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ificance - offshore delivery of fine sediment

e-driven fine sediment transport is a critical mechanism in sediment source to sink (Wheatcroft &

eld 2000, CSR; Warrick 2014, MG): Wave-supported gravity-driven mudflows (Traykovski et al. 2000;
on et al. 2000, CSR).

Sediment Concentration (g/l)

— i B
STRATAFORM PROGRAM N Suspended Loas  m = Pl Mg SGlETEY

Acoustic Measurements of Bed Elevation and Sediment Concentration

150m_

490 m
-60m
4m
2m

1| Eel Shelf |
slope = 1/200

Z (cm)

409

g £
= Ly : B
=408 Ling _ o=
= y 0 =
= E &
Humbolt K el
Bay ) , - a
0.7 oo 0115 01/20 01/25 ok =
‘7_,»\Ee/ River /‘ |
406 = ‘ 5 0Gravltatlonal Mudﬂow events 250 Normal Boundary Layer
: 5 5
Date: 01/20 Date: Q1/28
: ; 200 iy 200 ‘(‘7:
)
-124.5 124.3 1241 _ ' —~ :
W Longitude S 130 i 3] 130 \
N 100 ’,*‘ N 100 !7\
. 7 \
Traykovski et al. 2000; Cont. Shelf Res. 50 e® 50 -
-‘: ...... \\\
%030 -20 -10 0 10 %630 10

Current Velocity (cm/s)
< Offshore

-20 -10 . 0O
Current Velocity (cm/s)
Onshore —



lenges in source to sink modeling:

ight et al. (2001), Mar. Geo.; Scully et al.
01), JGR. Use a bulk Richardson
nber control.

tis et al. (2004), Est., Coast. Mod.
ameterization of a near-bed turbid layer

Near bed WBL module
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Harris et al. (2005), JGR: Flood dispersal and deposition t
near-bed gravitational sediment flows and oceanographi
transport: A numerical modeling study of the Eel River st
northern California.

(A) Suspended




nificance - hydrodynamic dissipation over muddy seabed
Field data provided by P. Traykovski (!
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Tidal currents experience drag reduction (Beardsley
etal. 1995,]GR) -
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del Formulation & Governing Equations:

1) Turbulence-resolving approach is needed to resolve turbulence-sediment interaction.
2) For typical cohesive sediments, settling velocity is 0.1~1 mm/s. The inertia of particle is assume
negligible (Stokes number i1s St<<I). Equilibrium approximation (Balachandar & Eaton 2010):
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merical Implementation:

Model is solved by a high accuracy pseudo-spectral scheme (Cortese & Balachandar 1995). Validated
extensively by earlier DNS study for steady and oscillatory channel flows (Kim & Moin 1987; Spalart &
Baldwin 1988).



"Non-dimensional Parameters:

Stokes Reynolds number (wave intensity):

ﬁoA For Eel shelf: U=0.55 m/s; T=10 sec; Re,<=1000 (Traykovski et al. 2000)
Re, = v = Wave boundary layer is “intermittently turbulent” (Jensen et al. 1989, JFM)
Nondimensional settling velocity
I/fI\/JS For fine sediment V’f/; =0.1~1.5mm/s (e.g., Hill etal. 2000, CSR)
W= 170 (flocculation/floc dynamics is not considered)

Sediment availability :
a) Prescribe sediment initially and set no-flux in the bottom and Q
top wall (Ozdemir et al. 2010; 2011; Yu et al. 2013, 2014). r

i.e., ®=constant, Ri is fixed in a given case.
= simple; similar to field condition when sediment
supply is determined by river flooding
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b) Erosional/depositional boundary condition at bottom wall Ié‘ \»au
X L‘

(this talk). Ri is part of the solution of model due to resuspension.




ence modulation due to sediment-induced density stratification:

Ozdemir et al. (2010) JFM; Re,=1000, Ri=0~6x104, VT/; = 0.5 mm/s
Ozdemir et al. (2011), JGR: Re,=1000, Ri=1x10%, I/ff/; =025~1.5mm/s

wave-supported gravity

flow (offshore transport).

»

111

Onset of laminarization -
large wave dissipation
termination of WSGF?

Wk

Sediment is well-mixed
in the WBL; passive to

flow turbulence; Mode
I exists when sed. conc.
is below O(1) g/L

Formation of lutocline;
turbulence is damped
above lutocline; Mode

II exists when sed. conc.

is O(10) g/L.

Z 3

20

Collapses of turbulence
except during flow
reversal; Mode III exist
when sed. conc. is
several tens of g/L

Complete collapses of
turbulence; saturation;
laminarization; Mode

IV exist when sed. conc.

is 0(100) g/L

Increasing settling velocity (W)

Carrying capacity conce
Winterwerp (2001), ]Gl

1 U}
(s-1) ghw

CS =KS

Non-dime
general fo

W, -Ri=f(Re,)
Ozdemir et al. (2011

What happen when
sediment supply is
constraint by botto
resuspension?



‘revision to the numerical scheme

id Spectral-compact finite difference scheme: Yu et al. (2013, Computer & Geosciences)
v easy implementation of variable viscosity (rheology; LES) and nonlinear boundary conditions.

ion/deposition bottom
., Sanford and Maa (2001), MG:

EQQ=m(wb (D/re 1), o s #4150

ivation - At equilibrium (in wave-averaged “<>" sense):

<E>=<D> (b (¢) )=tleq (plb () )=pplbeq

rtleqg=(Wls ¢plbeq /m+1)ric=arlc
—) 7= pobeq/ / O~ f(Tlclear —tleq )

or example, if 7, is small, T, =azlc is small comparing to T, and P is larger.

eq

The resulting flow modes may be dictated by erodibility parameters, e.g., 7. and m.
Settling velocity is also involved bottom erosion/deposition balance, i.e., a.
The relationship W Ri=f(Re,) is not sufficient to parameterize the transport process.



ole of critical shear stress

1000; Wls =0.5 mm/s
Wwis Tlc(Pa) T ~atlc @, Flow Mode
(mm/s)
1 0.5 0.01 0.28 6.1x10*4 IV
2 0.5 0.02 0.38 1.7x103 [l
3 0.5 0.05 0.43 1.0x103 Il
| | I
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Lower T, generally gives larger suspended sediment load but when T, is too low suspended
load reduces again! How?



)]le of critical shear stress

Case 1, mode IV, t.=0.01 Pa
A\;=0.2

ent flow modes, i.e., well-

| (I), formation of lutocline
id laminarization (IV) can P
rained via different critical ]
stress of erosion ...

ent structure is visualized
method (Zhou et al. 1999,




role of critical shear stress

Flow peak:

low reversal:
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]e of settling velocity Re,=1000;t.=0.02 (Pa)

W ls Doeq rlc(Pa) rt,=a Flow Mode = Laminarization (model IV) can be
(mm/s) Tic triggered by very small settling velo
5 0.17 2.4x1072 0.02 0.28 \Y rleq=(Wis ¢plbeq /m +1)rlc=
2 0.5 1.1x10? 0.02 0.38 Il
6 1.0 6.0x1073 0.02 0.42 | O~ f(ticlear —tieq )
7 1.17 5.2x103 0.02 0.42 [l
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eterization (1)

Adopted from Ozdemir et al. (2011

emir et al. (2011) prescribe fixed 6 B
ment availability (Ri) and suggested | \

se the carry capacity to describe the [ \\
sition of flow modes: |

Ri=f(Re,)/ W,

> Ri is determined by resuspension.
rever, mode 1 and mode 2 where
low remains turbulent, the

unt of suspended sediment can still
arameterized by carrying capacity.
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eterization (2)

|l sediment flux balance in equilibrium:

tleq=(Wls ¢plbeq /m+1)ric

N Wils=K(tlceqg—tic /tic )

J Characteristic stress at equilibrium
£eeqd ~0.88 (Pa) for mode I-II;

0.38 (Pa) for mode II-IV.

Kk~m/Pplbeq R
= via empirical fit
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ary

Erodibility parameters, i.e., critical shear stress, can dictate the transition of flow modes.

Suspended sediment can reduce bed stress via density stratification (drag reduction); laminarization
occurs when equilibrium bed stress is reduced to about 0.38 (Pa).

Suspended sediment load can be parameterized by carry capacity in flow mode I and IL.

Semi-empirical formulae (# s vs rdc) describing the borders between mode I & Il and mode Il & IV.

ng and Future Work

he transition of flow modes on dynamics of
vave-supported gravity-driven mudflow.

Question: Wave-supported gravity-driven
mudflows only exist in flow mode II?
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RANS modeling of wave-supported gravity-driven mudflov
Hsu, Ozdemir, Traykovski (2009), JGR.



understand how the sand fraction can dictate the flow mode and hence the initiation, transport
and termination of wave-supported gravity currents

A small amount of sand (13%) can armor the bed and generate bedforms at the surface layer and
modify fine sediment transport (Liang, Lamb, Parsons 2007). Active layer approach (e.g., Harris

& Wiberg 1997, CSR; Reed et al. 1997, MQG)
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Hooshman, Horner-Devine, Lamb (2014) manuscript in preparation
Laboratory data is obtained in collaboration with A. Horner-Devine (U. Washington)



