Understanding wave-driven fine sediment transport through 3D turbulence resolving simulations – Implications to offshore delivery of fine sediment

Tian-Jian Hsu (Tom)

Associate Professor Center for Applied Coastal Research Civil & Environmental Engineering University of Delaware Newark, DE 19716, USA

-Authors:

hen Cheng (Charlie), PhD Candidate, University of Delaware (UD) iao Yu, Postdoc Researcher, University of Delaware

. E. Ozdemir, Postdoc Researcher, Woods Hole Oceanography Institution (WHOI) ssistant Prof. Louisiana State Univ., Starting July 1, 2014.

Balachandar, Professor, University of Florida (UF)

<u>nancial Support:</u>

ational Science Foundation (OCE; CMMI) ffice of Naval Research (Littoral Sciences and Optics)

llaborators:

eter Traykovski, WHOI. **lex Horner-Devine,** Univ. of Washington (UW). **lex Sheremet**, Univ. of Florida (UF) **lichael Lamb,** California Institute of Technology (Caltech).

<u>ificance – offshore delivery of fine sediment</u>

e-driven fine sediment transport is a critical mechanism in sediment source to sink (Wheatcroft & geld 2000, CSR; Warrick 2014, MG): Wave-supported gravity-driven mudflows (Traykovski et al. 2000; on et al. 2000, CSR).

Traykovski et al. 2000; Cont. Shelf Res.

lenges in source to sink modeling:

ight et al. (2001), Mar. Geo.; Scully et al. 01), JGR. Use a bulk Richardson nber control.

rris et al. (2004), Est., Coast. Mod. ameterization of a near-bed turbid layer

Harris et al. (2005), JGR: Flood dispersal and deposition be near-bed gravitational sediment flows and oceanographic transport: A numerical modeling study of the Eel River sh northern California.

nificance – hydrodynamic dissipation over muddy seabed

Waves experience significant attenuation over muddy seabed (e.g., Sheremet & Stone 2003, JGR). Modeled as enhanced viscosity due to mud: Dalrymple & Liu (1978), JPO.

Question: How suspended sediment can nodulate turbulence and causes ransition of these diverse seabed states?

del Formulation & Governing Equations:

- 1) Turbulence-resolving approach is needed to resolve turbulence-sediment interaction.
- 2) For typical cohesive sediments, settling velocity is 0.1~1 mm/s. The inertia of particle is assume negligible (Stokes number is St<<1). Equilibrium approximation (Balachandar & Eaton 2010):

Sediment velocity:
$$v_i = u_i - W_s \delta_{i3} - St(1-\beta) \frac{\partial u_i}{Dt}$$

$$\frac{\partial u_i}{\partial x_i} = 0$$

$$\frac{Du_i}{Dt} = -\delta_{i1} \frac{2}{\text{Re}_{\Delta}} \sin \frac{2t}{\text{Re}_{\Delta}} - \frac{\partial p}{\partial x_i} - \frac{Ri\phi\delta_{i3}}{Re_{\Delta}\delta_{i3}} + \frac{1}{\text{Re}_{\Delta}} \frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

$$\frac{\partial \phi}{\partial t} + \frac{\partial (u_i - W_s \delta_{i3})\phi}{\partial x_i} = \frac{1}{\text{Re}_{\Delta}} \frac{\partial^2 \phi}{\partial x_i \partial x_i}$$

merical Implementation:

Model is solved by a high accuracy pseudo-spectral scheme (Cortese & Balachandar 1995). Validated extensively by earlier DNS study for steady and oscillatory channel flows (Kim & Moin 1987; Spalart & Baldwin 1988).

Non-dimensional Parameters:

Stokes Reynolds number (wave intensity):

- For Eel shelf: U=0.55 m/s; T=10 sec; $Re_{\Lambda} < =1000$ (Traykovski et al. 2000)
 - \Rightarrow Wave boundary layer is "intermittently turbulent" (Jensen et al. 1989, JFM).

Nondimensional settling velocity

$$W_s = \frac{\widetilde{W}_s}{\widetilde{U}_0}$$

For fine sediment \widetilde{W}_s = 0.1 ~ 1.5 mm/s (e.g., Hill et al. 2000, CSR)

(flocculation/floc dynamics is not considered)

Sediment availability

a) Prescribe sediment initially and set no-flux in the bottom and top wall (Ozdemir et al. 2010; 2011; Yu et al. 2013, 2014).
i.e., Φ=constant, *Ri* is fixed in a given case.
⇒ simple; similar to field condition when sediment supply is determined by river flooding

$$Ri = \frac{(s-1)g\Delta\Phi}{\widetilde{U}_0^2}$$

b) Erosional/depositional boundary condition at bottom wall (this talk). *Ri* is part of the solution of model due to resuspension.

ence modulation due to sediment-induced density stratification:

Ozdemir et al. (2010) JFM; Re_{Δ}=1000, **Ri=0~6×10⁻⁴**, $\widetilde{W}_s = 0.5$ mm/s Ozdemir et al. (2011), JGR: Re_{Δ}=1000, Ri=1×10⁻⁴, $\widetilde{W}_s = 0.25 \sim 1.5$ mm/s

Carrying capacity conce Winterwerp (2001), JGI

$$C_{s} = K_{s} \frac{1}{(s-1)} \frac{U_{*}^{3}}{gh\widetilde{W}_{s}}$$

Non-dime general fo

 $W_{s} \cdot Ri = f(Re_{\Delta})$

Ozdemir et al. (2011

What happen when sediment supply is constraint by botto resuspension?

revision to the numerical scheme

id Spectral-compact finite difference scheme: Yu et al. (2013, Computer & Geosciences) v easy implementation of variable viscosity (rheology; LES) and nonlinear boundary conditions.

sion/deposition bottom

., Sanford and Maa (2001), MG:

$$E(t) = m(\tau \downarrow b(t) / \tau \downarrow c - 1)$$

$$D(t) = W \downarrow s \phi \downarrow b(t)$$

ivation - At equilibrium (in wave-averaged "<>" sense):

 $\langle E \rangle = \langle D \rangle \qquad \langle \tau \downarrow b(t) \rangle = \tau \downarrow eq \qquad \langle \phi \downarrow b(t) \rangle = \phi \downarrow beq$

$$\tau \downarrow eq = (W \downarrow s \ \phi \downarrow beq / m + 1) \tau \downarrow c = \alpha \tau \downarrow c \\ \Phi \sim f(\tau \downarrow clear - \tau \downarrow eq)$$

or example, if τ_c is small, $\tau_{eq} = \alpha \tau \downarrow c$ is small comparing to τ_{clear} and Φ is larger.

The resulting flow modes may be dictated by erodibility parameters, e.g., τ_c and m. Settling velocity is also involved bottom erosion/deposition balance, i.e., α . The relationship $W_s \cdot Ri = f(Re_{\Delta})$ is not sufficient to parameterize the transport process.

ole of critical shear stress

=1000; $W \downarrow s = 0.5 \text{ mm/s}$

x 10⁻³

Lower τ_c generally gives larger suspended sediment load but when τ_c is too low suspended load reduces again! How?

ole of critical shear stress

ent flow modes, i.e., welll (I), formation of lutocline id laminarization (IV) can tained via different critical stress of erosion τ_c .

ent structure is visualized method (Zhou et al. 1999,

role of critical shear stress

<u>ole of settling velocity</u> Re_{Δ}=1000; τ_c =0.02 (Pa)

 Laminarization (model IV) can be triggered by very small settling velo

 $\tau \downarrow eq = (W \downarrow s \phi \downarrow beq / m + 1) \tau \downarrow c = c$

$$\Phi \sim f(\tau \downarrow clear - \tau \downarrow eq)$$

 Within flow mode II, simulation results suggest: Φ~W↓s↑– carry capacity concept suggest: Φ~W↓

Carrying capacity works in flow mod

 $Ri=f(Re_{\Delta})/W_{s}$

<u>eterization (1)</u>

emir et al. (2011) prescribe fixed ment availability (Ri) and suggested se the carry capacity to describe the sition of flow modes:

 $Ri=f(Re_{\Delta})/W_{s}$

e Ri is determined by resuspension. vever, mode 1 and mode 2 where flow remains turbulent, the unt of suspended sediment can still arameterized by carrying capacity.

further need a parameterization he onset of laminarization nsition to flow mode IV).

eterization (2)

ll sediment flux balance in equilibrium:

 $\tau \downarrow eq = (W \downarrow s \phi \downarrow beq / m + 1) \tau \downarrow c$

$$\Rightarrow W \downarrow s = K(\tau \downarrow ceq - \tau \downarrow c / \tau \downarrow c)$$

Characteristic stress at equilibrium $\tau \downarrow ceq \sim 0.88$ (Pa) for mode I-II; 0.38 (Pa) for mode II-IV.

 $K \sim m/\phi \downarrow beq$ \Rightarrow via empirical fit

<u>ary</u>

- Erodibility parameters, i.e., critical shear stress, can dictate the transition of flow modes.
- Suspended sediment can reduce bed stress via density stratification (drag reduction); laminarization occurs when equilibrium bed stress is reduced to about 0.38 (Pa).
- Suspended sediment load can be parameterized by carry capacity in flow mode I and II.
- Semi-empirical formulae ($W \downarrow s$ vs $\tau \downarrow c$) describing the borders between mode I & II and mode II & IV.

ng and Future Work

- The transition of flow modes on dynamics of vave-supported gravity-driven mudflow.
- Question: Wave-supported gravity-driven mudflows only exist in flow mode II?

RANS modeling of wave-supported gravity-driven mudflow Hsu, Ozdemir, Traykovski (2009), JGR.

understand how the sand fraction can dictate the flow mode and hence the initiation, transport and termination of wave-supported gravity currents

A small amount of sand (13%) can armor the bed and generate bedforms at the surface layer and modify fine sediment transport (Liang, Lamb, Parsons 2007). Active layer approach (e.g., Harris & Wiberg 1997, CSR; Reed et al. 1997, MG)

Hooshman, Horner-Devine, Lamb (2014) manuscript in preparation Laboratory data is obtained in collaboration with A. Horner-Devine (U. Washington)