

Overcoming Grand Challenges by Collaboration between Experimentalists and Modelers

Wonsuck Kim, Brandon McElroy, Kimberly Miller, Raleigh Martin, Leslie Hsu

TEXAS Geosciences The University of Texas at Austin Jackson School of Geosciences Department of Geological Sciences

What is SEN?

• Sediment Experimentalist Network

- NSF EarthCube Research Coordination Network (RCN)
 - To support a data-enabled community for experimental Earthsurface process research
- EC: Experimental Collaboratories;
- ED: Education & Data Standards;
- KB: Knowledge Base;

SEN-EC (Experimental Collaboratories)

2

• Experimental Collaboratories

- Facilitate collaboration between experimental labs
 - Develop collaborative infrastructure
 - Broadcast experiments
 - Distribute experimental data
 - Address community grand challenges
- Broadcasting Experiments

• Live Experiment Calendar

Sediment Experimentalist Network

SEN-KB (Knowledge Base)

• Knowledge Base

• Develop online resources for experimental data management

- SEN-Wiki (sedexp.net)
 - 45 Data; 26 Setups; 18 Methods; 21 Equipment; 6 Labs
- Forum for user-based information exchange
- Metadata, methods and facilities library

SEN-ED (Education & Data Standards)

- Develop & disseminate recommendations for data practices and standards
- Geomorphology paper in Binghamton Symposium
 - Data management, sharing, and reuse in experimental geomorphology: Challenge, strategies, and scientific opportunities

- Workshop
 - 2014 SEN Workshop at Utrecht University
 - 2013 SEN Workshop at Nagasaki University
 - 2012 SEN Workshop at UT-Austin
- AGU Town Hall
 - 2012-2014: Publishing and sharing Earth Surface Process Data
- Summer Institute on Earth-surface Dynamics
- Two most significant challenges
 - Data discoverability
 - Data accessibility

2012 SEN Workshop at the University of Texas Calling All Experimentalists

2013 SEN Workshop at Nagasaki University, Japan Stratodynamics

2014 SEN Workshop at Utrecht University, Netherlands SEN Going Dutch: Exploring the Life Cycle of Sedimentary Experiments.

Why do we need a Sediment Experimentalist Network?

Michener et al., 1997

o Dark Data

• Big Data

11

- Dark Data
- Big Data
- o Diverse Data

Long Tail Characteristics

- More specialised
- Low volume
- On C drives
- Hard to find
- Heterogeneous
- Collected by many people
- Citizen science
- Etc
- Etc

IGSN Workshop, 34 IGC Brisbane, August 5, 2012 http://juliegood.wordpress.com/tag/long-tail/

12

- o Dark Data
- Big Data
- o Diverse Data
- o Separable Data
 - Funding agencies are asking for data management plans
 - Journals are asking for links to archived full datasets

Jorge cham

- o Clinic2.1: SEN: Take only measurements. Leave only data
- Wednesday at 1:30 PM C120A/B
- Best practices for data collection and management
 - Lifecycle of data
 - Metadata
 - Data preservation, discovery, and reuse
 - Workflow
 - Cyberinfrastructure, web-based data repositories
 - The SEN Knowledge Base, and more

Challenges in Experimental Surface Science

- Earthscape 2100 (Gary Parker at the 2013 Nagasaki SEN Workshop)
- 2016 CSDMS: Advances in simulating the imprint of climate change on the land and seascapes, including the processes that influence them

- Challenges in experimental surface science require data synthesis and experimentalist-modeler collaborations:
 - Repeatability
 - Scalability
 - Autogenic vs. Allogenic Processes

Earthscape Imprint of Climate Change Arctic: A delta prograding an ice-cover lake

Jan 2016, No name basin (0.9 m x 0.5 m)

Ye Jin Lim (MS student in UT)

15

CSDMS-SEN 2016

Earthscape Imprint of Climate Change Arctic: A delta prograding an ice-cover lake

16

Jan 2016, No name basin (0.9 m x 0.5 m)

No ice-cover

Ice-cover

CSDMS-SEN 2016

Earthscape Imprint of Climate Change Arctic: A delta prograding an ice-cover lake

17

Jan 2016, No name basin (0.9 m x 0.5 m)

CSDMS-SEN 2016

No ice-cover

Ice-cover

Observation of core processes through Experiment High-resolution data to support ideas

Arctic: A delta prograding an ice-cover lake

18

- The processes that created under-ice subaqueous channels and associated rough topography are demonstrated.
- Ice-delta interaction produces the climate imprint on seascape!
- Simple
- Space and time scales inaccessible in the field

• HOWEVER,

- Scale?
- Natural example?

Autogenic vs. Allogenic Processes Experimental Results

19

R4: 0.052 mm/s RSLR

R5: 0.116 mm/s RSLR Migration Reversal!

Carolina Baumanis (Undergrad student in UT)

Physical Flume Experiment

- Verifying the mathematical model with sediment experiments
- Flume dimensions: 0.88 x 0.6 x 0.04 m
- Six Runs with RSLRs = 0, 0.072, 0.013, 0.052, 0.116, and 0.325 mm/s

- Sediment mixture:
 - Quartz sand (33%; D = 0.1 mm; 2650 kg/m³)
 - Walnut sediment (66%; D = 0.1 mm; 1300 kg/m³)
- $Q_s = 3.34 \text{ g/s}; Q_w = 11.39 \text{ ml/s}$
- Initial base level: 5 cm

Mathematical Model

Sediment mass-balance equation for the gravel and sand river reaches:

$$\frac{\partial \eta_{g,s}}{\partial t} + \sigma = -\frac{I_f (1 + \Lambda_{sg,ms}) \Omega_{g,s}}{(1 - \lambda_{pg,ps}) \Phi_{g,s}} \frac{\partial q_{g,s}}{\partial x}$$

Moving Boundary 1: Gravel-Sand Transition (GST)

$$\dot{e} = \left[\frac{\partial \eta_g}{\partial t}\Big|_e - \frac{\partial \eta_s}{\partial t}\Big|_e\right] / \left[S_g\Big|_e - S_s\Big|_e\right]$$

 $S_{g|_{e}}$ = gravel-bed slope at GST & $S_{s|_{e}}$ = sand-bed slope at GST

Moving Boundary 2: Shoreline

$$\dot{s} = \frac{1}{(s_f - s_s|_s)} \left\{ \frac{I_f (1 + \Lambda_{ms})\Omega_s}{(1 - \lambda_{ps})(u - s)\Phi_s} q_s[s(t), t] - \frac{\partial \eta_s}{\partial x} \right|_s \right\}$$

Shoreline shock condition: No sediment transport beyond x = u

Moving Boundary 3: Delta toe

$$\dot{u} = \frac{1}{(S_f - S_b|_u)} \left\{ \frac{\partial \eta_s}{\partial t} \right|_s + \left(S_f - S_s|_s \right) \dot{s} \right\}$$

A linear foreset geometry; Non-erodible linear sloped basement

Backwater Formulation

$$\frac{\partial H_{g,s}}{\partial x} = \frac{S_{g,s} - C_{fg,fs} F r_g}{1 - F r_{g,s}^2}$$

 C_f = friction coefficient; Fr = Froude number; H = flow depth.

Sediment Transport Relations

$$q_g = \sqrt{RgD_g} D_g 11.2 \left(\tau_g^*\right)^{1.5} \left(1 - \frac{0.03}{\tau_g^*}\right)^{4.5}$$

 $q_{s} = \sqrt{RgD_{s}}D_{s}\frac{0.05}{c_{fs}}(\tau_{s}^{*})^{2.5}$

Parker [1979] for the gravel transport

Modeling Results: Three RSLR Rates

Migration Reversal in M3

• The GST and shoreline migrated opposing directions

Comparison with Model

 Change the sediment transport relations to empirical relations from the current runs

Autogenic vs. Allogenic

Autogenic Product as a Signal

• Standard Deviation for GST decreases with RSLR rate

26

- Fluctuations of the topset slope (Kim and Jerolmack, 2008)
- The zigzag shazam trajectories are from the cycles of autogenic processes

What caused the changes in the magnitude of variation?

Moving Boundary 1: Gravel-Sand Transition (GST)

- $\dot{e} = \left[\frac{\partial \eta_g}{\partial t}\Big|_e \frac{\partial \eta_s}{\partial t}\Big|_e\right] / \left[S_g\Big|_e S_s\Big|_e\right]$
- $S_{\rm g}|_{\rm e}$ = gravel-bed slope at GST & $S_{\rm s}|_{\rm e}$ = sand-bed slope at GST

Changes in slopes and depositional rates

Stratigraphic Evolution: S2S

- Storage in the sand reach \rightarrow increasing slope
- Less deposition of the sand reach at GST causes a retreat of GST
- More deposition of the walnut reach at GST = less transport to the foreset
- Only most fine sediment reaches the foreset, developing a darker layer
- Storage in the walnut reach → increasing slope (some sand can transport through) and initiating release, developing a lighter-colored layer
- Release in the walnut reach \rightarrow decreasing slope, decreasing deposition at the GST
- Release in the sand reach → decreasing slope and advancing GST

Modeling Autogenic Processes

Modeling internal dynamics and stratigraphic signatures

 Noise? Autogenic stratal product can be a useful signal to understand environmental controls (sea-level, tectonics, and sediment supply) to the sedimentary basin.

28

Complex Allogenic - Autogenic Coupling Global Warming and Extreme Weather

New York Times: In Weather Chaos, a Case for Global Warming August 14, 2010 PAKISTAN The worst flooding in at least 80 years has killed ~1,384 people. RUSSIA Wildfires stoked by the country's worst heat wave on record have burned 1.9 million acres.

FOX News: Extreme Weather: Why Has Mother Nature Gone Bonkers?January 06, 2010 NASA Earth Observatory: A wave of frigid air spilled down over Europe and Russia from the Arctic in mid-December, creating a deadly cold snap. Blue indicates temperatures as low as -20 Centigrade.

Climate = Allogenic / Weather = Autogenic

Example modeling results using the discontinuous ('sticky') sediment transport (Wolinsky, M., unpublished work).

Extreme Weather by Climate Change

Overcoming Grand Challenges by Collaboration between Experimentalists and Modelers

- Theoretical and numerical modeling based on first principles can help
 - to extrapolate insight from experiments to field scales,
 - to compare results from different lab facilities, and
 - to decouple autogenic processes and allogenic forcings in geomorphology and stratigraphy.
- The experimentalist-modeler collaborative effort will result in tremendous opportunities for overcoming grand challenges in our communities.

Thank You!

