
OpenFOAM
q Open	source	CFD	toolbox,	which	

supplies	preconfigured	solvers,	
utilities and	libraries.

q Flexible	set	of	efficient	C++	
modules---object-oriented.

q Use	Finite-Volume	Method	(FVM)	
to	solve	systems	of	PDEs	ascribed	
on	any	3D	unstructured mesh	of	
polyhedral	cells.

q Good	parallelization. Overview of OpenFOAM structures

q Resourceful	community (CFD	forum,	http://www.cfd-online.com/Forums/openfoam/)	
contribution	(user-defined	libraries).

q interFoam,	which	is	a	solver	for	2	incompressible	fluids	with	interface	tracking,	is	used	in	the	
present	study.
Tutorials:	http://cfd.direct/openfoam/user-guide/dambreak/

0																			where	boundary	conditions	 are	defined	for	
alpha.water,	B,	k,	nuSgs,	p_rgh,	U	

constant	

system

Mesh	building	 -- blockMeshDict

Turbulence	 closure	– turbulenceProperties,	LESProperties

Computational	 time	control	-- controlDict

Numerical	 schemes	 -- fvSchemes

Numerical	 solvers	-- fvSolution

Initial	condition	 -- setFieldslDict

Domain	decomposition	 -- decomposeParDict

Build	the	domain	and	set	the	grids

Choose	the	turbulence	 closure

Set	the	 initial	 condition

Set	the	boundary	condition

Choose	the	numerical	schemes

Choose	the	numerical	solvers

Set	the	time	control

Decompose	 the	domain

Run	the	case

Build	the	domain	and	set	the	grids

Choose	the	turbulence	 closure

Set	the	 initial	 condition

Set	the	boundary	condition

Choose	the	numerical	schemes

Choose	the	numerical	solvers

Set	the	time	control

Decompose	 the	domain

Run	the	case

x

y

z

0 (0	0	-0.3)

1 (18.2	0	0.064)

2 (18.2	0	0.3)

How	to	choose	an	appropriate	
domain	height?
- Big	enough	to	make	sure	the	
breaking	wave	will	not	touch	the	top	
boundary;
- Not	to	big,	to	save	computational	
cost.

3 (0	0	0.3)

4 (0	0.6 -0.3)

5 (18.2 0.6	0.064)

6 (18.2	0.6
0.3)

7 (0	0.6	0.3)

How	to	choose	an	appropriate	domain	
width?
- Big	enough	to	cover	several	largest	
eddies	in	the	experiment;
- Not	to	big,	to	save	computational	cost.

In	this	case,	the	domain	length	is	set	to	
be	smaller	than	that	in	the	experiment	
[Ting	2006,	2008]	but	long	enough	to	
cover	the	initial	shoreline	and	swash	
zone

Domain	Layout

Nz	=	80.
How	to	determine	the	number	of	grids	in	the	
vertical	direction?
-- Determined	 by	the	number	of	grids	needed	to	
solve	the	wave.

E.g.,	in	this	case,	H0=0.22	m.	Using	30	grids	to	
solve	the	wave	
∆z =	7.5	mm	at	the	left	boundary		
Nz =	Domain	height	/	∆z =	80

z

Nx	=	2427.
How	to	determine	the	number	of	grids	in	the	
streamwise direction?
--Make	sure	the	ratio	of	∆𝑥/∆𝑧 is	not	too	big	(<5).

E.g.,	in	this	case,	Dzmax=7.5	mm	at	the	left	
boundary;	Dzmin=3	mm	at	the	right	boundary.
To	make	∆𝑥/∆𝑧 <	5,	choose	Dxmax=11.5	mm	(∆𝑥/∆𝑧
=	3.8)	at	the	left	boundary	
and	
Dxmin=4.6	mm	 (∆𝑥/∆𝑧 =	1.5)	at	the	right	boundary.
∆𝑥 is	shrinking	from	the	left	to	the	right.	(So	is	∆𝑧)

Build	the	grids

Ny	=	80.
How	to	determine	the	number	of	grids	in	the	
spanwisedirection?	
Make	sure	the	ratios	of	∆𝑦/∆𝑧 and	∆𝑥/∆𝑦 are	
not	too	big.	E.g.,	in	this	case,	∆y =	7.5	mm	

x

Build	the	domain	and	set	the	grids

Choose	the	turbulence	 closure

Set	the	 initial	 condition

Set	the	boundary	condition

Choose	the	numerical	schemes

Choose	the	numerical	solvers

Set	the	time	control

Decompose	 the	domain

Run	the	case

Choose	 the	turbulence	closure

Large-eddy	simulation	 in	this	simulation

Dynamic	Smagorinsky closure	 is	used,	and	an	improved	version	of	dynamic	
Smagorinsky closure	developed	 by	Alberto	Passalacqua is	adopted.

How	to	install	the	improved	dynamic	Smagorinsky closure	in	OpenFOAM?
1. Download	the	source	code	using	git:	

git clone	git://github.com/AlbertoPa/dynamicSmagorinsky.git	
2.				Enter	the	directory	where	the	source	code	has	been	extracted,	and	compile	it	
by	typing:	

wmake libso
3.				Add	the	following	line	to	the	controlDict of	your	case:	libs	("libOpenFOAM.so"	
"libdynamicSmagorinskyModel.so")	;	
4.			Specify	LESModel dynamicSmagorinsky;	delta	cubeRootVol;	in	LESModel.	5.	
Add	the	subdictionary

dynamicSmagorinskyCoeffs
{	filter	simple;	
ce 1.048;	
}	

to	LESModels.

Filter	 is	defined	as	 Δ = Vcell3

https://github.com/AlbertoPa/dynamicSmagorinsky

Build	the	domain	and	set	the	grids

Choose	the	turbulence	 closure

Set	the	 initial	 condition

Set	the	boundary	condition

Choose	the	numerical	schemes

Choose	the	numerical	solvers

Set	the	time	control

Decompose	 the	domain

Run	the	case

Set	the	initial	 condition

(0	0	-0.3)

(0	0.6	-0.3)

(0	0		0) (0	0.6	0)

(15	0.6	0)(15	0	0)

Offshore	

Onshore	

Build	the	domain	and	set	the	grids

Choose	the	turbulence	 closure

Set	the	 initial	 condition

Set	the	boundary	condition

Choose	the	numerical	schemes

Choose	the	numerical	solvers

Set	the	time	control

Decompose	 the	domain

Run	the	case

Define	the	boundaries

(Wall	 function	 is	used)

Sends	 in	the	target	solitary	wave	through	groovyBC

What	is	groovyBC?
-- A	library	that	can	be	used	to	generate	arbitrary	boundary	conditions	 based	
on	expressions.	 It	is	included	 in	the	swak4Foam	library	package.

Link:	https://openfoamwiki.net/index.php/Contrib/swak4Foam

Install	groovyBC

1.	Download	swak4Foam	library	package	from

svn checkout	svn://svn.code.sf.net/p/openfoam-
extend/svn/trunk/Breeder_2.0/libraries/swak4Foam/	 swak4Foam_2.x

2.	In	the	directory	of	the	sources,	type

wmake all

Use	groovyBC to	send	in	solitary	wave

Expression	of	the	
theoretical	surface	
elevation	in	Lee	et	al.	
[1982]	

Expression	of	the	
theoretical	velocity	in	
Lee	et	al.	[1982]	

α1 =

1, z ≤ H
cosh2 atp −ct + xs()()

0, z > H
cosh2 atp −ct + xs()()

#

$

%
%

&

%
%

c = gh 1+H h()h = 0.3m H = 0.22m fs = 2.644 g = 0,0,−9.81() xs = hfs
H h

atp = 0.75H
h3

u =

ghH
cosh2 atp −ct + xs()"# $%h

1− 0.25H
cosh2 atp −ct + xs()"# $%h

"

#
&
&

$

%
'
'
, z ≤ H

cosh2 atp −ct + xs()()

0, z > H
cosh2 atp −ct + xs()()

)

*

+
+

,

+
+

w =

− ghz
h

1− 0.5Hdex
cosh2 atp −ct + xs()"# $%h

"

#
&
&

$

%
'
'
, z ≤ H

cosh2 atp −ct + xs()()

0, z > H
cosh2 atp −ct + xs()()

)

*

+
+

,

+
+

v = 0

Specify	the	boundary	 conditions

p_rgh:	dynamic	pressure

U:	velocity

alpha.water:	 					(percentage	of	water	in	each	cell)	 in	the	VOF	equationα1

B:	subgrid-scale	 tensor	 in	LES.																											is	the	unit	tensor;	 				is	
the	deviatoric part	of	the	subgrid-scale	 tensor	and	is	parameterized	
by	subgrid closure

B = 2 3kI +Beff I

k:	subgrid-scale	 kinetic	energy	in	LES.																							,														,								is	the	rate	
of	strain

k = cIΔ
2 D 2 cI ≈ 0.2 D

nuSgs:							,	sub-grid	scale	 viscosity	 in	LESν sgs

Specify	the	boundary	 conditions

zeroGradient:	normal	gradient	is	zero

cyclic:	periodic	 boundary	condition

inletOutlet:	≈ zeroGradient.	But	switch	to	fixedValue (using	“inletValue”)	 if	
the	velocity	just	outside	 the	boundary	is	flowing	into	the	domain

pressureInletOutletVelocity:	 =	pressureInletVelocity +	inletOut
pressureInletVelocity:	 When	𝑝 is	known	at	the	inlet,	𝑈 is	evaluated	from	
the	flux	normal	to	the	path.			

totalPressure:	 Total	pressure	 																																			is	 fixed;	when		changes,	
p	will	be	adjusted	accordingly

p0 = p+1 2ρ U
2

U

Build	the	domain	and	set	the	grids

Choose	the	turbulence	 closure

Set	the	 initial	 condition

Set	the	boundary	condition

Choose	the	numerical	schemes

Choose	the	numerical	solvers

Set	the	time	control

Decompose	 the	domain

Run	the	case

Numerical	 schemes

ddtSchemes:	 first	time	 derivative	 𝜕/𝜕𝑡 .	“CrankNicholson 1”	is	the	pure	2nd-
order	Crank-Nicolson	 scheme

gradSchemes:	 Gradient	𝛻.	“Gauss	linear”	means	Gauss’	theorem	is	used	when	
transforming	integral	over	volume	into	integral	over	surface;	“linear”	means	
central	difference	scheme	 (CDS)

divSchemes:	 Divergent	𝛻 ..	“Gauss	limitedLinearV 1”	and	“Gauss	vanLeer”	are	both	
TVD	schemes	with	different	limiters.	 	“Gauss	 interfaceCompression”	 is	used	for	the	
interface	compression	 term

interpolationSchemes:	 numerical	scheme	 for	the	evaluation	 of	face	values	from	the	
cell	center	values

snGradSchemes:	 component	 of	gradient	normal	to	a	cell	 face

fluxRequired:	 fields	which	require	the	generation	 of	a	flux

laplacianSchemes:	 Laplacian .	“Gauss	 linear	corrected”	is	CDS	with	some	
correction	terms	

∇2

Build	the	domain	and	set	the	grids

Choose	the	turbulence	 closure

Set	the	 initial	 condition

Set	the	boundary	condition

Choose	the	numerical	schemes

Choose	the	numerical	solvers

Set	the	time	control

Decompose	 the	domain

Run	the	case

Numerical	 solvers

Solves	the	Pressure	Poisson	Equation

Set	the	solvers	for	p_rgh and	U

PIMPLE	=	SIMPLE	+	PISO

Build	the	domain	and	set	the	grids

Choose	the	turbulence	 closure

Set	the	 initial	 condition

Set	the	boundary	condition

Choose	the	numerical	schemes

Choose	the	numerical	solvers

Set	the	time	control

Decompose	 the	domain

Run	the	case

Set	the	time	control

startFrom

stopAt

deltaT

writeControl

adjustTimeStep

maxCo

maxAlphaCo

maxDeltaT

Build	the	domain	and	set	the	grids

Choose	the	turbulence	 closure

Set	the	 initial	 condition

Set	the	boundary	condition

Choose	the	numerical	schemes

Choose	the	numerical	solvers

Set	the	time	control

Decompose	 the	domain

Run	the	case

Decompose	 the	domain

“decomposeParDict”

simpleCoeffs
{
n															(4	1	2);
…

}

numberOfSubdomains 8;

x

y

z

Type
decomposePar

Build	the	domain	and	set	the	grids

Choose	the	turbulence	 closure

Set	the	 initial	 condition

Set	the	boundary	condition

Choose	the	numerical	schemes

Choose	the	numerical	solvers

Set	the	time	control

Decompose	 the	domain

Run	the	case

Run	the	case

Type
interFoam

