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Feedforward Neural Networks Tsunami Prediction (Cascadia Subduction Zone)

Train NNs to predict tsunami waveforms (6 hrs) at geographical locations
using geodetic measurements from GNSS stations (< 8 mins)

e Feedforward neural network Neural network f with L layers
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e The parameters of the NN f are the entries of W, and b, GNSS stations Geodetic signals (input to NNs)
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Need for Stability Analysis: Adversarial Examples

e NNs are not robust with respect to input noise

e [ntriguing property of NNs

Fix the input X then bad perturbations

Xo + 0x that yield very different output can be found

e |/mage classification task A NN classifier that accurately predicts the
class of the image xp missclasifies a perturbed image xg + dx even
when the size of the perturbation ||dx|| is negligible
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Adversarial Examples for NN Tsunami Model

e An adversarial example found by PGD
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imperceptible 0.5%
change in the input
causes a large 36%
change in the output.

e Filtering out directions in W removes the adversarial effect
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f(x) = F(x) x = [Fy + Fo(x)]
The input-dependent matrix F5 has rank at most L — 1
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The amount of
output perturbation is
at 8%. closer to that
of the input
perturbation.
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® |ow-rank since number of layers L is much smaller than the input
dimension (# of data points or pixels)
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Householder Reflectors Approximation of RelLU 2]

e Householder reflectors are symmetric, orthogonal matrices
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