Introducing FrAMES: A Framework for Studying Land-to-Ocean Linkages

Charles J. Vörösmarty, Balazs Fekete, Wil Wollheim Institute for the Study of Earth, Oceans, and Space University of New Hampshire, Durham NH

GWSP/LOICZ/CSDMS Workshop Dynamics and Vulnerability of River Delta Systems Boulder, CO 25 September 2007

CSDMS-Community Surface Dynamics Modeling System: New NSF National Center @UCBoulder

(NSF Cyberinfrastructure Directorate)

Module-based software architecture to foster community model development and synthesis studies

Framework Functions

- Domain management
- Variable management
- Variable input/output
- Interfacing between domains (couplers)
- Time management
- Module management
- Model parallelization and execution
- Integrated post-processing and visualization

Patterned after Earth System Modeling Framework

ESMF Infrastructure Data Classes: Bundle, Field, Grid, Array Utility Classes: Clock, LogErr, DELayout, Machine

Community-based effort (UCAR w/ several partners to develop modular, interconnected, open source modeling environments (e.g. NSF Earth System Curator)

WaterNET and IDS

Modeling Framework for Landsurface Models

Model Tree Build Up

	1000 A											
	Entering:	Dischar	ge									
	Enterin	g: Disch	arge Muskingum									
	Ente	ring: Ru	nott									
	E	ntering:	WaterBalance									
		Enteri	ng: Base flow									
		Ent	ering: Infiltration									
			Entering: Water Surplus									
			Entering: Snow Pack Change									
			Leaving: Snow Pack Change									
			Entering: Soil Moisture									
			Entering: PotET Hamon									
			Entering: Day length									
			Leaving: Day length									
			Leaving: PotET Hamon									
			Entering: Intercept									
			Leaving: Intercept									
			Leaving: Soil Moisture									
			Leaving: Water Surplus									
		Le	aving: Infiltration									
		Ent	ering: Irrigation									
		Le	aving: Irrigation									
		Leaving: Base flow										
	1,000	Leaving:	WaterBalance									
	Leaving: Runoff											
	Entering: Reference Discharge											
	E	Entering: Average NSteps										
		Leaving:	Average NSteps									
	E	intering:	Accumulate Runoff									
		Leaving: Accumulate Runoff										
	Lea	Leaving: Reference Discharge										
	Leavin	g: Disch	arge Muskingum									
	ID Start	_Date	Variable[Unit]	Туре	TStep	NStep	Set	Flux	Boundary	Output	
	0	XXXX	TEMVegCover[]	int	year	365	yes	no	no	no	
	1	XXXX	RootingDepth[m m]	float	year	365	yes	no	no	no	
	2 20	00-01	AirTemperature[degC]	float	month	31	yes	no	no	no	
	3 2000-	01-01	DailyPrecip[mm/d]	float	day	1	yes	yes	no	no	
	4	XXXX	IrrigationIntensity[-]	float	year	365	yes	no	no	no	
	5	XXXX	FieldCapacity[mm/m]	float	year	365	yes	no	no	no	
	6	XXXX	WiltingPoint[mm/m]	float	year	365	yes	no	no	no	
	7	XXXX	IrrigatedArea Eraction(-1	float	vear	365	Ves	no	Ves	no	

UNIVERSITY OF NEW HAMPSHIRE

Water System Analysis Group Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space

Water Resources

WaterNET and IDS

- Mean 18% transport in basin -- similar to Howarth et al. (1996) for N. Atlantic
 Wide range of transport officiencies in individual basing -- 0 to 100%
- Wide range of transport efficiencies in individual basins -- 0 to 100%

MODEL -- Non-linear statistical model; flux is <u>function of mass-</u> <u>balanced loads, temperature and hydraulic residency time</u>

River Flux of N

 $= E_{riv} * E_{res} * E_{lake} * (PtS + NonPtS_{org} * E_{soil-org} + NPtS_{inorg} * E_{soil-inorg})$ where

PtS = Nmob Load from Sewered Urban Population $NonPtS_{org}$ = (Nmob Fixation + Nmob Livestock Load + Nmob NPS Human Load) *(Runoff / Precipitation)

NonPtS_{inorg} = (Nmob Deposition + Nmob Fertilizer) * (Runoff / Precipitation)

The delivery coefficients take the form of:

n=58

$$E_{riv} = e^{(-\tau riv * Tadj * ariv)}$$

$$E_{res} = e^{(-\tau riv * Tadj * ares)}$$

$$E_{lake} = e^{(-\tau lake * Tadj * alake)}$$

$$E_{soil-org} = e^{(-\tau soil * Tadj * asoil-org)}$$

$$E_{soil-inorg} = e^{(-\tau soil * Tadj * asoil-inorg)}$$

n=281

((((200x * 0.5 * 0.8) + (100x * 0.4)) * 0.9) + (50x * 0.4)) * 0.9 = 50((80x + 40x) * 0.9) + 20x) * 0.9 = 50128x * 0.9 = 50x = 0.43 = Terrestrial transfer coefficient = 1 - R

Example – inverse calculation, with aquatic $v_f = 35 \text{ m yr}^{-1}$

Predicted vs. Observed Watershed Total N Retention

N = 61 large watersheds distributed globally (GEMS-Glori [Meybeck] mean annual TN data set)

Locating the watershed N sinks (Where does that 80% go?)

Integrated Approaches to Global Water Resource Assessment and Global Change Studies

Links Geophysics of Water, Governance, Vulnerability, Supply Limitations Imposed by Pollution & Ecosystem Flow Requirements

1970's LAVA LAMP? No...Unprecedented Opportunities to Monitor the State of the Hydrosphere Using Observations, Data Assimilation, and Modeling Tools

Unprecedented Opportunities to Monitor the State of the Planet Using Observations, Data Assimilation, and Modeling Tools

3-hourly Wave Power

3-hourly Wave Heights

Ocean Elements As Well

What to Scope at This Scoping Workshop?

- Develop ideas for interdisciplinary & integrative science to better understand diverse processes affecting deltas
 - Not just SLR upland engineering, gw and hydrocarbon abstraction, land use/cover change
 - Not just sedimentH₂O, nutrients
 - Not just long-term, chronic change ... events critical

• Tangible products:

- 1. Curiousity-based science:
 - Process-based models including physics, humans, biology
- 2. Service to the policy and management communities:
 - Digital map of river-coastal delta complexes
 - Geographies of long-term vulnerability and of upland/ocean events
 - Now-cast/forecast systems & scenarios
- Raise awareness through these tangible products around which the policy & management communities can take action