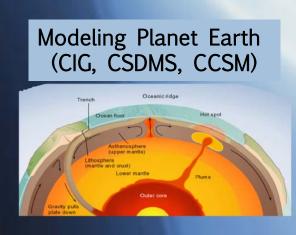
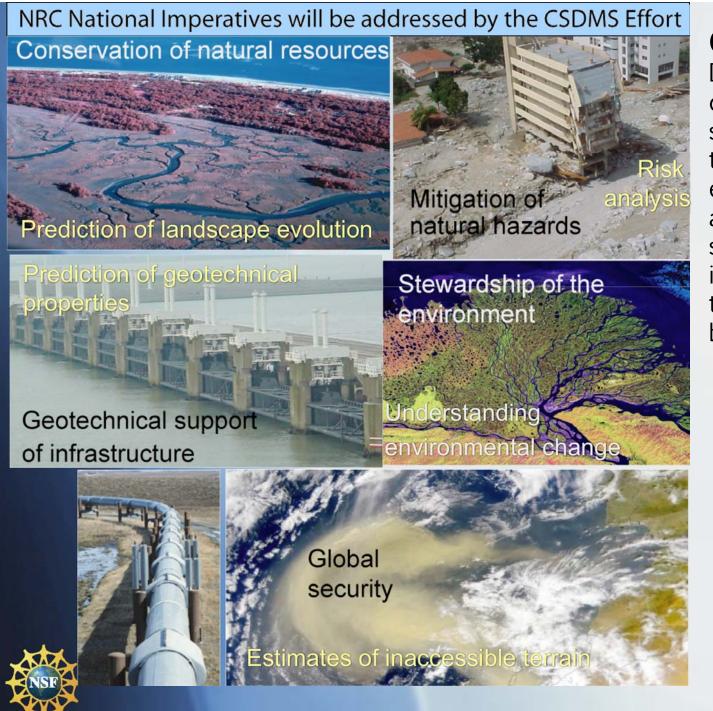

Community Surface Dynamics Modeling System CSDMS Working Group Charge

James P.M. Syvitski
CSDMS Integration Facility
U.Colorado—Boulder



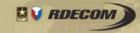
What is CSDMS?

- An integrated community of experts to promote the modeling of earth-surface processes.
- Protocols for the library of community-generated, continuously evolving, open software.
- Cyber-infrastructure to distribute software tools & models in aid of applied and education uses.
- Partnerships with related scientific programs, providing strong linkage between predictions and observations.



CSDMS Goal:

Develop and disseminate software modules that predict the erosion, transport, and deposition of sediment & solutes in landscapes and their sedimentary basins.



TECHNOLOGY DRIVEN, WARFIGHTER FOCUSED

U.S. Army Research, Development and Engineering Command

U.S. Army Research Laboratory

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Building the GeoInformatics System

National Oceanographic Partnership Program

Promoting Partnerships for the Future of Oceanography

International Council for Science

Scientific Committee on Oceanic Research

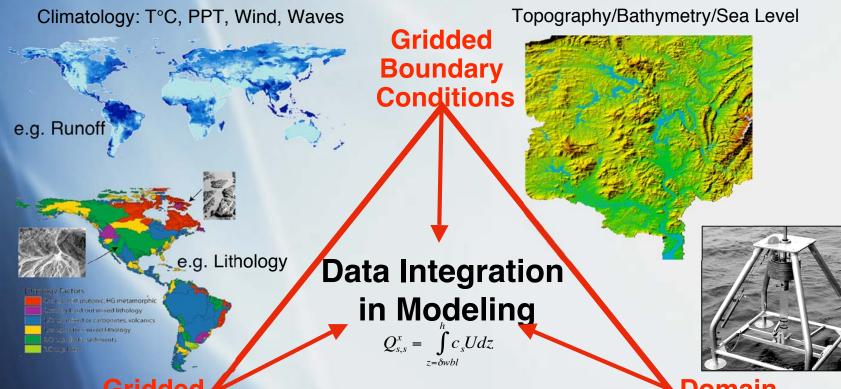
International Arctic Science Committee

CSDMS

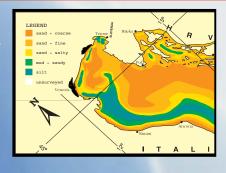
CSDMS is developing industrial consortiums: (Environment & Engineering; and Geological) The following have provided members to CSDMS working groups.

Protecting the Earth and its Descurees

Taking on the world's toughest energy challenges:"



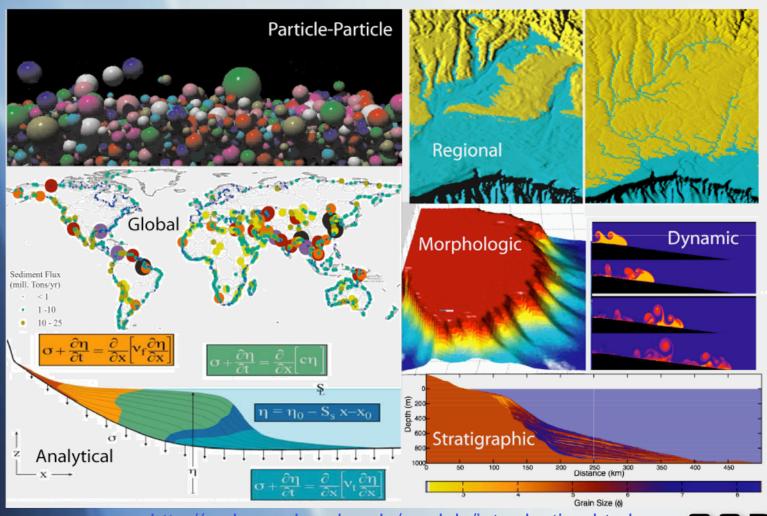
Human Energy



The CSDMS Data Repository

Gridded Initializations

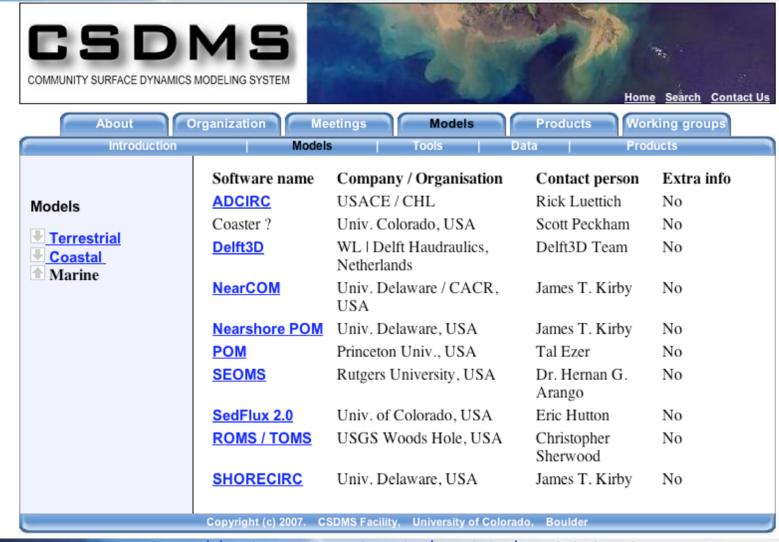
Ice Sheet Cover
Soil Type/Thickness
Grain Size
Lakes/Reservoirs
Human Factors: GNP, Pop.
Vegetation
Lithology


Domain Parameterization

Flocculation
Critical Shear Stress
Bioturbation
Weathering grade
Productivity
Authigenesis

The CSDMS Model/Tools Repository

CSDMS welcomes stand-alone models/languages & tools relevant to surface dynamics, including novel computational strategies, moving boundary methods, distributed source terms, & nested modules



CSDMS

The CSDMS Model/Tools Repository

CSDMS will point to, or distribute, legacy models/code

The CSDMS Model/Tools Repository

CSDMS will distribute contributed CSDMS models/code

IDENTITY

- Model name (and version):
- Model type; 1) Tool, 2) Single model, 3) Modular model:
- Mark one or more of the following categories that describes the domain where **OUTPUT DESCRIPTION** model simulates processes: 1) Terrestrial, 2) Coastal or 3) Marine.
- Modeler's name and affiliation:
- Model code developer(s) name and affiliation:
- Brief model description:

TECHNICAL INFORMATION

- Coding language:
- Computer platforms supported:
- How long has the model been developed/used:
- To what degree and how will the model become available to other researchers. license type:
- Typical run time and memory requirements on designated platforms:

INPUT DESCRIPTION

- Input parameters:
- Input format:

PROCESS DESCRIPTIONS

- Processes represented by the model:
- Key physical parameters & equations:
- Length scale and resolution constraints:
- Time scale and resolution constraints:

- Output parameters:
- Output format:
- Specific software needed for output processing and visualization:

TESTING

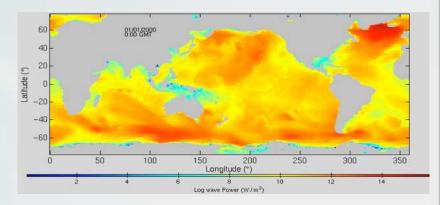
- Available calibration & test data sets:
- Ideal real-world data for testing your model (Laboratory and/or Field):

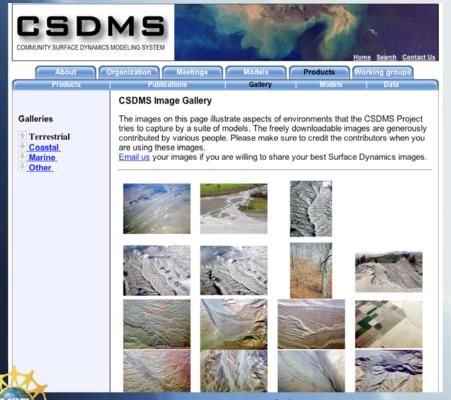
USER GROUP

 Are you currently, or do you presently have plans for, collaborating with other researchers?:

DOCUMENTATION

- Key papers on model:
- Manual available:
- Model website:


ADDITIONAL COMMENTS:



The CSDMS Education Repository

CSDMS will also distribute: 1) model simulations, 2) Educational PPTs, 3) Reports, Publications*, 4) Short Course Materials, 5) Images, 6) Meeting presentations.

The CSDMS Compliant Repository

Contributed compliant code to function within the CSDMS integrated modeling framework

Specs for the CSDMS Framework

Supports multiple operating systems: Linux, Mac-OSX & Windows

Supports parallel computation (via MPI standard)

Language interoperability: C, Fortran & object-oriented
languages (e.g. Java, C++, Python)

Supports both legacy (non-protocol) code and structured

•CCA, ESMF
•CCA, ESMF

code (procedural and object-oriented)

Interoperable with other coupling frameworks
Supports both structured and unstructured grids

Supports platform-independent GUI (e.g. via wxPython)

Large offering of open-source tools

Open source software license, industry-friendly, protection for authors, tracks modifications, GPL2 compatible OSI approved.

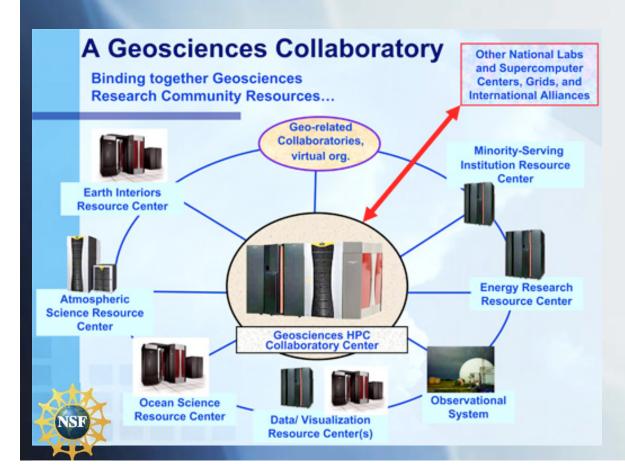
•CCA, ESMF

•CCA

•CCA

•CCA

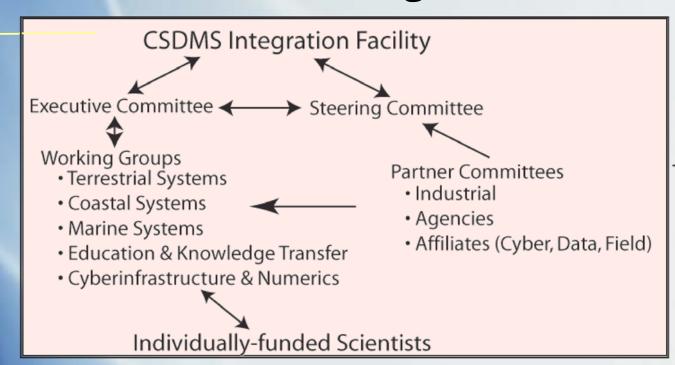
•BSD/MIT X11



High Performance Computing in the Geosciences Workshop National Center for Atmospheric Research, Boulder, Colorado NCAR

"CSDMS accepts the NSF directive to aid the surface-dynamics community moving towards modern High Performance Computers."

-- Syvitski, 2006, NCAR


The CSDMS IF is hoping to soon acquire a CSDMS-operated Experimental Supercomputer (ES) offering >256 cores for >3 teraflops of computing power, and configured with two HPC approaches — 1) massive shared memory among fewer processors, and 2) the more typical parallel configuration — running Linux with Fortran, C and C++ compilers.

It is hoped that the CSDMS ES will be linked to the proposed Front Range HPC with 7000 core, >100 teraflops, and in turn linked to the US TerraGrid and the proposed Cheyenne NCAR/UCAR Petascale HPC dedicated to the NSF Geoscience Collaboratory.

The CSDMS Org Chart

Funders
NSF
ONR
NASA
USGS
NOAA
ACE
ARO
Industry
others

```
Yr 1: NSF CSDMS: 0.25 ED; 0.75 EA; 1.5 S.E.; 0.5 web; 0.15 SysAdm; 0.2 Acct Tech NOPP + CP + NASA + ONR + NSF + CU = 3.5 FTE = \frac{3.4 \text{ FTE}}{6.9 \text{ FTE}} = 6.9 FTE Yr 2: NSF CSDMS: 0.5 ED; 1 EA; 2.2 S.E.; 0.5 web; 0.2 SysAdm; 0.25 Acct Tech NOPP + CP + NASA + ONR + NSF + CU \approx 4.0 FTE = \frac{4.6 \text{ FTE}}{8.6 \text{ FTE}} = 8.6 FTE NOPP + CP + NASA + ONR + NSF + CU \approx 3.6 FTE = \frac{3.4 \text{ FTE}}{6.9 \text{ FTE}} = 8.6 FTE = \frac{3.5 \text{ FTE}}{6.9 \text{ FTE}} = \frac{3.4 \text{ FTE}}{6.9 \text{ FTE}} = \frac{3.4 \text{ FTE}}{6.9 \text{ FTE}} = \frac{3.4 \text{ FTE}}{6.9 \text{ FTE}} = \frac{3.6 \text{ FTE}}{6.9 \text{ FTE}}
```


The CSDMS Team

Terrestrial	Coastal	Marine	Cyber/Numerics	EKT
Tucker/CIRES	Murray/Duke	Wiberg/VIMS	Sun/ExxonMobil	Pratson/Duk
51 members	49 members	39 members	17 members	<u>e</u>
35 institutions	41 institutions	36 institutions	15 institutions	9 members
5 countries	11 countries	8 countries	2 countries	7 institutions
THE RESERVE				USA

CSDMS ExCom: the primary decision-making body. Ensures that the NSF Cooperative Agreement is met. Develops By-Laws & Operational Procedures. Approves the annual science plan, semi-annual reports, management plan, budget, partner memberships, and other issues that arise in the running of the CSDMS. Consists of the ExDir as ExCom Chair, + 5 W.G. Chairs + S.C. Chair + S.S.E.

CSDMS Steering Committee: Assesses the competing objectives and needs of the CSDMS; progress of CSDMS in terms of science, management, outreach, and education; and advises on revisions to the 5-year strategic plan. Approves the By-Laws.

<u>Chair R. Slingerland</u> (Penn State); T. Drake (ONR), B. Jagers (Delft Hydraulics), R. Sarg (Mines), G. Parker (U. Ill. Urbana Champaign), D. Tetzlaff (Schlumberger-Doll), D. Furbish (Vanderbilt), T. Dunne (UC-Santa Barbara) + ex officio members J. Syvitski (CSDMS ExDir) & M. Ellis (NSF).

The CSDMS Integration Facility

- Maintains the CSDMS Repositories: 1) Data Repository; 2) Model/Tools Repository; 3) Education Repository; 4) Compliant Repository; 5) Membership Repository; 6) CSDMS Communication Repository & 7) CSDMS Governance
- Facilitates CSDMS Communication: 1) Business Meetings (SC, ExCom, Partners, Directorate); 2) Working Group Meetings; 3) Workshops, 4) Short Courses; 5) Web Pages, 6) Teleconference, 7) Videoconferences, and 8) Email Communication
- Facilitates Community coordination & public relations
- Facilitates Product Penetration
- Conducts Tool/Model Protocol testing & evaluation on varied platforms
- Evaluates hardware & software configurations with CSDMS products
- Develops the CSDMS cyber-infrastructure (e.g. coupling frameworks; licenses; protocols)
- Provides CSDMS software modeling guidance (expertise)
- Maintains the CSDMS Vision & Cooperation between disparate communities, & between field and modeling communities.

CSDMS Environmental Working Group Activities

Identify: processes that should be in their disciplinary toolkit, gaps in knowledge, and areas for numerical tool development.

Develop a list of short & long term goals

Set: scientific modeling priorities for their discipline.

Recommend: resource prioritization to ExCom & the Integration Facility.

Create / manage: the environmental process modules related to their discipline. **Ensure:** quality control for the algorithms and modules for their area of expertise (benchmark validation datassets).

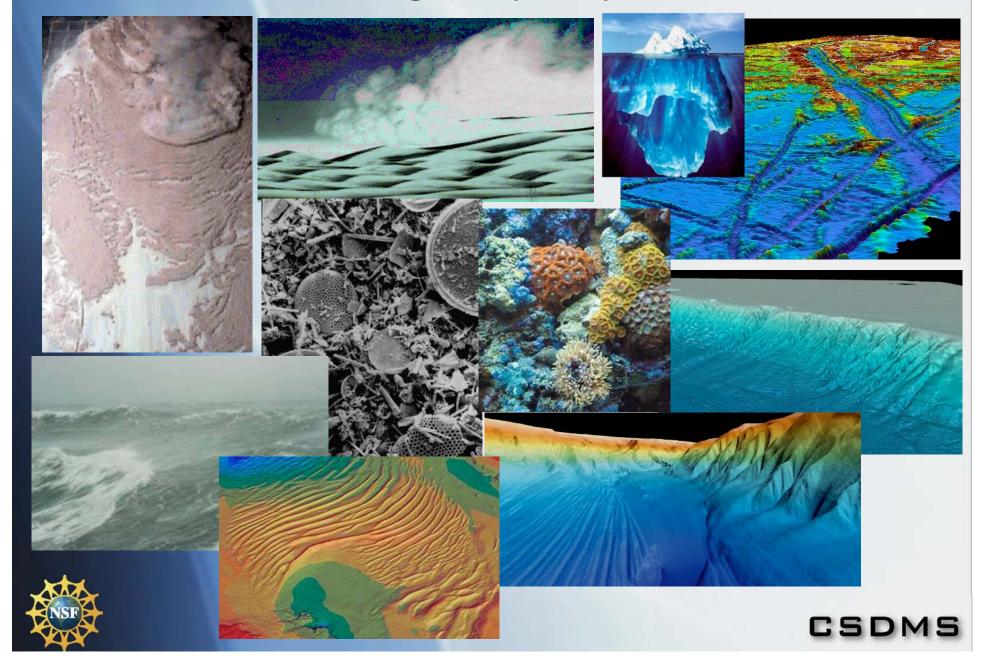
Coordinate: the evaluation of numerical codes according to interoperability, scientific contribution, protocol compliance, and technical documentation. Ensure adequacy of supporting boundary conditions and boundary initializations.

Address: a CSDMS proof-of-concept challenge. Provide community continuity to meet long-term CSDMS objectives.

Stimulate proposals and input from the community.

Report progress annually.

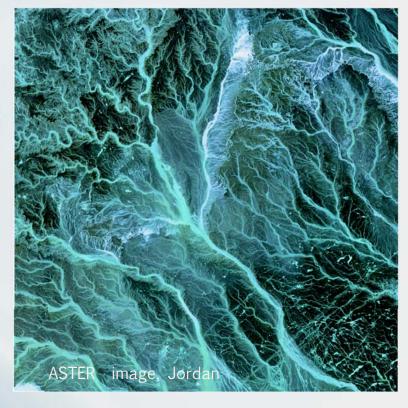
CSDMS Terrestrial Working Group Scope



CSDMS Coastal Working Group Scope

CSDMS Marine Working Group Scope

CSDMS Working Group Model Challenges


1. Models that track the transport and fate of water, sediments, carbon & nutrients.

2. Surface dynamic models that include the Human

Dimension

3. Models that track surface dynamics thru Pleistocene glacial cycles

4. Models in aid of natural disasters mitigation

Membership has its privileges

- Part of a family of experts advantages in staying current within a community taking the Earth Sciences to the next level
- Competitive funding opportunities better integrated proposals
- Better knowledge on available models for education and application
- Recognized service in an interesting & new field of interdisciplinary science
- Better/faster penetration of one's numerical advances, data and simulation products
- Closer interaction with a wide variety of industrial & NGO partners and federal agencies, with possible spin-off funding opportunities
- Better academic & public recognition for code development
- Increased outreach and knowledge-transfer opportunities

The Promise of CSDMS

- Better understand the evolution of Earth's surface environments,
 while understanding the uncertainties in the predictions.
- Provide tools/models in support of surface-dynamic research.
- Address the complexities of feedbacks and linkages known in surface science, employing a wide variety of experts.
- Develop useful products for the benefit of broader society.

