, can be obtained by calling 
!        level 2 procedures.  Note that, in the case of smoothing or C-2 
!        interpolation with automatically selected tension, the use 
!        of level 2 procedures requires that an iteration be placed 
!        around the computation of knot derivatives and tension factors. 
! 
!        1) Level 1 procedures 
! 
!         a) The following procedure returns knots (in the parametric 
!            case), knot derivatives, tension factors, and, in the 
!            case of smoothing, knot function values, which define 
!            the fitting function (or functions in the parametric 
!            case). 
! 
!          TSPSI   Subroutine which constructs a shape-preserving or 
!                    unconstrained interpolatory function. 
! 
!        2) Level 2 procedures 
! 
!             These are divided into three groups. 
! 
!         a) The following procedures are called by the level 1, group (a) 
!            procedures to obtain knot derivatives (and values in the case 
!            of SMCRV). 
! 
!        YPC1    Subroutine which employs a monotonicity-constrained 
!               quadratic interpolation method to compute locally 
!                    defined derivative estimates, resulting in a C-1 
!                    fit. 
! 
!         b) The following procedures are called by the level 1, group (a) 
!            procedures to obtain tension factors associated with knot 
!            intervals. 
! 
!          SIGS    Subroutine which, given a sequence of abscissae, 
!               function values, and first derivative values, 
!               determines the set of minimum tension factors for 
!               which the Hermite interpolatory tension spline 
!               preserves local shape properties (monotonicity 
!                    and convexity) of the data.  SIGS is called by 
!                    TSPSI. 
! 



  XVIII. Tension Spline Module 

127 

!         c) The following functions are called by the level 1, group 
!            (b) procedures to obtain values and derivatives.  These pro- 
!            vide a more convenient alternative to the level 1 routines 
!            when a single value is needed. 
! 
!        HVAL    Function which evaluates a Hermite interpolatory ten- 
!                sion spline at a specified point. 
! 
!        HPVAL   Function which evaluates the first derivative of a 
!                Hermite interpolatory tension spline at a specified 
!                point. 
! 
! 
!       3) Level 3 procedures 
! 
!        a)  The following procedures are of general utility. 
! 
! 
!        INTRVL  Function which, given an increasing sequence of ab- 
!               scissae, returns the index of an interval containing 
!                    a specified point.  INTRVL is called by the evalua- 
!                    tion functions HVAL, and HPVAL. 
! 
!        SNHCSH  Subroutine called by several procedures to compute 
!               accurate approximations to the modified hyperbolic 
!               functions which form a basis for exponential ten- 
!               sion splines. 
! 
!          STORE   Function used by SIGS in computing the machine precision.   
!                    STORE forces a value to be stored in main memory so  
!                    that the precision of floating point numbers in memory  
!                    locations rather than registers is computed. 
! 
! 
!        IV.  REFERENCE 
! 
! 
!        For the theoretical background, consult the following: 
! 
!          RENKA, R. J.  Interpolatory tension splines with automatic 
!          selection of tension factors. SIAM J. Sci. Stat. Comput. 8 
!          (1987), pp. 393-415. 
 
 
SUBROUTINE TSPSI  
C*********************************************************** 
C                                                From TSPACK 
C                                            Robert J. Renka 
C                                  Dept. of Computer Science 
C                                       Univ. of North Texas 
C                                           renka@cs.unt.edu 



  XVIII. Tension Spline Module 

128 

C                                                   07/08/92 
C   This subroutine computes a set of parameter values which 
C define a Hermite interpolatory tension spline H(x).  The 
C parameters consist of knot derivative values YP computed 
C by Subroutine YPC1, and tension factors SIGMA computed by  
C Subroutine SIGS.  Alternative methods for computing SIGMA 
C are provided by Subroutine TSPBI and Functions SIG0, SIG1, 
C and SIG2. 
C   Refer to Subroutine TSPSS for a means of computing 
C parameters which define a smoothing curve rather than an 
C interpolatory curve. 
C   The tension spline may be evaluated by Subroutine TSVAL1 
C or Functions HVAL (values), HPVAL (first derivatives), 
C HPPVAL (second derivatives), and TSINTL (integrals). 
C On input: 
C       N = Number of data points.  N .GE. 2 and N .GE. 3 if 
C           PER = TRUE. 
C       X = Array of length N containing a strictly in- 
C           creasing sequence of abscissae:  X(I) < X(I+1) 
C           for I = 1,...,N-1. 
C       Y = Array of length N containing data values asso- 
C           ciated with the abscissae.  H(X(I)) = Y(I) for 
C           I = 1,...,N. 
C       YP = Array of length N containing first derivatives 
C           of H at the abscissae.  Refer to Subroutine YPC1 
C On output: 
C       YP = Array containing derivatives of H at the 
C            abscissae.  YP is not altered if -4 < IER < 0, 
C            and YP is only partially defined if IER = -4. 
C       SIGMA = Array containing tension factors.  SIGMA(I) 
C               is associated with interval (X(I),X(I+1)) 
C               for I = 1,...,N-1.  SIGMA is not altered if 
C               -4 < IER < 0 (unless IENDC is invalid), and 
C               SIGMA is constant (not optimal) if IER = -4 
C               or IENDC (if used) is invalid. 
C       IER = Error indicator or iteration count: 
C             IER = IC .GE. 0 if no errors were encountered 
C                      and IC calls to SIGS and IC+1 calls 
C                      to YPC1, YPC1P, YPC2 or YPC2P were 
C                      employed.  (IC = 0 if NCD = 1). 
C             IER = -1 if N, NCD, or IENDC is outside its 
C                      valid range. 
C             IER = -2 if LWK is too small. 
C             IER = -3 if UNIFRM = TRUE and SIGMA(1) is out- 
C                      side its valid range. 
C             IER = -4 if the abscissae X are not strictly 
C                      increasing. 
C Modules required by TSPSI:  SIGS, SNHCSH, STORE, YPC1,  
C Intrinsic functions called by TSPSI:  ABS, MAX 
C*********************************************************** 
 



  XVIII. Tension Spline Module 

129 

SUBROUTINE SIGS  
C*********************************************************** 
C                                                From TSPACK 
C                                            Robert J. Renka 
C                                  Dept. of Computer Science 
C                                       Univ. of North Texas 
C                                           renka@cs.unt.edu 
C                                                   11/17/96 
C   Given a set of abscissae X with associated data values Y 
C and derivatives YP, this subroutine determines the small- 
C est (nonnegative) tension factors SIGMA such that the Her- 
C mite interpolatory tension spline H(x) preserves local 
C shape properties of the data.  In an interval (X1,X2) with 
C data values Y1,Y2 and derivatives YP1,YP2, the properties 
C of the data are 
C       Monotonicity:  S, YP1, and YP2 are nonnegative or 
C                        nonpositive, 
C  and 
C       Convexity:     YP1 .LE. S .LE. YP2  or  YP1 .GE. S 
C                        .GE. YP2, 
C where S = (Y2-Y1)/(X2-X1).  The corresponding properties 
C of H are constant sign of the first and second deriva- 
C tives, respectively.  Note that, unless YP1 = S = YP2, in- 
C finite tension is required (and H is linear on the inter- 
C val) if S = 0 in the case of monotonicity, or if YP1 = S 
C or YP2 = S in the case of convexity. 
C   SIGS may be used in conjunction with Subroutine YPC2 
C (or YPC2P) in order to produce a C-2 interpolant which 
C preserves the shape properties of the data.  This is 
C achieved by calling YPC2 with SIGMA initialized to the 
C zero vector, and then alternating calls to SIGS with 
C calls to YPC2 until the change in SIGMA is small (refer to 
C the parameter descriptions for SIGMA, DSMAX and IER), or 
C the maximum relative change in YP is bounded by a toler- 
C ance (a reasonable value is .01).  A similar procedure may 
C be used to produce a C-2 shape-preserving smoothing curve 
C (Subroutine SMCRV). 
C   Refer to Subroutine SIGBI for a means of selecting mini- 
C mum tension factors to satisfy more general constraints. 
C On input: 
C       N = Number of data points.  N .GE. 2. 
C       X = Array of length N containing a strictly in- 
C           creasing sequence of abscissae:  X(I) < X(I+1) 
C           for I = 1,...,N-1. 
C       Y = Array of length N containing data values (or 
C           function values computed by SMCRV) associated 
C           with the abscissae.  H(X(I)) = Y(I) for I = 
C           1,...,N. 
C       YP = Array of length N containing first derivatives 
C            of H at the abscissae.  Refer to Subroutines 
C            YPC1, YPC1P, YPC2, YPC2P, and SMCRV. 



  XVIII. Tension Spline Module 

130 

C The above parameters are not altered by this routine. 
C On output: 
C       SIGMA = Array containing tension factors for which 
C               H(x) preserves the properties of the data, 
C               with the restriction that SIGMA(I) .LE. 85 
C               for all I (unless the input value is larger). 
C               The factors are as small as possible (within 
C               the tolerance), but not less than their 
C               input values.  If infinite tension is re- 
C               quired in interval (X(I),X(I+1)), then 
C               SIGMA(I) = 85 (and H is an approximation to 
C               the linear interpolant on the interval), 
C               and if neither property is satisfied by the 
C               data, then SIGMA(I) = 0 (unless the input 
C               value is positive), and thus H is cubic in 
C               the interval. 
C       IER = Error indicator and information flag: 
C             IER = I if no errors were encountered and I 
C                     components of SIGMA were altered from 
C                     their input values for 0 .LE. I .LE. 
C                     N-1. 
C             IER = -1 if N < 2.  SIGMA is not altered in 
C                      this case. 
C             IER = -I if X(I) .LE. X(I-1) for some I in the 
C                      range 2,...,N.  SIGMA(J-1) is unal- 
C                      tered for J = I,...,N in this case. 
C Modules required by SIGS:  SNHCSH, STORE 
C Intrinsic functions called by SIGS:  ABS, EXP, MAX, MIN, 
C                                        SIGN, SQRT 
C 
C*********************************************************** 
 
 
SUBROUTINE SNHCSH  
C*********************************************************** 
C                                                From TSPACK 
C                                            Robert J. Renka 
C                                  Dept. of Computer Science 
C                                       Univ. of North Texas 
C                                           renka@cs.unt.edu 
C                                                   11/20/96 
C   This subroutine computes approximations to the modified 
C hyperbolic functions defined below with relative error 
C bounded by 3.4E-20 for a floating point number system with 
C sufficient precision. 
C   Note that the 21-digit constants in the data statements 
C below may not be acceptable to all compilers. 
C On input: 
C       X = Point at which the functions are to be 
C           evaluated. 
C X is not altered by this routine. 



  XVIII. Tension Spline Module 

131 

C On output: 
C       SINHM = sinh(X) - X. 
C       COSHM = cosh(X) - 1. 
C       COSHMM = cosh(X) - 1 - X*X/2. 
C Modules required by SNHCSH:  None 
C Intrinsic functions called by SNHCSH:  ABS, EXP 
C********************************************************** 
 
SUBROUTINE YPC1  
C*********************************************************** 
C                                                From TSPACK 
C                                            Robert J. Renka 
C                                  Dept. of Computer Science 
C                                       Univ. of North Texas 
C                                           renka@cs.unt.edu 
C                                                   06/10/92 
C   This subroutine employs a three-point quadratic interpo- 
C lation method to compute local derivative estimates YP 
C associated with a set of data points.  The interpolation 
C formula is the monotonicity-constrained parabolic method 
C described in the reference cited below.  A Hermite int- 
C erpolant of the data values and derivative estimates pre- 
C serves monotonicity of the data.  Linear interpolation is 
C used if N = 2.  The method is invariant under a linear 
C scaling of the coordinates but is not additive. 
C On input: 
C       N = Number of data points.  N .GE. 2. 
C       X = Array of length N containing a strictly in- 
C           creasing sequence of abscissae:  X(I) < X(I+1) 
C           for I = 1,...,N-1. 
C       Y = Array of length N containing data values asso- 
C           ciated with the abscissae. 
C Input parameters are not altered by this routine. 
C On output: 
C       YP = Array of length N containing estimated deriv- 
C            atives at the abscissae unless IER .NE. 0. 
C            YP is not altered if IER = 1, and is only par- 
C            tially defined if IER > 1. 
C       IER = Error indicator: 
C             IER = 0 if no errors were encountered. 
C             IER = 1 if N < 2. 
C             IER = I if X(I) .LE. X(I-1) for some I in the 
C                     range 2,...,N. 
C Reference:  J. M. Hyman, "Accurate Monotonicity-preserving 
C               Cubic Interpolation",  LA-8796-MS, Los 
C               Alamos National Lab, Feb. 1982. 
C Modules required by YPC1:  None 
C Intrinsic functions called by YPC1:  ABS, MAX, MIN, SIGN 
C*********************************************************** 
 
FUNCTION HVAL  



  XVIII. Tension Spline Module 

132 

C*********************************************************** 
C                                                From TSPACK 
C                                            Robert J. Renka 
C                                  Dept. of Computer Science 
C                                       Univ. of North Texas 
C                                           renka@cs.unt.edu 
C                                                   11/17/96 
C   This function evaluates a Hermite interpolatory tension 
C spline H at a point T.  Note that a large value of SIGMA 
C may cause underflow.  The result is assumed to be zero. 
C   Given arrays X, Y, YP, and SIGMA of length NN, if T is 
C known to lie in the interval (X(I),X(J)) for some I < J, 
C a gain in efficiency can be achieved by calling this 
C function with N = J+1-I (rather than NN) and the I-th 
C components of the arrays (rather than the first) as par- 
C ameters. 
C On input: 
C       T = Point at which H is to be evaluated.  Extrapo- 
C           lation is performed if T < X(1) or T > X(N). 
C       N = Number of data points.  N .GE. 2. 
C       X = Array of length N containing the abscissae. 
C           These must be in strictly increasing order: 
C           X(I) < X(I+1) for I = 1,...,N-1. 
C       Y = Array of length N containing data values. 
C           H(X(I)) = Y(I) for I = 1,...,N. 
C       YP = Array of length N containing first deriva- 
C            tives.  HP(X(I)) = YP(I) for I = 1,...,N, where 
C            HP denotes the derivative of H. 
C       SIGMA = Array of length N-1 containing tension fac- 
C               tors whose absolute values determine the 
C               balance between cubic and linear in each 
C               interval.  SIGMA(I) is associated with int- 
C               erval (I,I+1) for I = 1,...,N-1. 
C Input parameters are not altered by this function. 
C On output: 
C       IER = Error indicator: 
C             IER = 0  if no errors were encountered and 
C                      X(1) .LE. T .LE. X(N). 
C             IER = 1  if no errors were encountered and 
C                      extrapolation was necessary. 
C             IER = -1 if N < 2. 
C             IER = -2 if the abscissae are not in strictly 
C                      increasing order.  (This error will 
C                      not necessarily be detected.) 
C       HVAL = Function value H(T), or zero if IER < 0. 
C Modules required by HVAL:  INTRVL, SNHCSH 
C Intrinsic functions called by HVAL:  ABS, EXP 
C*********************************************************** 
 
FUNCTION HPVAL  
C*********************************************************** 



  XVIII. Tension Spline Module 

133 

C                                                From TSPACK 
C                                            Robert J. Renka 
C                                  Dept. of Computer Science 
C                                       Univ. of North Texas 
C                                           renka@cs.unt.edu 
C                                                   11/17/96 
C   This function evaluates the first derivative HP of a 
C Hermite interpolatory tension spline H at a point T. 
C On input: 
C       T = Point at which HP is to be evaluated.  Extrapo- 
C           lation is performed if T < X(1) or T > X(N). 
C       N = Number of data points.  N .GE. 2. 
C       X = Array of length N containing the abscissae. 
C           These must be in strictly increasing order: 
C           X(I) < X(I+1) for I = 1,...,N-1. 
C       Y = Array of length N containing data values. 
C           H(X(I)) = Y(I) for I = 1,...,N. 
C       YP = Array of length N containing first deriva- 
C            tives.  HP(X(I)) = YP(I) for I = 1,...,N. 
C       SIGMA = Array of length N-1 containing tension fac- 
C               tors whose absolute values determine the 
C               balance between cubic and linear in each 
C               interval.  SIGMA(I) is associated with int- 
C               erval (I,I+1) for I = 1,...,N-1. 
C Input parameters are not altered by this function. 
C On output: 
C       IER = Error indicator: 
C             IER = 0  if no errors were encountered and 
C                      X(1) .LE. T .LE. X(N). 
C             IER = 1  if no errors were encountered and 
C                      extrapolation was necessary. 
C             IER = -1 if N < 2. 
C             IER = -2 if the abscissae are not in strictly 
C                      increasing order.  (This error will 
C                      not necessarily be detected.) 
C       HPVAL = Derivative value HP(T), or zero if IER < 0. 
C Modules required by HPVAL:  INTRVL, SNHCSH 
C Intrinsic functions called by HPVAL:  ABS, EXP 
C*********************************************************** 
 
FUNCTION STORE  
C*********************************************************** 
C                                                From TSPACK 
C                                            Robert J. Renka 
C                                  Dept. of Computer Science 
C                                       Univ. of North Texas 
C                                           renka@cs.unt.edu 
C                                                   06/10/92 
C   This function forces its argument X to be stored in a 
C memory location, thus providing a means of determining 
C floating point number characteristics (such as the machine 



  XVIII. Tension Spline Module 

134 

C precision) when it is necessary to avoid computation in 
C high precision registers. 
C On input: 
C       X = Value to be stored. 
C X is not altered by this function. 
C On output: 
C       STORE = Value of X after it has been stored and 
C               possibly truncated or rounded to the single 
C               precision word length. 
C Modules required by STORE:  None 
C*********************************************************** 
 
INTEGER FUNCTION INTRVL  
C*********************************************************** 
C                                                From TSPACK 
C                                            Robert J. Renka 
C                                  Dept. of Computer Science 
C                                       Univ. of North Texas 
C                                           renka@cs.unt.edu 
C                                                   06/10/92 
C   This function returns the index of the left end of an 
C interval (defined by an increasing sequence X) which 
C contains the value T.  The method consists of first test- 
C ing the interval returned by a previous call, if any, and 
C then using a binary search if necessary. 
C On input: 
C       T = Point to be located. 
C       N = Length of X.  N .GE. 2. 
C       X = Array of length N assumed (without a test) to 
C           contain a strictly increasing sequence of 
C           values. 
C Input parameters are not altered by this function. 
C On output: 
C       INTRVL = Index I defined as follows: 
C                  I = 1    if  T .LT. X(2) or N .LE. 2, 
C                  I = N-1  if  T .GE. X(N-1), and 
C                  X(I) .LE. T .LT. X(I+1) otherwise. 
C Modules required by INTRVL:  None 
C*********************************************************** 

 
 
 
 



  XIX. Vertical Turbulence Module 

135 

XIX. Vertical Turbulence Module (ver_turb_module.f90, VTURB_MOD)  
 
Overview:  Hydrodynamic models do not simulate turbulent motion at scales smaller than the 
grid resolution of the model (e.g., 1 km).  In particle-tracking models, however, particles are 
moved in millimeter to centimeter steps—much less than the hydrodynamic model grid scale.  It 
is necessary to add a random component to particle motion in order to reproduce turbulent 
diffusion that occurs at the scale of particle motion (Visser 1997, Brickman and Smith 2001). 
Without turbulent particle motion, particle-tracking models do not reproduce the hydrodynamic 
model predictions for the spread of tracer concentrations (North et al. 2006a). In LTRANS, a 
random displacement model (Visser 1997) is implemented within the larval transport model to 
simulate sub-grid scale turbulent particle motion in the vertical (z) direction. Because there are 
vertical gradients in diffusivity, a random displacement model is used instead of a simple random 
walk model (see page 77) to avoid artificial aggregation of particles in regions of low diffusivity 
(Visser 1997, Brickman and Smith 2001, North et al. 2006a).  
 
This Vertical Turbulence Module is based on work presented in North et al. (2006a) in which the 
random displacement model was embedded in an on-line particle tracking model. The model was 
tested to determine if it could maintain the Well Mixed Condition, “an initially uniform 
concentration of [neutrally buoyant] particles uniform for all time” (Brickman and Smith 2002). 
Here is an excerpt from the abstract of the North et al. (2006a) paper: 
 

“A new interpolation scheme, the ‘water column profile’ scheme, was developed and used to 
implement a random displacement model (Visser 1997) for turbulent particle motions. A new 
interpolation scheme was necessary because linear interpolation schemes caused artificial 
aggregation of particles where abrupt changes in vertical diffusivity occurred. The new ‘water 
column profile’ scheme was used to fit a continuous function (a tension spline) to a smoothed 
profile of vertical diffusivities at the x-y particle location. The new implementation scheme was 
checked for artifacts and compared with a standard random walk model using 1) Well Mixed 
Condition tests, and 2) dye-release experiments. The Well Mixed Condition tests confirmed that 
the use of the ‘water column profile’ interpolation scheme for implementing the random 
displacement model significantly reduced numerical artifacts. In dye-release experiments, high 
concentrations of Eulerian tracer and Lagrangian particles were released at the same location up-
estuary of the salt front and tracked for 4 days. After small differences in initial dispersal rates, 
tracer and particle distributions remained highly correlated (r = 0.84 to 0.99) when a random 
displacement model was implemented in the particle-tracking model. In contrast, correlation 
coefficients were substantially lower (r = 0.07 to 0.58) when a random walk model was 
implemented. In general, model performance tests indicated that the ‘water column interpolation’ 
scheme was an effective technique for implementing a random displacement model within a 
hydrodynamic model, and both could be used to accurately simulate diffusion in a highly 
baroclinic frontal region.” 

 
Public Procedures:  The following are the public subroutines and functions contained within the 
Vertical Turbulence Module: Subroutine VTurb. 
 
 
 
 
 



  XIX. Vertical Turbulence Module 

136 

A. Subroutine VTurb 
 
Overview:  This subroutine calculates the vertical turbulence in the z- directions. 
 
Input Variables:  The subroutine VTurb has nine input variables.  The input variables are the 
vertical location of the particle (P_zc), the depth (P_depth) and surface height (P_zetac) at the 
particle location, the external (ex) and internal (ix) time variables, the current iteration of the 
external time loop (p), and the depths of s-levels (Pwc_wzb, Pwc_wzb, Pwc_wzb).  
  
Output Variables:  The module returns the vertical displacement (m) in the z-direction during 
one internal time step in the variable Turbv. 
  
Module parameters used:  This subroutine uses the parameters ws, p2, and idt from the 
Parameter Module, which contain the number of w s-levels, the number of s-levels to proliferate 
to, and the duration of the internal time step in seconds respectively. 
 
Module procedures used:  This subroutine uses the function getInterp from the Hydrodynamic 
Module, the function norm from the Norm Module, the functions linint and polintd from the 
Interpolation Module, and the procedures TSPSI, HVAL, and HPVAL from TSPACK in the 
Tension Spline Module. 
 
Private variables used: The subroutine uses no private variables. 
 
Initialization: This module must be ‘turned on’ in LTRANS.inc by setting the parameter 
VTurbOn = .TRUE.  
 
Numerical Method:  The random displacement model takes the form of: 
 

   [ ] 2
11

1 2 tKrRtKzz vvnn δδ −
+ +′+=  

 

where zn = initial particle location, Kv = vertical diffusivity evaluated at ( tKz vn δ′+ 5.0 ), δt = time 
step of the random displacement model, Kv’ = ∂Kv/∂z evaluated at zn, and R is a random number 
generator with mean = 0 and standard deviation r = 1. Note that the term with the gradient in 
vertical diffusivity (Kv’) gives the particle a kick away from regions of low diffusivity. This 
prevents artificial aggregation of particles in these regions. The turbulent particle motion sub-
model uses the same approach for determining Kv and Kv’ at the particle location as that used in 
the advection model, except that 1) a profile of the entire water column is created, 2) a 
smoothing algorithm is applied to the water column profile of Kv to prevent artificial aggregation 
of particles in regions of sharp gradients in diffusivity (North et al. 2006a), and 3) a 4th order 
Runge-Kutta is applied in time but not in space due to computational constraints.  
 
To prepare the smoothed profile of vertical diffusivity, first the number of vertical points is 
proliferated, and a value of Kv is assigned to each point by linear interpolation (the number of 
points is set as 4 times the number of s-levels). The profile is then smoothed with an 8-point 
moving average. An 8-point moving average was found to cause the least number of failures of 
the Well Mixed Condition test (North et al. 2006a). After smoothing, the surface and bottom 



  XIX. Vertical Turbulence Module 

137 

values of the profile are restored to original values in the hydrodynamic model output (which are 
likely the background vertical diffusivity of the hydrodynamic model). Finally, a tension spline 
is fit to the profile and used 
to calculate Kv and Kv’ at the 
particle location using 
TSPACK (Fig. 9) in the 
Tension Spline Module. The 
time step of the random 
displacement model (e.g., 2 
s) is set to much shorter than 
the internal time step (e.g., 
120 s). This avoids 
unrealistically large jumps in 
particle motion that could 
occur if times steps are large 
and gradients in diffusivity 
are steep. 
 
It should be noted that the 
time step of both the particle-
tracking model and the 
random displacement model 
likely influence the ability of 
the Vertical turbulence model 
to pass the Well Mixed 
Condition test (i.e., maintain 
the uniformity of an initially 
uniform concentration of 
particles over time). Moreover, the degree of stratification in the hydrodynamic model, and 
hence the magnitude of the gradient in vertical diffusivity, likely influences its ability to maintain 
the Well Mixed Condition. It is not known what the appropriate time step should be for a given 
degree of stratification. Further analyses are required.  
 
Many of the variables used in this module refer to x and y coordinates but actually represent 
vertical (z) coordinates and horizontal diffusivities. This convention was chosen to match the 
input values of the tension spline interpolation package, in which z-coordinates are treated as x-
values and diffusivities are treated as y-values.  
  
Variable Definitions:  The following variables are used in this section: 

background – dp – background vertical diffusivity from ROMS 
deltat – real - time step of random displacement model 
DEV – real - the random deviate drawn from a normal distribution 
ex – dp – x-values (from external time step) for polynomial interpolation in time (s) 
ey – dp - y-values (from external time step) for polynomial interpolation in time 
i – integer – iteration variable 
IER – integer – error indicator or iteration count (for TSPACK) 

Fig. 9. Schematic of interpolation scheme for vertical turbulence module. 
Left panel: Subset of model grid. Hydrodynamic model output was 
interpolated at each s-level to create a vertical profile (filled circles) at 
the x-y particle location. Right panel: Profile of vertical diffusivity. Data 
points were proliferated with linear interpolation (filled circles), 
smoothed with an 8-pt moving average, and fit with a tension spline 
(line) in order to estimate vertical diffusivity at the particle location (open 
circle). After Fig. 2 of North et al. 2006a.  



  XIX. Vertical Turbulence Module 

138 

idt – integer, parameter - internal time step of particle tracking model  
ifitx – dp - vertical coordinates for the profile of vertical diffusivity at the particle location 

for use in random displacement model 
ifitxb – dp - vertical coordinates for the profile of vertical diffusivity at the particle location 

from previous (‘back’) internal time step 
ifitxc – dp - vertical coordinates for the profile of vertical diffusivity at the particle location 

from current (‘center’) internal time step 
ifitxf – dp - vertical coordinates for the profile of vertical diffusivity at the particle location 

from next (‘forward’) internal time step 
ifity – dp - profile of vertical diffusivity at particle location for use in random displacement 

model 
ifityb – dp - profile of vertical diffusivity at the particle location from previous (‘back’) 

internal time step 
ifityc – dp - profile of vertical diffusivity at the particle location from current (‘center’) 

internal time step 
ifityf – dp - profile of vertical diffusivity at the particle location from next (‘forward’) 

internal time step 
interceptb – dp – intercept used for linear interpolation of vertical diffusivity (from the 

previous (‘back’) external time step) to proliferated points  
interceptc – dp - intercept used for linear interpolation of vertical diffusivity (from the 

current (‘center) external time step) to proliferated points  
interceptf – dp - intercept used for linear interpolation of vertical diffusivity (from the next 

(‘forward’) external time step) to proliferated points  
ix – dp – x-values (from internal time step) for polynomial interpolation in time (s) 
j – integer – iteration variable 
jlo – integer – contains the nearest s-level below the proliferated points, to be used when 

linearly interpolating values to the proliferated points 
k – integer – iteration variable 
KH3rdc – dp - vertical diffusivity ( Kv ) evaluated at ( tKz vn δ′+ 5.0 ) 
Kprimec – dp - gradient in vertical diffusivity (i.e., slope) at particle location 
KprimeZc – dp - second term in RDM equation ( tKvδ′ ) 
loop – integer -  number of iterations of the random displacement model loop 
movexb – dp – vertical coordinates for smoothed profile at the particle location from 

previous (‘back’) external time step 
movexc – dp – vertical coordinates for smoothed profile at the particle location from current 

(‘center’) external time step  
movexf – dp – vertical coordinates for smoothed profile at the particle location from future 

(‘forward’) external time step  
moveyb – dp – smoothed profile of vertical diffusivity at the particle location from previous 

(‘back’) external time step 
moveyc – dp - smoothed profile of vertical diffusivity at the particle location from current 

(‘center’) external time step 
moveyf – dp - smoothed profile of vertical diffusivity at the particle location from future 

(‘forward’) external time step 
newxb – dp – vertical coordinates for proliferated diffusivity values from previous (‘back’) 

external time step 



  XIX. Vertical Turbulence Module 

139 

newxc – dp - vertical coordinates for proliferated diffusivity values from current (‘center’) 
external time step 

newxf – dp - vertical coordinates for proliferated diffusivity values from future (‘forward’) 
external time step 

newyb – dp – diffusivity values from previous (‘back’) external time step 
newyc – dp – diffusivity values from current (‘center’) external time step 
newyf – dp – diffusivity values from future (‘forward’) external time step 
newZc – dp - new particle depth (z-coordinate) after each time step of the random 

displacement model 
p – integer - external time step do loop iteration variable 
p2 - integer, parameter – number of vertical coordinates to proliferate to 
P_zc – dp - particle depth (m) 
P_depth – dp - water depth at particle location (m) 
P_zetac – dp - sea surface height at particle location (m) 
ParZc – dp -  particle depth (m) 
Pwc_KHb – dp - vertical coordinates for diffusivity values from ROMS model from 

previous (‘back’) external time step 
Pwc_KHc – dp - vertical coordinates for diffusivity values from ROMS model from current 

(‘center’) external time step 
Pwc_KHf – dp – vertical coordinates for diffusivity values from ROMS model from future 

(‘forward’) external time step 
Pwc_wzb - dp – z-coordinates of each w s-level at particle location at back time 
Pwc_wzc - dp – z-coordinates of each w s-level at particle location at center time 
Pwc_wzf - dp – z-coordinates of each w s-level at particle location at forward time 
r – real - the standard deviation of the random deviate 
SigErr - integer – indicates error that TSPACK failed to converge 
SIGMAKc – dp – tension factors computed by TSPACK 
slopekb – dp – slope used for linear interpolation of vertical diffusivity (from the previous 

(‘back’) external time step) to proliferated points  
slopekc – dp - slope used for linear interpolation of vertical diffusivity (from the current 

(‘center) external time step) to proliferated points 
slopekf – dp - slope used for linear interpolation of vertical diffusivity (from the next 

(‘forward’) external time step) to proliferated points 
slopem – dp – slope at particle location calculated by linear interpolation 
thisyc – dp – a dummy variable used to fill the call line of linint 
TurbV – dp - displacement in z-direction due to vertical turbulence during internal time step 
ws – integer, parameter – number of w s-levels 
YPKc – dp – derivatives at nodes computed by, and used within, TSPACK  
Z3rdc – dp – vertical position at which to compute diffusivity for use in the random 

displacement model (Z3rdc = tKz vn δ′+ 5.0 ) 
 



  XX. Literature Cited 

140 

XX. Literature Cited 
 
Brickman, D., and P. C. Smith, 2002. Lagrangian stochastic modeling in coastal oceanography. 

Journal of Atmospheric and Ocean Technology 19: 83–99. 
 
Dippner, J. W. 2004. Mathematical modelling of the transport of pollution in water, in  

Mathematical Models, edited by J. A. Filar and J. B. Krawczyk in Encyclopedia of Life 
Support Systems (EOLSS), UNESCO, Eolss Publishers, Oxford,UK, 
[http://www.eolss.net]. 

 
Hunter, J., P. Craig, and H. Phillips. 1993. On the use of random-walk models with spatially-

variable diffusivity. Journal of Computational Physics 106:366-376. 
 
Kirk, J. T. O. 1994. Light and photosynthesis in aquatic ecosystems, 2nd edition. Cambridge 

University Press. Cambridge, UK. 509 p.  
 
Li, M., L. Zhong, and W. C. Boicourt. 2005. Simulations of Chesapeake Bay estuary: Sensitivity 

to turbulence mixing parameterizations and comparison with observations, Journal of 
Geophysical Research, 110, C12004, doi:10.1029/2004JC002585. 

 
Li, M., L. Zhong, W. C. Boicourt, S. Zhang and D.-L. Zhang. 2006. Hurricane-induced 

stormsurges, currents and destratification in a semi-enclosed bay. Geophysical Research 
Letters 33: L02604, doi:10.1029/2005GL024992. 

 
Meeus, J. 1998. Astronomical algorithms, 2nd edition. Willmann-Bell Inc. Richmond, VA. 477 p. 
 
North, E. W., R. R. Hood, S.-Y. Chao, and L. P. Sanford. 2005. The influence of episodic events 

on transport of striped bass eggs to an estuarine nursery area. Estuaries 28(1): 106-121. 
 
North, E. W., R. R. Hood, S.-Y. Chao, and L. P. Sanford. 2006a. Using a random displacement 

model to simulate turbulent particle motion in a baroclinic frontal zone: a new 
implementation scheme and model performance tests. Journal of Marine Systems 60: 365-
380. 

 
North, E. W., Z. Schlag, R. R. Hood, L. Zhong, M. Li, and T. Gross. 2006b. Modeling dispersal 

of Crassostrea ariakensis oyster larvae in Chesapeake Bay. Final Report to Maryland 
Department of Natural Resources, July 31, 2006. 55 p. 

 
North, E. W., Z. Schlag, R. R. Hood, M. Li, L. Zhong, T. Gross, and V. S. Kennedy. 2008. 

Vertical swimming behavior influences the dispersal of simulated oyster larvae in a 
coupled particle-tracking and hydrodynamic model of Chesapeake Bay. Marine Ecology 
Progress Series 359: 99-115. 

 
Song, Y., and D. B. Haidvogel. 1994. A semi-implicit ocean circulation model using a 

generalized topography-following coordinate system, Journal of Computational Physics 
115 (1): 228-244. 



  XX. Literature Cited 

141 

 
Visser, A.W., 1997. Using random walk models to simulate the vertical distribution of particles 

in a turbulent water column. Marine Ecology Progress Series 158: 275–281. 
 
Zhong, L. and M. Li. 2006. Tidal energy fluxes and dissipation in the Chesapeake Bay. 

Continental Shelf Research 26: 752-770. 



  XI. Appendix 

142 

XI. Appendix: List of Modules, Functions and Subroutines 
 
Overview:  The following is a list of all the modules used by LTRANS as well as the 
subroutines and functions contained within them. 
 
 
behavior_module.f90 (BEHAVIOR_MOD) 
 uses parameter numpar from PARAM_MOD 

Subroutines within the module: 
 initBehave 
  uses parameters Behavior, MaxSwim, settlementon from PARAM_MOD 
  uses subroutine initSettlement from SETTLEMENT_MOD 
 updateStatus 
  uses parameter dt from PARAM_MOD 
  uses function SETTLED, subroutine DIE from SETTLEMENT_MOD 
 Behave 

uses parameters us, dt, idt, twistart, twiend, Em, PI, daylength, Kd, thresh from 
PARAM_MOD 

uses function WCTS_ITPI from HYDRO_MOD 
uses function genrand_real1 from RANDOM_MOD 

Functions within the module: 
 getColor 
  uses parameter settlementon from PARAM_MOD 
  uses functions SETTLED, DEAD from SETTLEMENT_MOD 
 
 
boundary_module.f90 (BOUNDARY_MOD) 

Subroutines within the module: 
 createBounds 
  uses parameters ui, uj, vi, vj from PARAM_MOD 
  uses subroutines getMask_Rho, getUVxy from HYDRO_MOD 
 add 
 getNext 
  uses parameters vi, uj from PARAM_MOD 
 mbounds 
  uses function INPOLY from PIP_MOD 
 ibounds 
  uses function INPOLY from PIP_MOD 
 intersect_reflect 

Functions within the module: 
 isBndSet 
 
 
conversion_module.f90 (CONVERT_MOD) 
 uses parameters PI, RCF, Earth_Radius from PARAM_MOD 

Subroutines within the module: 



  XI. Appendix 

143 

 (None)  
Functions within the module: 

 rlon2x 
 dlon2x 
 rlat2y 
 dlat2y 
 rx2lon 
 dx2lon 
 ry2lat 

dy2lat 
 
 
gridcell_module.f90 (GRIDCELL_MOD) 

Subroutines within the module: 
 gridcell 

Functions within the module: 
 (None) 
 
 
hor_turb_module.f90 (HTURB_MOD) 

Subroutines within the module: 
 HTurb 
  uses parameters ConstantHTurb, idt from PARAM_MOD 
  uses function norm from NORM_MOD 

Functions within the module: 
 (None) 
 
 
hydrodynamic_module.f90 (HYDRO_MOD) 

uses parameters numpar, ui, vi, uj, vj, us, ws, tdim, rho_nodes, u_nodes, v_nodes, 
max_rho_elements, max_u_elements, max_v_elements, rho_elements, 
u_elements, v_elements from PARAM_MOD 

Subroutines within the module: 
 initGrid 
  uses parameters NCgridfile, prefix, suffix, filenum from PARAM_MOD 
  uses netcdf90 
 initHydro 
  uses parameters prefix, suffix, filenum from PARAM_MOD 
  uses netcdf90 
 updateHydro 
  uses parameters prefix, suffix, filenum from PARAM_MOD 
  uses netcdf90 
 setEle 
  uses subroutine gridcell from GRIDCELL_MOD 
 setInterp 
 getMask_Rho 



  XI. Appendix 

144 

 getUVxy 
 getR_ele 

Functions within the module: 
 getInterp 
 interp 
 WCTS_ITPI 
  uses subroutine TSPSI, function HVAL from TENSION_MOD 
  uses subroutine linint, function polintd from INT_MOD 
 getSlevel 
  uses parameter hc from PARAM_MOD 
 getWlevel 
  uses parameter hc from PARAM_MOD 
 getP_r_element 
 
 
interpolation_module.f90 (INT_MOD) 

Subroutines within the module: 
 linint 

Functions within the module: 
 polintd 
 
 
LTRANS.f90 (main program) 

Subroutines within the main LTRANS program: 
 FIND_CURRENTS 
  uses parameters us, ws, z0 from PARAM_MOD 
  uses functions interp, WCTS_ITPI from HYDRO_MOD 
  uses subroutine TSPSI, function HVAL from TENSION_MOD 
  uses subroutine linint, function polintd from INT_MOD 

Functions within the main LTRANS program: 
 (None) 

 
 
norm_module.f90 (NORM_MOD) 

Subroutines within the module: 
 (None) 

Functions within the module: 
 NORM 
  uses function genrand_real1 from RANDOM_MOD 
 
 
random_module.f90 (RANDOM_MOD) 

Subroutines used in the module: 
 init_genrand 

Functions used in the module: 
 genrand_real1 



  XI. Appendix 

145 

 
 
parameter_module.f90 (PARAM_MOD) 

Subroutines within the module: 
 (None) 

Functions within the module: 
 (None) 
 
 
point_in_polygon_module.f90 (PIP_MOD) 

Subroutines within the module: 
 (None) 

Functions within the module: 
 INPOLY 
 
 
settlement_module.f90 (SETTLEMENT_MOD) 

uses parameters numpar, rho_elements, minholeid, maxholeid, minpolyid, 
maxpolyid, pedges, hedges from PARAM_MOD 

Subroutines within the module: 
 initSettlement 
 readinHabitat 
  uses parameters habitatfile, holefile, holesExist from PARAM_MOD 
  uses interfaces lon2x, lat2y from CONVERT_MOD 
 createPolySpecs 
  uses parameters rho_elements, holesExist from PARAM_MOD 
  uses subroutine getR_ele from HYDRO_MOD 
  uses subroutine gridcell from GRIDCELL_MOD 
  uses function INPOLY from PIP_MOD 
 settlement 
  uses parameter holesExist from PARAM_MOD 
  uses function getP_r_element from HYDRO_MOD 
 psettle 
  uses function INPOLY from PIP_MOD 
 hsettle 
  uses function INPOLY from PIP_MOD 

Functions within the module: 
 SETTLED 
 DEAD 
 DIE 
 
 
tension_module.f90 (TENSION_MOD) 

Subroutines within the module: 
 TSPSI 
 SIGS 



  XI. Appendix 

146 

 SNHCSH 
 YPC1 

Functions within the module: 
 HVAL 
 HPVAL 
 STORE 
 INTRVL 
 
 
ver_turb_module.f90 (VTURB_MOD) 

Subroutines within the module: 
 VTurb 
  uses parameters ws, p2, idt from PARAM_MOD 
  uses function getInterp from HYDRO_MOD 
  uses function norm from NORM_MOD 
  uses subroutine linint, function polintd from INT_MOD 
  uses subroutine TSPSI, functions HVAL, HPVAL from TENSION_MOD 

Functions within the module: 
 (None) 
 
 


