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CSDMS-Community Surface Dynamics
Modeling System: New NSF National
Center @UCBoulder

(NSF Cyberinfrastructure Directorate)

Standard Utilities Modules Toolkit MOdUle-baSGd

Maintained by systems people User-provided, “heart” of CSM Standard tools
Should use toolkit if possible. May be user provided, SOftware

genteril 2‘5“1 ?truc{;ulre May have own internal data but closely scrutinized
Mo I3 QtC)ol:easlfresat;leveslr'l;fnvzf?s structures, but should I/O to archltecture tO
> :jah in various geometries General Data Structure EOIVe;S for
s € € P / Specific eqs
Disk ¥ Has standard interface that | -©98¢Y OK W/ minor changes - fOSter
all modules can invoke % Modul (;e”e['c
Net | g¥ Inside workings and < oduie PDE Solvers £ .
formats are hidden” from | Data Grid s Communlty
modules «< — | Module Generators |
X ' mode
General GraphicRenderer / Module | l;:c:th tools
Displays 3D + time data source = d
Sections, movies, maps, etc obj, exe Dialog eve|0pment
“ : Builders :
/S | Module “Connecter — d y
/ Application that interactively sg)_urce Graphic " an S ntheSIS
connects modules to run jointly, ' Tools -~ d
obj, exe =
App consecutively, recursively, etc ) OX6 L 70 StU |€S
\\* Web Interface Figure | etc

Runs apps. or modules on web




Framework Functions

Domain management

Variable management

Variable input/output

Interfacing between domains (couplers)
Time management

Module management

Model parallelization and execution
Integrated post-processing and visualization
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Patterned after Earth System
Modeling Framework

ESMF Superstructure
AppDriver
Component Classes: GridComp, CplComp, State

User Code

ESMF Infrastructure
Data Classes: Bundle, Field, Grid, Array
Utility Classes: Clock, LogErr, DELayout, Machine

Community-based effort (UCAR w/
several partners to develop modular,
interconnected, open source
modeling environments (e.g. NSF
Earth System Curator)
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WaterNET and IDS




New GHAAS Modeling Framework
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Model Tree Build Up

Entering: Discharge
Entering: Discharge Muskingum
Entering: Runoff
Entering: WaterBalance
Entering: Base flow
Entering: Infiltration
Entering: Water Surplus
Entering: Snow Pack Change
Leaving: Snow Pack Change
Entering: Soil Moisture
Entering: PotET Hamon
Entering: Day length
Leaving: Day length
Leaving: PotET Hamon
Entering: Intercept
Leaving: Intercept
Leaving: Soil Moisture
Leaving: Water Surplus
Leaving: Infiltration
Entering: Irrigation
Leaving: Irrigation
Leaving: Base flow
Leaving: WaterBalance
Leaving: Runoff
Entering: Reference Discharge
Entering: Average NSteps
Leaving: Average NSteps
Entering: Accumulate Runoff
Leaving: Accumulate Runoff
Leaving: Reference Discharge
Leaving: Discharge Muskingum
ID Start_Date Variable| Unit]  Type TStep NStep Set Flux Boundary Output

0 XXXX TEMVegCover| ] int year 365 yes no no no
1 XXXX RootingDepthl mm] float year 365 yes no no no
2 2000-01 AlrTemperature| degC] float month 31 yes no no no
3 2000-01-01 DailyPrecipl mm/d] float day 1 yes yes no no
4 XXXX IrrigationIntensity| -] float year 365yes no no no
5 XXX FieldCapacityl float year 365 yes no no no
6 XXXX WiltingPoint| float year 365 yes no no no
7 XXXX IrrigatedArea Fraction| float year 365 yes es no



Water Resources

Atmosphere

Precipitation

Interception Transpiration

Through-fall

Irrigation
surface water

Soil evaporation

Uptake
from soil

Soil Surface

Soil Recharg

Reservoir | Reservoir,
Release

Uptake from groundwater

Runoff

Irrigation from groundwater

Ground-water
Recharge

WaterNET and IDS




Precipitation
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TYPICAL CALCULATION SCHEME TO
GENERATE WATER RESOURCE ESTIMATES

Ipswich R. Runoff Validation 1993-1995
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CZ Remote Sensing

FrAMES: Framework for AquLtic
Models of the Earth System:
Multi-constituent Modules

Inland Satellite Remote Sensing

Non-point Loads Point Loads

Land
Export

/ Retention

Parameters T

Local Runoff /. Geomorphology * Length/Sinuosity
Air Temp y

/ hand v /
Soil Tau A

Local Precip * Hydraulic equations

Local Q y
Reservoirs /

Coastal
Processing
and/or

Routed Metabolism

Retention

micro / macro /
v

Hydraulic Load
micro / macro

Summary stats

-accumulated grids
-upstream average grids
-basin means

-basin profiles

-biome means

-sample @ station locations

Graphics
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Green et al. (2004), Nitrogen Mass Balance Approach
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MODEL -- Non-linear statistical model; flux is function of mass-
balanced loads, temperature and hydraulic residency time

River Flux of N
= B, *E s *Ej " (P1S + NonPtS,, ;*E
where
PtS = Nmob Load from Sewered Urban Population
NonPtS,,, = (Nmob Fixation + Nmob Livestock Load + Nmob NPS
Human Load) *(Runoff / Precipitation)
NonPtS, = (Nmob Deposition + Nmob Fertilizer) * (Runoff /

inorg

Precipitation)

+ NPtS, *E

soil-org inorg soil-inorg)

The delivery coefficients take the form of:

E. = e(-r riv * Tadj * ariv) \
v
E, = e(mres " Tadimares) E. = e(—r riv * Tadj * ariv)

— e(-r lake * Tadj * alake)

Elake v
E " — e(-r soil * Tadj * asoil-org)

soil-org
E " = el-T soil * Tadj * asoil-inorg)

soil-inorg

TNflux---> r>=0.88 Slope P/0=0.99 DIN Flux ---> r?>=0.68 Slope P/0=0.94
n=>58 n=281



Applying an Aguatic N Processing Constraint on

Terrestrial Processing Potential

--Inverse Calculation--

N Load (kg/km2/yr)

Terrestrial

Local River Network

Large River Network
(with lakes and reservoirs)

Three Grid Cell Example

Transfer

X X X . .
coefficients
0.5 0.4 0.4
TN Export
> IS > 50
0.8 0.9 0.9

((((200x * 0.5 * 0.8) + (100x * 0.4)) * 0.9) + (50x * 0.4)) * 0.9 =50

((80x + 40x) * 0.9) + 20x) * 0.9 = 50
128x * 0.9 = 50

X = 0.43 = Terrestrial transfer coefficient=1 - R



Example — inverse calculation,

with aquatic v; =

N =61 large
watersheds
distributed
globally
(GEMS-Glori
[Meybeck]
mean annual
TN data set)
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Locating the watershed N sinks
(Where does that 80% go?)

Box Plots, N = 61 watersheds
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; ’G\\"SP
‘@) v=_Integrated Approaches to Global \Water Resource
Assessment and Global Change Studies

Links Geophysics of Water, Governance, Vulnerability, Supply Limitations
Imposed by Pollution & Ecosystem Flow Requirements

(B2) CMI, Annual CV (17) Monthly Water Reuse Index (July) (12) Total Nitrogen Flux
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(K2) Global Active River Network (30 minute resolution)
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@ EARTH SYSTEMS @ A Regional Prototype System of Systems

DATA COLLABORATIVE for Environmental Surviellance
n Precipitation Land Cover Population
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GWSP Indicators

1 10 0
CALCULATION OF
0.25,0.25 0.0,0.0
; . KEY WATER INDICATORS
1 40 0 DIA, = domestic, industrial, agricultural water use
a
0.2,0.4 0.2,0.4 0.0.0.0 (km3 yr*1) in cell n
Y DIA, = DIA in cell n plus all upstream cells (km3 yr-1)
1 §!i12 n
2 = YDIA;
i=1
Rn = locally-generated runoff (mm/yr)
0 Ap = area of cell n (km2)
Qrn = 10° * Ry * Ap = locally generated discharge
o (km3 yr-1)
2 n
Qch = }_(1)Li = river corridor discharge (km3 yr-1)
=
DIAn/Qcn = local relative water use (unitless)
_ L | 2DIAn/Qcn = water reuse index (unitless)  key (cell n)
S 0.5 b-0.5
ij i - n = position of cell in river DIAn IDIAn
< > — network -
S 3 - = total number of %'-A—” ,“gm"
- . . . . W upstream cells plus R
0.0 0.0
P cell in question
(A) Distance along mainstream (A') Qun Qcn

High Resolution Geo-

IT Mapping & Analysis Tools
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1970’s LAVA LAMP? No...Unprecedented
Opportunities to Monitor the State of the Hydrosphere
Using Observations, Data Assimilation, and Modeling

Tools




Unprecedented Opportunities to Monitor the State of
the Planet Using Observations, Data Assimilation,
and Modeling Tools
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What to Scope at This Scoping Workshop?

« Develop ideas for interdisciplinary & integrative science to better
understand diverse processes affecting deltas

— Notjust SLR .... upland engineering, gw and hydrocarbon abstraction,
land use/cover change

—  Not just sediment ....H,O, nutrients
— Not just long-term, chronic change ... events critical

e Tangible products:
1. Curiousity-based science:
- Process-based models including physics, humans, biology
2. Service to the policy and management communities:

- Digital map of river-coastal delta complexes
- Geographies of long-term vulnerability and of upland/ocean events
- Now-cast/forecast systems & scenarios

* Raise awareness through these tangible products around which the
policy & management communities can take action



