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Relative Sea Level Rise is a major
challenge in deltas
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Sediment flux and the Anthropocene




Drivers of RSLR

J.P. Ericson et al. / Global and Planetary Change 50 (2006) 63-82

Dominant Factor

[ Sediment Trapping
B Accelerated Subsidence
[_] Eustatic SLR

Fig. 6. Dominant factor in estimate of baseline ESLR for each of the 40 deltas. Sediment trapping is the dominant factor for 27 deltas, eustatic sea-
level rise is the dominant factor for 8 deltas and accelerated subsidence is the dominant factor for 5 deltas. This represents the major forces at play

under contemporary conditions.
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But, consequences of RSLR are not
equal across deltas

Coastal
development:
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But, consequences of RSLR are not
equal across deltas
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But, consequences of RSLR are not
equal across deltas

Coastal
development
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But, consequences of RSLR are not
equal across deltas

Coastal
development I Vs
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Goal: Estimate sensitivity of flood risk
to RSLR across 48 major global deltas
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Risk and vulnerability modeling
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on the Social Ecological System
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Tipping and transformation processes

v v

Fig. 1 Deltas-SES framework (source: authors based on Turner et al. 2003; Damm 2010; Garschagen 2014; Kloos et al. 20

Table 2 Illustrative example indicators used or suggested by tl

r social vulnerability assessment

Social susceptibility Indicator
Urban areas
Urbanization, population density, and population growth Population density (n/km2)

Key economic sectors and services
Aggregate measures of public infrastructure
Water supply

Transportation infrastructure
Housing/settlement characteristics
Livelihoods

Income

Disability

Age

Gender

Household size

Assets

Dependency on climate-sensitive income sources
Human security

Land conflicts

Human health

Health impacts due to storms and floods

Food and waterborne diseases

Arsenic- and salt-related health impacts
Coping and adaptive capacity
Structural and physical options
Engineered and built environment

Services (e.g., recovery relief, social networks, water management
system, electricity, transportation, social capital index (—),

medical services, access to market)

Density of public infrastructure (m/ha)
Volume of water storage in the reservoir (m3)
Roads (km)

Quality of house (categorical)

Income (amount of money/household/year)

Percentage of disabled persons (%)

Age (years)

Percentage of male-headed household (%)
Homestead/household size (number of persons)
Landholdings (ha)

Percentage of population primarily living on fishing (%)

Land conflicts per year (n)

Percentage of population with access to cyclone shelter/
primary school (%)

Percentage of households indicating ownership of a
sanitary facility (%)

Arsenic consumption through drinking water (mg/L)

Existence of structural measures such as dikes (binary)

Percentage of households that received emergency recovery
relief (%)

Percentage of population using unsafe sources of drinking
water (%)

Percentage of population with no access to electricity (%)

-~ ~ 1 . PO ~ . .




Delta Flood Risk Model

Model risk as an expected loss
Loss from a single hazardous event, h,,.

L = Eho *Vho

E is exposure, the number of people exposed to
hazardous conditions by h,

V is vulnerability, is the average harm or loss endured by
those exposed
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Delta Flood Risk Model

« Total risk or expected loss, R, is the sum of expected losses over all
possible hazardous events, weighted by each event’s probability

R= ) HMREMV()
2.

H(h):

Hazard Weighting Function Exposure Function . Vulnerability Function

exposed, E

Harm per person ex
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Tracks and Intensity of All Tropical Storms

Hazard Frequency

o] = [
Saffir-Simpson Hurricane Intensity Scale

o Indicators:
Tropical cyclone
intensityand
frequency
M2 tidal amplitude

5000 Mekong - waves_CSIRO, full timeseries

River discharge 30y [l |
return value o NI
(standardized) e
Wave energy 30yr

Mean; 0.32 |
:-StdDev: 0:4

w
]

return value
(standardized)

o mom NN W
5 o 0o oo

o
o

1990 1995 2000 2005 2010

Daily mean wave energy flux, Kjf/m

Z. Tessler — CUNY ASRC

and Intensity (H)

Global Cyclone Hazard Distribution

Cyclone Hazard
Deciles
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Mekong - waves_CSIRO, 99.00% tail e cyclone data set s comprised of cata collected from more than 1,600 storm tracks during the
1-year period from 1980 — 2000 for the Atlantic, Pacific, and Incian Oceans. At least 67% of the

ricts land area was subject to at least one instance of tropical storm or hurricane-type conditions.
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Vulnerability (V)

Many variableshave been used in local/regional studiesto estimate
social vulnerability

Here, restricting ourselves to datasets availableat the global scale

Vulnerability of a delta varies at the household scale (strength/quality
of housing) and the delta scale (coastal infrastructure)

Indicators:
Per capita GDP (household vulnerability)
Aggregate GDP (Capacity for infrastructure investment)
Government effectiveness index (Capacity/will for preparedness, response)
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Exposure (E) — \.ll\ﬂ.u

RSLR results in lower elevation, increased population
exposed (for a given hazard)

Estimate RSLR from available indicators

Obtain estimate for changing flood risk due to RSLR

RSLR ~ E’ -

While low-lying

areas in the Mekong
and Irrawaddy are
flooded, <Om

elevation land in the
Pearl is protected by
coastal and channel
barriers (From Syvitski |
2009)
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RSLR Indicators

« Delta:
Population Density
Wetland Disconnectivity
Impervious Surface Area
Groundwater Depletion
Hydrocarbon Extraction

Upstream Basin:
Population Density

Wetland Disconnectivity
Impervious Surface Area

Offshore:
« Local sealevel rise trend
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Hazard Frequency and Intensity (H)

Hazardous Event Index, H

30yr Discharge

30yr Wave Energy
s M2 Tidal Amplitude
mmm Cyclone Frequency
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Investment Capacity - inverse of Vulnerability (V)

Investment Capacity Index

Delta GDP
www Delta Per Capita GDP
mmm Government Effectiveness
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Delta R” Space
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A thought experiment...

« How might vulnerability change in an energy-constrained
future?
Energy prices are expected to rise faster than GDP (US Energy

Information Administration models)
Require stronger infrastructure to maintain constant level of

protection due to future SLR
Overall, more expensive to reduce vulnerability

Re-weight Vulnerability Index to reduce the relative

importance of GDP
(more difficult to “buy your way out of trouble”)
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Future Changes in Vulnerability, and
Exposure

Both future
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How do we expect R’ to change in this
future scenario?

Contemporary

If this is not an
Wealthy deltas \ R, no investments option in the

currently invest future, risk

in protective “rebounds” and
infrastructure, - approaches the risk
reducing risk 2 state with no

from increasing investment.

RSLR despite e
geophysical e Seen most

setting dramatically in

e wealthy deltas in
hazardous
locations —
Mississippi, Rhine,
Han, Yangzte...

L 1 1 1 1 )
00 01 02 03 04 i

Z. Tessler — CUNY ASRC



Risk’, now and future scenario change
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Future Scenarios

e Current methodology utilizes coarse scale indicators to build a
heuristic model of coastal risk

 Lack of physical process modeling makes incorporating future change
difficult.

* We considered future global macroeconomic trends — can we extend
this to include other processes:

* Accelerating SLR
* Increased dam construction
e Population growth, migration

e Can we quantify the effect of mitigation strategies on coastal risk?
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Environmental change -> RSLR

* Following Ericson 2006 model of RSLR, with Syvitski and Milliman
2007 BQART model of mean fluvial sediment flux:

Neslr= Gslr+ Gsub' Gcﬂuv wB Q0'31140'5RT for T > 2°C p
N.= Net effective sea-level rise 2wB QO‘SIAO'5R for T< 2°C,

eslr
G, = Gross accelerated eustatic sea-level rise
G,yp= Gross total subsidence (= G+ G,,) Estimate long-term mean RSLR

G.= Gross human-induced subsidence,

approximated from drawdown estimates dCross glObaI deltas based on gIObal
G,q,,= Gross contemporary accretion of fluvial available remote Sensing’ mode“ng’

sediment corrected for upstream trapping and

decreased discharge and other data

Gcﬂuvz Gnﬂuv * (]' TEbas)
Ericson, 2006
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Geophysical data —

temperature,

rainfall, basin
relief, lithology...

Global river
network, basins,
and delta maps

Artificial
reservoir
locations, size

Groundwater,
hydrocarbon
mining
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Delta risk framework
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Surge exposure trends: Pristine Contemporary
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Pote nt|a I for a Surge exposure trends: Pristine Accelerated SLR
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Delta Risk Profiling Conclusions

Krishna, Ganges, Brahmani, Godavari deltas are most sensitive to increased RSLR (per capita
risk basis)

Several wealthy deltas (Mississippi, Rhine) have low R’ despite high hazard and high RSLR
estimates due to low vulnerability

Future changes to vulnerability due to changing economics of coastal protection will have
outsized effects on these systems. These particular systems are highly sensitive to changing

vulnerability.

Starting to investigate how anthropogenic changes to the upstream and coastal
environments propagate through to affect long-term coastal risk.

Population growth/contraction s a critical factor in future risk—collaborations with social
scientists are very important! <
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