CSDMS and the Terrestrial World:
Looking Back, Looking Forward

CSDMS annual meeting, March 2013



Original goals of CSDMS

From the 2008 Strategic Plan:

2. CSDMS Long Range Goals and the CSDMS Cyber-Infrastructure
CSDMS has two overriding long range goals. The first long-range goal is to

* Develop a modular modeling environment capable of significantly advancing
fundamental earth-system science (scc scction 3).

The second long-term goal of CSDMS is to:

* Develop fully functional and useful repositories for CSDMS data, for CSDMS models
and numerical tools, and for educational use.



Model and Educational Repositories

* Model repository: 166 models, 54 tools
— http://csdms.colorado.edu/wiki/Models all

 Education repository: movies, labs, lectures,
Images:

— http://csdms.colorado.edu/wiki/Movies portal

* Data repository:
— http://csdms.colorado.edu/wiki/Data download




Supercomputer: Beach




CSDMS Modeling Framework

* Design, architecture, and cyber-infrastructure
for plug-and-play coupling of models

Working Directo!

— Different languages

— HPC support

e GUIl interface: CMT

Rapid idea generation,
exploration, and
hypothesis testing




Example of CSDMS modeling framework: coupling CHILD
(landscape evolution) and SedFlux (deltaic deposition)

Source-to-sink model combining
CHILD and SedFlux components
(courtesy of Eric Hutton)



Making “plug and play” a reality: the
Basic Model Interface (BMl)

Model Control Functions

void initialize (in string config file '
void update (in double dt) // Advance model variables by time interval, dt (dt=-1 means use model time step)
void finalize

void run_model (in string config file) // Do a complete model run. Not needed for CMI.

[

These BMI functions are critical to plug-and-play modeling because they allow a calling component to bypass a model's own time loop. They
also provide the caller with fine-grained control over the model, similar to a TV remote control.

The initialize() function accepts a string argument that gives the name (and path) of its "main input file", called a configuration file. This
function should perform all tasks that are to take place before entering the model’s time loop. Models should be refactored, if necessary, to read
their inputs (which could include filenames for other input files) from a configuration file (a text file). CSDMS does not impose any constraint on
how configuration files are formatted, but a "template" of your model's config file (with placeholder values) is used when the CSDMS-provided
GUI creates a config file for your model.

The update() function accepts a time step argument, "dt". If (dt == -1), then the model should use its own (internal) timestep; otherwise it
should use the value provided. This function should perform all tasks that take place during one pass through the model's time loop. It does not
contain the time loop. This typically includes incrementing all of the model’s state variables. If the model’'s state variables don't change in time,
then they can be computed by the initialize() function and this function can just return without doing anything.

The finalize() function should perform all tasks that take place after exiting the model's time loop. This typically includes deallocating memory,
closing files and printing reports.

The run_model() function is not needed by CSDMS but provides a simple method to run the model in "stand-alone mode". (It is often used by
the developer; it is basically the model's "main”.) It would simply call "initialize()", start a time loop that only calls "update()" and then calls
"finalize()".

Model Information Functions

array<string> get_input_var_names ;
arvrav QPY‘i'\ﬂ et Adrand vary nameaa '



Building a Culture of Practice: Community
Moving Toward “Best Practices” such as:

Making open source code

Sharing

Using version control

Using model identification (DOI’s)
Writing good documentation
Implementing standard interfaces (BMI)
Using unit tests and regression tests



Funding agencies supporting
computational science; examples:

e NSF EarthCube

 NSF Software Infrastructure for Sustained
Innovation (S12)




Some needs and next steps

* Building and contributing fully-compatible
components: “growing the library”

* Benchmarking, testing, calibrating, and
comparing models

e Using CSDMS technology to do cutting-edge
science



Role of Terrestrial Working Group

* GUIDE CSDMS
* CONTRIBUTE to CSDMS
* USE CSDMS



Tasks for this meeting

Formulate long-term, short-term, and
medium-term goals for strategic plan

Nominate model(s) for full inclusion in CSDMS
modeling framework

Discuss “theme teams”



Agenda and google document for our
breakout

e https://docs.google.com/document/d/

15xy2mkn-
Yu7g0OWRDtTHYMQDGOHpfKZNgG A355dywx

w/edit?pli=1




