

A Stability Analysis of Neural Networks and Its Application to Tsunami Early Warning

Donsub Rim*, Sanah Suri*, Sanghyun Hong**, Kookjin Lee[†], and Randall J. LeVeque[‡]

*Washington University in St. Louis **Oregon State University [†]Arizona State University [‡]University of Washington

Feedforward Neural Networks

- Feedforward neural network Neural network f with L layers $f(\mathbf{x}) = A_L \circ \sigma \odot A_{L-1} \circ ... A_2 \circ \sigma \odot A_1(\mathbf{x})$
- ullet The parameters of the NN f are the entries of \mathbf{W}_ℓ and \mathbf{b}_ℓ

$$\mathbf{W}_{\ell} = \begin{bmatrix} w_{11,\ell} & w_{12,\ell} & \cdots & w_{1n_{\ell-1}} \\ w_{21,\ell} & w_{22,\ell} & \cdots & w_{2n_{\ell-1}} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_{\ell}1,\ell} & w_{n_{\ell}1,\ell} & \cdots & w_{1n_{\ell-1}} \end{bmatrix} \in \mathbb{R}^{n_{\ell} \times n_{\ell-1}} \quad \mathbf{b}_{\ell} = \begin{bmatrix} b_{1,\ell} \\ b_{2,\ell} \\ \vdots \\ b_{n_{\ell},\ell} \end{bmatrix} \in \mathbb{R}^{n_{\ell}}$$

 \mathbf{W}_{ℓ} is called the *weight matrix*, \mathbf{b}_{ℓ} the *bias*

Affine maps are defined as

$$A_{\ell}(\mathbf{z}) = \mathbf{W}_{\ell}\mathbf{z} + \mathbf{b}_{\ell}$$

- σ is the ReLU activation $\sigma(x) = \max\{x, 0\}$
- Convolutional NNs (CNNs), Residual NNs (ResNets) Examples

Need for Stability Analysis: Adversarial Examples

- NNs are not robust with respect to input noise
- Intriguing property of NNs Fix the input \mathbf{x}_0 then bad perturbations $\mathbf{x}_0 + \delta \mathbf{x}$ that yield very different output can be found
- Image classification task A NN classifier that accurately predicts the class of the image \mathbf{x}_0 missclasifies a perturbed image $\mathbf{x}_0 + \delta \mathbf{x}$ even when the size of the perturbation $||\delta \mathbf{x}||$ is negligible

(left columns) original image \mathbf{x}_0 (middle columns) perturbation δx (right columns) perturbed image $\mathbf{x}_0 + \delta \mathbf{x}$

Perturbed images in the right columns are predicted as Ostrichs

• These examples are called adversarial examples and can be found through optimization, e.g. the projected gradient descent (PGD)

Low Rank Householder Expansion (LRHE)

 Low-Rank Householder Expansion feedforward NNs are written

$$f(\mathbf{x}) = F(\mathbf{x}) \mathbf{x} = [F_0 + F_{\sigma}(\mathbf{x})] \mathbf{x}$$

The input-dependent matrix F_{σ} has rank at most L-1

$$F_{\sigma}(\mathbf{x}) = \sum_{\ell=1}^{r} d_{\ell}(\mathbf{x}) \boldsymbol{\zeta}_{\ell}(\mathbf{x}) \boldsymbol{\xi}_{\ell}(\mathbf{x})^{\top} \quad r \leq L - 1$$

ullet The row and column spaces Φ and Ψ can be computed based on the trained weights

$$\Phi = \operatorname{span}\{\zeta_{\ell}\} \qquad \Psi = \operatorname{span}\{\xi_{\ell}\}$$

ullet low-rank since number of layers L is much smaller than the input dimension (# of data points or pixels)

Householder Reflectors Approximation of ReLU

Householder reflectors are symmetric, orthogonal matrices

$$\sigma(\mathbf{z}) = \mathbf{H}_{\mathbf{z}}\mathbf{z} = (\mathbf{I} - 2\mathbf{v}_{\mathbf{z}}\mathbf{v}_{\mathbf{z}}^T)\mathbf{z} \qquad ||\mathbf{v}_{\mathbf{z}}||_2 = 1$$

Rank-1 perturbation of the identity matrix

Tsunami Prediction (Cascadia Subduction Zone)

Train NNs to predict tsunami waveforms (6 hrs) at geographical locations using geodetic measurements from GNSS stations (< 8 mins)

GNSS stations Geodetic signals (input to NNs)

Adversarial Examples for NN Tsunami Model

An adversarial example found by PGD

- The perturbed input $\mathbf{x}_0 + \delta \mathbf{x}$ at two selected stations
- The perturbation δx
- The resulting perturbed output $f(\mathbf{x}_0 + \delta \mathbf{x})$ at gauge 901. An imperceptible 0.5% change in the input causes a large 36% change in the output.
- ullet Filtering out directions in Ψ removes the adversarial effect

- The perturbed input $\mathbf{x}_0 + (\delta \mathbf{x})_{\text{filter}}$ at two selected stations
- The filtered perturbation $(\delta \mathbf{x})_{\text{filter}}$
- The resulting perturbed output $f(\mathbf{x}_0 + (\delta \mathbf{x})_{\text{filter}})$. The amount of output perturbation is at 8%, closer to that of the input perturbation.

References

- D. Rim, R. Baraldi, C.M. Liu, R. J. LeVeque, K. Terada Tsunami Early Warning from Global Navigation Satellite System Data using Convolutional Neural Networks
 - Geophys. Res. Lett. 49 e2022GL099511 (2022)
- [2] D. Rim, S. Suri, S. Hong, K. Lee, R. J. LeVeque A Stability Analysis of Neural Networks and Its Application to Tsunami Early Warning J. Geophys. Res.: Machine Learning and Computation 1 e2024JH000223 (2024)
- C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus Intriguing properties of neural networks International conference on learning representations (2014)

Contact Donsub Rim (rim@wustl.edu | dsrim.github.io)