Scale-dependency of bio-morphodynamic feedbacks with implications for estuary management

Danghan Xie1,2,*, Christian Schwarz3, Maarten G. Kleinhans1, Karin R. Bryan4, Giovanni Coco5, Stephen Hunt6 and Barend van Maanen7

1Utrecht University, Utrecht, the Netherlands 2Boston University, Boston, USA 3KU Leuven, Belgium 4University of Waikato, Hamilton, Aotearoa, New Zealand 5University of Auckland, Auckland, New Zealand 6Waikato Regional Council, Hamilton, New Zealand 7University of Exeter, Exeter, UK

Background

In New Zealand, increases in riverine sediment supply to the coast has led to widespread accumulation of intertidal mud and mangrove expansion (Fig. 1). Mangroves are known to locally reduce tidal currents and facilitate mud deposition and bed accretion. To restore pre-disturbed conditions, both legal and illegal mangrove removal has occurred in recent years.

Objectives:

To investigate whether local measures, like mangrove removal, can reduce estuarine mud infilling.

Impact of increased sediment supply

1. At the pre-disturbance stage (year 200–400), mangroves first colonized levees close to river mouths and slowly expanded seaward (Fig. 2a–b);
2. At the disturbance period (year 400–500), accelerated estuarine infilling led to a seaward expansion of mangrove forests along channels (Fig. 2b–c).

Changing sedimentation patterns

1. Within channels, mangrove removal led to higher mud thickness with less erosion and higher bed elevation;
2. In unchannelized areas, mangrove removal increased sedimentation rates, mud thickness and bed elevation in areas further away from channels;
3. Reduced mud supply, sediment patterns retain similar to the pre-disturbance stage.

Anthro-bio-morphodynamic feedbacks

1. Local scale: mangroves reduce tidal currents and facilitate mud accretion, which in turn enhances mangrove growth;
2. Estuary scale: mangrove removal reinforces estuarine mud infilling and intertidal habitat creation due to more extensive accretion across the estuary;
3. Source-to-sink scale: a reduction in upstream mud supply can reduce mud accumulation and mangrove expansion rates.

Conclusions

1. Mangrove removal initiatives, guided by knowledge on local-scale bio-morphodynamic feedbacks, cannot mitigate estuarine mud infilling and restore antecedent sandy ecosystems.
2. Unexpectedly, removal of mangroves enhances estuary-scale sediment trapping due to altered sedimentation patterns.
3. Only reductions in upstream sediment supply can limit estuarine mudification. Bio-morphodynamic feedbacks can have contrasting effects at local and estuary scales. More holistic management approaches are needed.

We acknowledge the funding and grant by 1) Department of Physical Geography, Utrecht University, 2) FUTURE COAST AOTEAROA (grant no. C01X2107), and 3) Natural Environment Research Council (grant no. NE/V012800/1).

*Corresponding author: danghan@bu.edu

Fig. 1 Variation in mangrove distribution and sediment accumulation rates at three representative estuaries in New Zealand (a). b) Whangapoua estuary; c) Wharekawa estuary; d) Whangamatā estuary; e) Observed changes in mangrove coverage; f) Historical sediment accumulation rates.

Fig. 2 Mangrove distribution and morphological development phases.

Fig. 3 Temporal changes of key morphological, sedimentological and ecological characteristics of the estuarine environment.