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Transport during the 
two turbidity currents
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[an arbitrary unit that can be converted to g/m]
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• The mean and tidal transport at the 
mooring site can be divided into three 
layers: 30-40 m immediately below the 
canyon rims, the canyon interior, and the 
bottom 60 m near the canyon floor.

• Transports in the top and bottom layers are 
nearly one order of magnitude greater than 
in the interior layer. The diurnal transport is 
minimal compared to the much greater 
semi-diurnal or subtidal transport.

• While the semi-diurnal transport in both 
the top and bottom layers are upcanyon, the 
subtidal transport has opposite directions in 
the two layers.

• Transports due to turbidity currents are 
limited to the bottom 20 m near the canyon 
floor.

• The transport during two turbidity current 
events, a combined duration of less than 3 
hours, is in the same order of magnitude of 
oscillatory transport integrated over the 
whole 6-month deployment. A single 
two-hour event is more than double the 
mean transport through the cross-section of 
the whole thalweg for the entire 6-months.

SUMMARY

Reference:
Xu, J.P., P.W. Swarzenski, M.A. Noble, A.C. Li (2010) Event-driven sediment flux in 

Hueneme and Mugu submarine canyons, southern California. Marine Geology, 269, 

74-88. doi:10.1016/j.margeo.2009.12.007
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12/05/2007 event
Duration: 55 min.

12/05/2007 event, Duration: 55 min.

2/25/2008 event
Duration: 120 min.

2/25/2008 event, Duration: 120 min.
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SEDIMENT TRANSPORT
BY

TURBIDITY CURRENTS

Energetic sediment transport 
events resembling turbidity 
currents were observed four times 
during the 6-month period (two of 
them shown here). The maximum 
speed of these turbidity currents 
reached almost 300 cm/s. 

Integrate the bottom 20 m of the <uc> 
profiles then multiply the duration of the 
events (T) to obtain the sediment transport,

W = (∫<u c> dz) T

in an arbitrary unit of count*m2, the transport 
for the two listed events are respectively

12/05/2007 event: 1.72e+6
  2/25/2008 event: 5.52e+6

When a calibration becomes available to 
convert ‘count’ to g/m3, the unit for W is g/m 
- flux per unit width of the thalweg.

Using the depth-averaged estimate of u=1.5 
m/s, c=2 kg/m3 (Xu et al, 2010), the 2-hour 
long event on 2/25/2008 transported a total 
of 69,000 metric tons (46,000 m3) of 
sediment downcanyon through the bottom 
20 m (turbidity current thickness) of the 160 
m wide thalweg at the mooring site.
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Oscillatory Transport
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OSCILLATORY TRANSPORT

The co-spectra of along-canyon tidal 
currents and sediment concentrations 
indicate an upcanyon transport at the 
dominant semi-diurnal frequency, 
contradicting the asymmetry of the 
semi-diurnal currents near the canyon 
floor that appears to favor 
downcanyon transport. This 
discrepancy seems to be caused by 
the phase lag between tidal currents 
and the timing of the turbid plumes.

Like in the mean transport, there is a 
layered structure in which both the 
magnitude and direction of transport 
vary with water depth. Transport in 
three distinctive layers are computed 
separately:

W = (∫F dz) T
where T=6 months.
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Canyon 
Rims

Above the canyon 
rim (26 m) the sub-
tidal currents are 
mainly along the 
shoreline (not shown 
here). From below 
the rims to about 
120 m the subtidal 
are dominated by 
down-canyon cur-
rent. From 120 m 
down to the canyon 
floor the flow struc-
ture is more com-
plex. Since the mag-
nitude of the subtidal 
flow near the canyon 
floor is rather small 
(<5 cm/s), the time 
averages tend to be 
insignificant.
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Blue - excluding the four 
turbidity events
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MEAN TRANSPORT
Transport by the mean current in the entire thalweg (60 m 
deep, 350 wide) is down-canyon. Using a depth-averaged 
estimate of u=0.01 m/s, c=0.01 kg/m3 (Xu et al, 2010), the 
total sediment transport during the 6-month deployment is 
32,700 metric tons (22,000 m3), less than one half of 
the transport by one 2-hr turbidity current event.
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CANYON MOORING
Deployment: Sep. 2007 - Mar. 2008
Water depth: 188 m
Instruments: RDI 300 KHz ADCPs

INTRODUCTION

Submarine canyons are known as preferential conduits 
for transporting sediment and other particles from coastal 
waters to ocean basins, therefore are key players in the 
source-to-sink system. In this study, two ADCPs (one 
upward-looking and another downward) were deployed 
in Hueneme Canyon for 6 months (September 2007 – 
March 2008) at a water depth of 188 m. The measured 
velocity profiles and acoustic backscatter intensities are 
used to characterize the different modes of suspended 
sediment transport along the canyon. The co-spectra of 
along-canyon tidal currents and sediment concentrations 
are used to estimate the oscillatory transport along the 
canyon. The primary goal of the study is to obtain 
“order-of-magnitude” estimates of along-canyon 
suspended sediment transport due to three modes: mean, 
tidal, and turbidity currents.


