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Preface 

The report describes the framework for the U.S. Geological Survey modular hydrologic simulation program, called MOD­
FLOW 6. The program can be downloaded from the U.S. Geological Survey for free. The performance of the framework has 
been tested in a variety of applications. Future applications, however, might reveal errors that were not detected in the 
test simulations. Users are requested to send notification of any errors found in this model documentation report or in the 
model program to the MODFLOW contact listed on the Web page. Updates might be made to both the report and to the 
model program. Users can check for updates on the MODFLOW Web page (https://doi.org/10.5066/F76Q1VQV). 
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Documentation for the MODFLOW 6 Framework 

By Joseph D. Hughes, Christian D. Langevin, and Edward R. Banta 

Abstract 

MODFLOW is a popular open-source groundwater flow model distributed by the U.S. Geological Sur­
vey. Growing interest in surface and groundwater interactions, local refinement with nested and unstructured 
grids, karst groundwater flow, solute transport, and saltwater intrusion, has led to the development of numerous 
MODFLOW versions. Often times, there are incompatibilities between these different MODFLOW versions. 
The report describes a new MODFLOW framework called MODFLOW 6 that is designed to support multi­
ple models and multiple types of models. The framework is written in Fortran using a modular object-oriented 
design. The primary framework components include the simulation (or main program), Timing Module, Solu­
tions, Models, Exchanges, and Utilities. The first version of the framework focuses on numerical solutions, 
numerical models, and numerical exchanges. This focus on numerical models allows multiple numerical mod­
els to be tightly coupled at the matrix level. 
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Introduction 

MODFLOW is a popular open-source groundwater flow model distributed by the U.S. Geological Survey. 
For over 30 years, the MODFLOW program has been widely used by academics, private consultants, and gov­
ernment scientists to accurately, reliably, and efficiently simulate groundwater flow. With time, growing inter­
est in surface and groundwater interactions, local refinement with nested and unstructured grids, karst ground­
water flow, solute transport, and saltwater intrusion, has led to the development of numerous MODFLOW 
versions. Although these MODFLOW versions are often based on the core MODFLOW version (presently 
MODFLOW-2005), there are often incompatibilities that restrict their use with other MODFLOW versions. In 
many cases, development of these alternative MODFLOW versions has been challenging due to the underlying 
program structure, which was designed for the simulation of a single groundwater flow model using a regular 
MODFLOW grid consisting of layers, rows, and columns. 

A new object-oriented framework called MODFLOW 6 was developed to provide a platform for support­
ing multiple models and multiple types of models within the same simulation. In the new design, any number 
of numerical models can be included in a simulation. These models can be independent of one another with 
no interaction, they can exchange information with one another, or they can be tightly coupled at the matrix 
level by adding them to the same numerical solution. Transfer of information between models is isolated to 
exchange objects, which allow models to be developed and used independently of one another. Within this 
new framework, a regional-scale groundwater model may be coupled with multiple local-scale groundwater 
models. Or, a surface-water flow model can be coupled to multiple groundwater flow models. The framework 
naturally allows for extensions to include the simulation of solute transport. 

This report provides an overview of the MODFLOW 6 framework; it begins with a description of the 
concepts and terminology upon which the object-oriented framework is constructed. The remainder of the 
report describes the primary framework components, which include the Simulation (or main program), Timing 
Module, Solutions, Models, Exchanges, and Utilities. The first version of the framework focuses on numer­
ical solutions, numerical models, and numerical exchanges. This focus on numerical models allows multi­
ple numerical models to be tightly coupled at the matrix level. The first model to be released in the MOD­
FLOW 6 framework is the Groundwater Flow (GWF) Model. The GWF Model is described in a companion 
report by Langevin and others (2017). 

Concepts and Terminology 

The simulation framework is based on four major components: models, exchanges, solutions, and a tim­
ing module. A model solves a hydrologic process. For example, the GWF Model (Langevin and others, 2017) 
solves the groundwater flow equation using a control-volume finite-difference method. Other models that may 
be added to the simulation framework include flow through a linear network, surface-water flow, landscape 
hydrologic processes, and transport, for example. A solution solves one or more hydrologic models that it con­
tains. The Numerical Solution is the first solution developed for the framework and is described in this report. 
It solves a nonlinear system of equations using iterative methods. An exchange facilitates the communica­
tion between two models. For example, the GWF-GWF Exchange, which is described by Langevin and others 
(2017), connects two GWF Models and allows cells in one GWF Model to be hydraulically connected to cells 
in another GWF Model. Lastly, the timing module controls the lengths of time steps and determines when the 
end of the simulation has been reached. 

MODFLOW 6 is written in Fortran using a modern programming style. Many of the simulation compo­
nents were programmed using an object-oriented design. Adams and others (2009) provides a comprehensive 
description of the details for implementing object-oriented programming concepts using Fortran. The object-
oriented design is different from the procedural program design that was used for previous MODFLOW ver­
sions. The move to an object-oriented design for MODFLOW was necessitated by several factors: (1) The 
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capability for a simulation to represent any number of models of the same or different type is straightforward 
to implement with an object-oriented design. (2) Objects allow for complexity to be managed and organized 
in compartmentalized and independent pieces of code. In many cases, programmers need functionality, which 
can be provided by an object. Functionality can be accessed without the programmer having to understand 
the underlying details. (3) An object-oriented design can make it easier for others to add new capabilities. 
Through inheritance and the capability to override routines, new hydrologic models and model packages can 
be added with relative ease and without repeating lines of code contained in other parts of the program. These 
factors allow MODFLOW to expand and increase in complexity, as necessary, in order to simulate new hydro-
logic problems. 

Object-oriented programming is based on four principles, which are briefly described below in the context 
of MODFLOW 6. 

‚	 Encapsulation—Object-oriented programming is based on the idea that data and the routines (subroutines 
and functions) that operate on the data are stored together as part of an object. This concept of storing 
data and routines together is commonly referred to as encapsulation. Data items stored within an object 
are called members (or attributes). Members can be intrinsic variables or objects themselves. The rou­
tines stored within an object are referred to as methods. Encapsulation often implies that some of the 
information within the object is hidden from other parts of the program. The protection of information 
in an object can prevent errors and unintended consequences. It also allows objects to be designed inde­
pendently and used without other programmers having to know the details of the object. 

‚	 Abstraction—Object-oriented programs are written using classes. A class is a unit of computer code 
that defines the object. A class defines the members and methods that comprise the object. Classes are 
often described as “blueprints” for creating objects. An object is created from the class through the pro­
cess of “instantiation.” Instantiation means that an instance of the object has been created from the class 
blueprint. Multiple object instances can be created from a single class. The term “abstraction” is intended 
to represent the concept that the class defines the properties and behavior of an object, once it exists. 
A Fortran class is created using a “derived type.” For example, the Fortran code that defines the GWF 
Model class is contained within a derived type. For a simulation involving local grid refinement, multi­
ple instances of the GWF Model class are required. One GWF Model instance is required for the parent 
model and other GWF Model instances are required for each of the child models. 

‚	 Inheritance—A class can be extended to form another class using the concept of inheritance. The class 
that is extended is called the superclass. The new class that is created is called a subclass. Classes can be 
extended multiple times to create a hierarchy of class definitions. Inheritance can be used as an efficient 
mechanism for organizing and reusing code. In MODFLOW 6, for example, all numerical models that 
involve the solution of a system of equations inherit from the NumericalModelType class. Because the 
GWF Model class inherits from the NumericalModelType class, it automatically has all of the members 
and methods defined in the NumericalModelType class as well as any members and methods defined 
in the GWF Model class itself. If a method of the NumericalModelType class does not make sense or 
does not apply for the GWF Model, then the GWF Model class can “override” that method by defining its 
own method that takes the place of the overridden parent method. Inheritance is also beneficial for rapidly 
implementing new functionality in MODFLOW 6. When designing a new model, exchange, or package, 
for example, inheriting from a parent model type will cause the new methods to be automatically called 
throughout the entire framework in the correct order. 

‚	 Polymorphism—An object that can dynamically change its type during program execution is consid­
ered to be polymorphic. Polymorphic objects are used extensively in the MODFLOW 6 framework. For 
example, there are many instances where the program must step through a list of all the model objects 
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contained within a simulation and perform some type of operation on each one. As the program steps 
through each model, a polymorphic object is temporarily used to refer to the model. The object must be 
polymorphic because models can originate from different classes. For example, there are many situations 
in MODFLOW 6 where it is necessary to loop through all the models in the simulation and do some sort 
of processing, such as “read and prepare.” On the first pass, the temporary object points to the first model, 
and the read and prepare method can be called. On the second pass, the temporary object points to the 
second model, and again, the read and prepare method is called. This pattern is used throughout MOD­
FLOW 6 to loop through models, solutions, and other lists of objects. 

Support for object-oriented programming with Fortran was introduced with the 2003 standard (Interna­
tional Standards Organization, 2004). Fortran has several different types of intrinsic variables. An intrinsic 
variable type can be thought of as a type that is built-in to the Fortran language. Several of the common vari­
able types include integer, real or floating point, and character strings. Fortran also supports derived types. A 
derived type is a customized type designed by the programmer to store multiple variables together within a 
single structure. Fortran also supports the concept of type-bound procedures, which can be included as part of 
a derived type. These type-bound procedures have access to the information stored within the derived type. 
Type-bound procedures can be subroutines or functions. The Fortran language allows derived types to be 
extended. When a derived type is extended, the new derived type consists of the variables and type-bound pro­
cedures of the superclass type as well as whatever new variables and type-bound procedures that it defines. 
The availability of derived types, type-bound procedures, and the extension of derived types allows an object-
oriented program to be written using Fortran. To avoid confusion with the MODFLOW 6 concept of proce­
dure, in this report the term “routine” is used to refer to subroutines and functions, which may or may not be 
type-bound. The term “method” refers to type-bound subroutines and functions. 

Objects are typically not used at the lowest level in the MODFLOW 6 framework. For example, it would 
be possible to have a different object for each cell within a model. Although there may be some benefit in 
designing objects at a low level, testing revealed inefficiencies in memory and performance when objects were 
used for low-level purposes. For this reason, objects are typically used at a higher level, such as for a package 
or model. 

Primary Framework Components 

Within the MODFLOW 6 framework, a simulation consists of a single forward run, which may include 
multiple models. The simulation is the highest level component and is controlled by the main program. The 
primary components that comprise a simulation within the MODFLOW 6 framework are shown in figure 1. 
These components include the timing module, solutions, models, exchanges, and utilities. A component is 
a general term used in this report to describe a part of the MODFLOW 6 framework. A component may be 
a module, object, subroutine, or collection of these used to handle a part of the program function. The com­
ponents are shown in figure 1 using dashed lines to indicate that they are not object instances, but rather the 
modules, subroutines, and classes that define the components. 

The TimingModule implemented in the present MODFLOW 6 framework is consistent with previous 
MODFLOW versions. The TimingModule divides the simulation period into time steps and stress periods. 
The TimingModule also sets a flag for the last time step of a stress period and the last time step of the simula­
tion. Details on the TimingModule are described later in this chapter. 

A solution solves one or more models and the exchanges between models. BaseSolutionType 
is the superclass from which all other solution types must inherit. The NumericalSolutionType is 
one type of solution that is available in the MODFLOW 6 framework. The downward arrow between 
BaseSolutionType and NumericalSolutionType is used to denote that NumericalSolutionType is 
a subclass of BaseSolutionType. The NumericalSolutionType was designed specifically to solve one 
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Figure 1. Schematic diagram showing MODFLOW 6 components. The GwfModelType and the GwfExchangeType are described 
in Langevin and others (2017). 

or more numerical models, such as the GWF Model, which are subclasses of NumericalModelType. The 
NumericalSolutionType can also represent exchange terms between connected numerical models. These 
exchanges must be subclasses of NumericalExchangeType. 

Three separate model components are shown in figure 1. Each one of these components represents a class. 
The arrows between these classes indicate the inheritance starting with the BaseModelType, extending to the 
NumericalModelType, and ending with the GwfModelType, which defines the GWF Model described in 
Langevin and others (2017). BaseModelType defines the members and methods shared by all models within 
the framework. NumericalModelType defines members and methods shared by all numerical models. Mod­
els that inherit from NumericalModelType can be solved by NumericalSolutionType. 

Figure 1 also shows three separate exchange types. BaseExchangeType is the superclass for all 
exchanges. NumericalExchangeType defines exchanges between any two numerical models. The 
GwfExchangeType defines the exchange between two GWF Models. A simulation can include as many 
exchanges as necessary to define the problem. 

Lastly, figure 1 shows several of the important utility components, which are described in the report. These 
include observation utility (ObservationType), the time series and time-array series utilities (TimeSeriesType 
and TimeArraySeriesType, respectively), and the memory manager utility (MemoryManagerType). The 
framework also includes many other minor utilities for reading and writing arrays, parsing strings, and so 
forth, but those minor utilities are not described in this report. 

Simulation 

The simulation is controlled by the main program, which is described in this section. This section also 
describes the simulation name file, which is prepared by the user and determines what components are active 
for the simulation. 

The Main Program 

Like all previous MODFLOW versions, MODFLOW 6 is divided into procedures, which are parts of the 
code that perform similar tasks. Procedures are implemented by subroutines, functions, and methods. Each 
procedure fulfills a well-defined purpose. The main program, which is the uppermost level of the framework, 
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calls procedures for the framework components in a defined order. The order of the procedure calls from the 
main program is shown as a flowchart in figure 2. 

In a program following this flowchart, each procedure could be implemented as a single subroutine; how­
ever, the subroutines would be quite large, and there is benefit from further subdividing the work into smaller 
subroutines. There are many ways the code could be subdivided. The approach used for MODFLOW 6 is to 
divide the code into pieces that can be conceptualized and used as either procedures or components as desired. 
Accordingly, a primary routine is defined as the code that implements a procedure for one component. For 
example, solutions, models, and exchanges all have an Allocate and Read (AR) Procedure associated with 
them. These routines are called after Define (DF) Procedures, but before the Time Update (TU) Procedure. 
A procedure can be viewed as a grouping of all the primary routines that implement the procedure. A com­
ponent can be viewed as a grouping of the data and all the primary routines that comprise the component. In 
object-oriented terms, most framework components are defined by a class that contains data and methods that 
implement the primary routines. 

Using this approach, a simulation is simply an organized sequence of call statements to the primary rou­
tines. Each procedure is invoked through calls to multiple primary routines—one for each component. If mul­
tiple instances of a component are present, then a procedure will be called for each instance. Accordingly, 
the calls to the primary routines are invoked as many times as necessary based on the number of components 
added by the user to the simulation. Thus, the main program does not itself do all of the work of simulation, 
but merely calls the various primary routines in the proper sequence to do that work. 

The following is a list of primary procedures that are called from the main program, as shown in figure 2. 

‚	 Create (CR) Procedure—Create framework objects, such as the model, package, exchange, and solution 
objects, through instantiation. 

‚	 Define (DF) Procedure—Define selected attributes for framework objects. For objects that contain allo­
catable arrays, the DF Procedure determines the size of these arrays so they may be allocated in a subse­
quent procedure. 

‚	 Allocate and Read (AR) Procedure—Allocate arrays and read information that is constant for the entire 
simulation. 

‚	 Time Update (TU) Procedure—Increment time variables and calculate time-step lengths. 

‚	 Read and Prepare (RP) Procedure—Read information from input files, as needed, to update hydrologic 
stresses or other time-varying input. 

‚	 Calculate (CA) Procedure—Update the dependent variables. For numerical solutions, the CA Procedure 
will use iterative numerical methods to solve the nonlinear system of equations. 

‚	 Output (OT) Procedure—Write simulation results to output files for each time step, or as required. 

‚	 Final Processing (FP) Procedure—Write termination messages and close files. 

‚	 Deallocate (DA)—Deallocate memory. 

As shown in figure 2, the TU, RP, CA, and OT Procedures are called repeatedly within a time-step loop until 
the end of the simulation is reached. 

Each box in figure 2 represents procedure calls for all models, all exchanges, and all solutions that are part 
of the simulation. An expanded flowchart for the simulation is shown in figure 3. This figure shows separate 
calls for the individual model components. For example, the AR Procedure shows calls for models, exchanges, 
and solutions. Each one of these boxes represents calls to all model AR Procedures, then to all exchange AR 
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Procedures, and then to all Solution AR Procedures. Thus, the Model CR box shown in figure 3 represents a 
separate call to each Model AR Procedure. As shown in figure 3, this same pattern of calling model, exchange, 
and solution procedures is used for the CR, DF, AR, RP, OT, FP, and DA Procedures. The TU Procedure is 
called only for the Timing Module. The CA Procedure is called only for the solutions; however, as will be 
shown later, solutions may call model and exchange procedures as necessary in order to formulate equations. 

Simulation Name File 

A simulation name file is used to control the components that are active for a simulation, including the 
timing, models, exchanges, and solutions. Details on the format and options for the simulation name file are 
described in the MODFLOW 6 user guide, which is distributed with the program. 

An example of a simulation name file is shown below to demonstrate the type of information that would 
be provided for a simulation involving three GWF Models. In this example, there is a parent GWF Model 
and two child GWF Models. The child models are nested within the parent model. The child models do not 
interact with one another. The simulation name file consists of four blocks of information that define the 
timing module, models, exchanges, and solutions. In this example, each block contains one or more lines of 
information. The first item on the line is the component type (TDIS, GWF, GWF-GWF, and IMS). The compo­
nent types are also marked with a “6” in the simulation name file to indicate a version number, which may 
change in future releases. The second item on the line is a file name that contains information needed to 
define the object. Within the MODELS block, the third item on the line is the name of the model. Within the 
EXCHANGES block, the third and fourth items on the line are two model names. These are the models that 
are coupled by the exchange. Within the SOLUTION GROUP block, the third, fourth, and fifth items on the 
line are the names of the models that will be solved by the Numerical Solution. 

BEGIN TIMING 
TDIS6 simulation.tdis 

END TIMING 

BEGIN MODELS 
GWF6 parent.nam PARENT 
GWF6 child1.nam CHILD1 
GWF6 child2.nam CHILD2 

END MODELS 

BEGIN EXCHANGES 
GWF6-GWF6 p-c1.exg PARENT CHILD1 
GWF6-GWF6 p-c2.exg PARENT CHILD2 

END EXCHANGES 

BEGIN SOLUTION_GROUP 1 
IMS6 simulation.sms PARENT CHILD1 CHILD2 

END SOLUTION_GROUP 

For the example simulation name file shown above, the MODFLOW 6 program would create the compo­
nents shown in figure 4. There is the Timing Module. There is one Solution component (a Numerical Solu­
tion), which contains three models. The first model is called PARENT, the second model is called CHILD1, 
and the third model is called CHILD2. Exchange of information between PARENT and CHILD1 is con­
trolled by the GWF-GWF Exchange that reads its information from the file p-c1.exg. Exchange of informa­
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Figure 5. Schematic diagram showing the division of simulation time into stress periods and time steps. 

tion between PARENT and CHILD2 is controlled by the GWF-GWF Exchange that reads its information from 
p-c2.exg. 

For this example simulation, the three models will be tightly coupled at the matrix level and solved within 
a single system of equations. 

Timing Module 

Simulation time is divided into stress periods—time intervals during which the input data for all external 
stresses are constant—which are in turn, divided into time steps (fig. 5). Note that time steps are fundamen­
tal to the control-volume finite-difference method employed by the GWF Model, whereas stress periods have 
been incorporated in MODFLOW as a convenience for user input. Discretization information for time is read 
from the input file for the Timing Module (TDIS). 

Within each stress period, the time steps form a geometric progression. The user specifies the length of the 
stress period (P ERLEN ), the number of time steps into which the stress period is to be divided (NST P ), 
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and the time step multiplier (T SMULT ). The time step multiplier is the ratio of the length of each time step 
to that of the preceding time step. Using these values, the program calculates the length of the first time step 
(Δt1) in the stress period as 

T SMULT NST P ´ 1 

ˆ 

Δt1 “ P ERLEN 
T SMULT ´ 1 

˙ 

, (1) 

when TSMULT ‰1, and 

P ERLEN 
Δt1 “ , (2)

NST P 

when TSMULT is one. 
The length of each successive time step is computed as 

Δt “ ΔtoldT SMULT. (3) 

Stress periods are implemented only as a convenience. Packages that define time-dependent stresses read 
input data every stress period. Stress periods facilitate the frequent need to have constant input data for stresses 
for multiple time steps. Situations are not unusual, however, in which a need arises to change stress data for 
every time step. In this situation, each stress period must consist of a single time step; alternatively, the Time 
Series functionality built into MODFLOW 6 can be used. The Time Series functionality is described in a sepa­
rate chapter. 

As an example of how stress periods are used, consider a GWF Model that uses the River and Well Pack­
ages. The simulation is for a period of 90 days, and 90 one-day time steps are used. The well and river cells 
are the same throughout the simulation, but the pumping rates and river stage vary. If the Time Series func­
tionality is not used, then the number of stress periods depends on how frequently the river stage and pumping 
rates vary because a new stress period must start whenever stage or pumping for any cell changes. For exam­
ple, if river stage or pumping only change every 30 days, then three 30-day stress periods can be used. Like­
wise, if pumping or river stage varies every 3 days, then 30 three-day stress periods would be used. When a 
new stress period begins, all stress data must be redefined; however, most stress packages will reuse the data 
from the previous stress period. In this example, reuse of river data would be useful if a new stress period is 
started because the pumping rates change while the river stage stays the same. If the Time Series functionality 
were used for this problem, then a single stress period could be used with 90, one-day time steps. By including 
the pumping rates and river stages in time-series files, the program would automatically interpolate values to 
the daily time step interval. 

Steady-state conditions can be simulated as a single stress period with one time step. The length of a 
steady-state stress period does not have an impact on the computed head because the storage term in the flow 
equation is set to zero by the internal flow package. A time length of one unit is suggested for steady-state 
simulations. 

Solutions 

A solution is a primary component of the MODFLOW 6 framework. The purpose of a solution 
is to solve one or more models and the exchanges that connect them. All solutions are subclasses of 
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BaseSolutionType. This report documents one type of solution, the Numerical Solution, which is imple­
mented in the NumericalSolutionType class. 

The procedure calls for BaseSolutionType are shown in figure 6. These primary procedures are called 
directly from the main program with the corresponding procedure name. The procedures shown in figure 6 are 
methods of BaseSolutionType. 

Numerical Solution 

The Numerical Solution is designed to solve one or more numerical models that inherit from 
NumericalModelType. The numerical models may be connected to one another using exchanges. 
For these exchanges to couple models at the matrix level, the exchange must be a subclass of 
NumericalExchangeType. Numerical models, such as the GWF Model, formulate a nonlinear system of 
equations of the form 

Ax “ b, (4) 

where A is the coefficient matrix, x is the vector of dependent variables (for example, head, stage, and con­
centration), and b is the right-hand-side vector. The Numerical Solution formulates a single system of equa­
tions (eq. 4) for all of the models and exchanges that are part of the solution. To achieve this, the Numerical 
Solution stores a list of the models and a list of the exchanges that it solves. To determine the structure of the 
coefficient matrix or to fill the matrix with coefficients, the Numerical Solution makes calls to each model 
in the model list and to each exchange in the exchange list. The models and the exchanges interact with the 
Numerical Solution by providing connection information and inserting coefficients into the coefficient matrix 
in the correct locations. 

These concepts are illustrated in figure 7, which shows the structure of the A coefficient matrix for three 
models solved by a single Numerical Solution. This matrix is square, with the number of rows and columns 
equal to the total number of dependent variables in the three models. The small squares indicate a connection 
between two cells (n and m). A solid black square indicates that the cells are part of the same model; purple-
filled squares indicate that the connection is between cells in different models. 

The Numerical Solution solves the system of equations for one or more models using iterative numer­
ical methods. The methods used by the Numerical Solution are based on the methods implemented for 
MODFLOW-NWT and the methods implemented in the Sparse Matrix Solver in MODFLOW-USG. The 
methods are capable of handling unstructured A matrices as well as asymmetric A matrices. This flexibility 
allows for the solution of unstructured grid problems, Newton-Raphson flow formulations, anisotropic ground­
water flow, and dispersive solute transport, for example. 

This system of equations solved by the Numerical Solution may be nonlinear in that the coefficient matrix 
may change with different values of x. The A coefficient matrix may also be unstructured and can be asym­
metric. As part of the CA Procedure, the Numerical Solution formulates and solves equation 4 for the mod­
els that have been added to it and for the exchanges that connect them. Because equation 4 is nonlinear, the 
Numerical Solution must solve a linearized form of it repeatedly, each time with an improved estimate of x. 
The solution of the linearized form uses standard linear solution methods, which are described in this section 
under “Linear Solution.” 

Methods are available in the Numerical Solution for handling the nonlinear nature of equation 4. These 
methods include backtracking, pseudo-transient continuation, under-relaxation methods, and Newton Damp­
ening (fig. 8). These methods are included to adjust the estimate of x returned from the linear solution used to 
solve equation 4. In many cases, these adjustments will improve convergence. 
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Backtracking 

In some cases, the Newton-Raphson method can overshoot a solution when derivatives change abruptly 
(for example, as a function of the dependent variable x). This condition may prevent convergence in MOD­
FLOW 6. An option is available to use backtracking (residual control) with MODFLOW 6 if the L2-Norm of 
the residual increases significantly. The L2-Norm of the residual, ||r||2, is calculated as 

˜

ÿ

¸1{2nodes
2||r||2 “ r , (5)n

n“1 

where r is the residual of equation 4. 
Press (2007) provides a globally convergent backtracking scheme for Newton-Raphson solutions of non­

linear equations. Backtracking reduces Δx, the upgrade vector of the dependent variable for an iteration, 
by multiplying by a factor less than one until the error ceases to decrease. Backtracking occurs in MOD­
FLOW 6 can occur if the user-specified variable, BACKTRACKING NUMBER, is greater than zero and the residual 
exceeds a user-specified tolerance. If backtracking is active, Δx is reduced according to the scheme of Press 
(2007), as follows: 

if ||r||k ą FB ˚ ||r||
k´1 

2 2 

while ||r||I ą FB ˚ ||r||
k´1 

(6)2 2 

and ||r||I ą“ ||r||2min2
 
I I´1
then Δx “ RBΔx , 

where the I subscript denotes the backtracking iteration number, FB is a user-specified backtracking tolerance 
(BACKTRACKING TOLERANCE), ||r||2min is a user-defined lower bound for L2-Norm of the residual that is used 
to terminate backtracking iterations (BACKTRACKING RESIDUAL LIMIT), and RB is a user-specified reduction 
factor (BACKTRACKING REDUCTION FACTOR). Backtracking should not be used (BACKTRACKING NUMBER=0) 
unless MODFLOW 6 is having trouble converging with under-relaxation. A backtracking iteration differs from 
a standard nonlinear iteration because the Newton-Raphson correction terms are not added to the coefficient 
matrix (A) for models that are using the Newton-Raphson method, and the linear equations are not solved 
(fig. 8). 

Pseudo-Transient Continuation 

Steady-state problems can be difficult to solve numerically, especially when the Newton-Raphson method 
is used and initial conditions are not sufficiently near the roots where the residual is zero. Standard globaliza­
tion strategies, such as backtracking, often stagnate at local minima, far from the correct steady-state solution. 
Pseudo-transient continuation is a method that improves convergence of steady-state solutions, particularly for 
models using the Newton-Raphson method (Kelley and Keyes, 1998). Pseudo-transient continuation methods 
were not implemented in previous versions of MODFLOW, but a method is available in MODFLOW 6. The 
pseudo-transient continuation method can be defined as 

ˆ ˙ ˆ ˙ 
1 1k´1 k k´1 k´1I ` Jpx q x “ ´r ` I ` Jpx q x , (7)
δk δk 

where δ is a scaled pseudo-transient time-step length and I is the identity matrix. Equation 7 is comparable
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1to the Levenberg-Marquart method (Dennis and Schnabel, 1996) with 
δk I being equivalent to the Levenberg-

Marquart dampening parameter. The scaled pseudo-transient time-step length is calculated using 

“ δk´1 ||r||2 
k´1 

δk , (8)
||r||k 

2 

which is a switched evolution relaxation method that increases the scaled pseudo-transient time-step length in 
inverse proportion to the reduction in the L2-Norm of the residual (Mulder and Van Leer, 1985). The initial 
scaled pseudo-transient time-step length for each time step, δk“0, can be user defined (PTC DEL0) or calcu­
lated using 

nodes
ÿ

1 
n“1 

activeą0
“ , (9)δk“0 

0.1||r||k“0 
2 

where active is greater than 0 if cell n is not constant or inactive for the time step and ||r||k“0 is the L2-Norm 2 
of the residual at the beginning of the time step. 

Although the pseudo-transient continuation method was developed for steady-state problems that use the 
Newton-Raphson method, it can also be applied to the standard conductance formulations. The equivalent lin­
ear conductance equation with pseudo-transient continuation is 

ˆ ˙ ˆ ˙ 
1 1k´1 k k´1I ` Apx q x “ b ` I x . (10)
δk δk 

Equations 7 and 10 can also be applied to transient problems, although pseudo-transient continuation dampen­
ing is generally not beneficial for these problems. 

Under-Relaxation Methods 

Cooley (1983) demonstrated that the Newton-Raphson method commonly requires under-relaxation to 
provide stable solutions. Under-relaxation methods can also be useful for improving convergence for standard 
formulations that do not use the Newton-Raphson method. Under-relaxation is a method for calculating the 
solution for the dependent variable for a particular nonlinear iteration that weights the solution from previous 
iterations with the present iteration. Under-relaxation can be implemented using a simple method equivalent 
to the under-relaxation method in the MODFLOW-2005 PCG package (Hill, 1990a), the method proposed 
by Cooley (1983), or a method adapted from the delta-bar-delta technique found in neural-network literature 
(Smith, 1993). 

The under-relaxation method of Hill (1990a) dampens the solution of equation 4 using a constant relax­
ation factor and the change in the dependent variable during a nonlinear iteration, Δx. Solution of equation 4 
results in an x value for each linear equation, and Δx is calculated as 

k k´1Δx “ x k ´ x , (11) 

where xk is the dependent variable vector for the current iteration, and xk´1 is the dependent variable vector 
for the previous iteration. The new dependent variable values after Hill (1990a) under-relaxation are calculated 
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using
 

k k x “ x k´1 ` γΔx , (12) 

where γ (UNDER RELAXATION GAMMA) is the user-specified relaxation factor (unitless). 
The under-relaxation method of Cooley (1983) dampens the solution of equation 4 using a relaxation fac­

tor based on the maximum dependent variable change, Δxmax, in the current and previous nonlinear iteration. 
The Cooley (1983) relaxation factor, ω, is calculated using 

1 
ωk “ if s k ľ ´1 

2|sk| 
(13)

3 ` sk 

ωk “ if s k ă ´1,
3 ` |sk| 

where sk is calculated as 

k 
k max s “ 

Δx
k´1 . (14)

Δxmaxωk 

The new dependent variable values after Cooley (1983) under-relaxation are calculated using 

k k x “ x k´1 ` ωkΔx . (15) 

The delta-bar-delta methodology for under-relaxation is more robust than the Cooley under-relaxation 
alternative, but also uses more memory. In this scheme, an under-relaxation factor is provided to every ele­
ment of the vector containing the change in the dependent variable. If there is an oscillation in the dependent 
variable change from the previous iteration, the under-relaxation factor for a specified cell is reduced by a 
user-defined amount. If the dependent variable change is in the same direction as the previous iteration, the 
factor for a specific cell is incremented by a user-defined amount. A momentum term is also included that adds 
a user-defined fraction of the previous dependent variable update to the current one. The scheme is efficient 
in finding the solution to problems that exhibit oscillatory behavior in the nonlinear iterations. The weighted 
change in dependent variable values after delta-bar-delta under-relaxation are calculated using 

k´1Δx̄k “ p1 ´ γq x k ´ γx , (16) 

where Δx̄k represents the change in the dependent variable weighted. The dependent variable is then calcu­
lated from equation 16 and additional weighting, as shown below: 

k k´1 ` w kΔ¯ k´1 x “ x x k ` FM Δx̄ , (17) 

where FM is a constant value that is used to weight solutions from previous iterations, referred to as a momen­
tum coefficient (UNDER RELAXATION MOMENTUM), and wk is the weighting factor. The weighting factor is cal­
culated in one of two ways, depending on whether the solution oscillates over nonlinear iterations. If the solu­
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tion oscillates, the weighting factor is calculated as
 

k k´1 w “ w ´ θwk´1 , (18)n n n 

kotherwise, while w is less than one, the weighting factor is calculated as n 

k k´1 w “ w ` κ. (19)n n 

The coefficients θ (0 ă θ ă 1) and κ (0 ă κ ă 1) are themselves weighting factors that are user defined 
(UNDER RELAXATION THETA and UNDER RELAXATION KAPPA, respectively). 

Newton Under-Relaxation 

Newton under-relaxation can be applied to any flow model that uses the Newton-Raphson formulation 
and can greatly increase the likelihood of convergence for highly nonlinear models, particularly with cells 
that transition from wet to dry during the simulation. The objective of Newton under-relaxation is to limit 
dependent-variable changes between consecutive nonlinear iterations in model cells and reduce the occurrence 
of dependent-variable values below the bottom-most elevation of a flow model. Newton under-relaxation is 
applied after solution of linear equation 4 and application of under-relaxation. When the dependent-variable 
in cell n is below the bottom of the model in the cells underlying cell n, the dependent variable for the current 
iteration is adjusted by newton under-relaxation using 

k k´1 x “ p1 ´ βqx ` βzminn, (20)n n 

where β is the weight (unitless) used to scale the current value of x, and zminn is the elevation of the lowest 
model cell bottom elevation underlying cell n (L). The variable zminn is determined using cell connectivity 
data to identify the cell underlying cell n with the lowest bottom elevation that can receive vertical flow from 
cell n. In MODFLOW 6 , β is specified to be 0.9. 

Examples of Newton under-relaxation behavior are shown in figure 9 for two different cases of conver­
gence behavior. For both cases, zminn is 10. and the initial head is 15. In the first case, the model is well 
behaved and the head converges on a value slightly greater than zminn (fig. 9A). For the first seven iterations, 
the linear solution results in heads that are lower than zminn, but Newton under-relaxation raises the heads 
above or equal to zminn. Ultimately, the model converges on a head value greater than zminn. In the sec­
ond case, the model is not well behaved, and each linear solution results in the head dropping below zminn 

(fig. 9A). Newton under-relaxation then raises the head up to zminn. This model also converges as subsequent 
heads (after Newton under-relaxation) ultimately converge on a value at or slightly above zminn. 

Solution of the Linearized Matrix Equations 

Solution of the nonlinear system of equations requires repeated solution of a linearized matrix equation. 
Solution of the linearized matrix equation uses preconditioned iterative methods for an unstructured coeffi­
cient matrix. The coefficient matrix generated by MODFLOW 6 is always stored in an unstructured format, 
even if the problem is structured. The UPCG solver of Hughes and White (2013) has been extended to include 
(1) both conjugate gradient (CG) and biconjugate gradient stabilized (BiCGSTAB) linear accelerators to solve 
the symmetric system of equations arising from confined flow or from unconfined flow formulated using con­
ductance and asymmetric systems of equations arising from the Newton-Raphson formulation, perched con­
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Figure 10. Flowchart of linear solution methods called from the Numerical Solution Calculate Procedure. 

ditions, and ghost nodes, respectively (Barrett and others, 1994); (2) options for various levels of fill for ILU 
decomposition used as a preconditioning step with additional drop-tolerance schemes for additional efficiency 
(Saad, 1994a and Saad, 1994b) and options for row-sum agreement (Gustafsson, 1979, Ashcraft and Grimes, 
1988, and Hill, 1990b); and (3) options for matrix reordering (Cuthill and McKee, 1969 and George and Liu, 
1989). 

The preconditioned CG and BiCGSTAB iterative linear accelerators are efficient methods for solving 
large systems of linear equations having a square, symmetric, positive-definite coefficient matrix and a square, 
asymmetric, positive-definite coefficient matrix, respectively. The flowchart for the linear portions of the solu­
tion framework is shown in figure 10. More information on the preconditioned CG and BiCGSTAB iterative 
linear accelerators can be found in (Barrett and others, 1994) and (Saad, 2003). 
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Models 

A model is a primary component of the MODFLOW 6 framework. A model is intended to represent 
a hydrologic process, such as groundwater flow, laminar or turbulent flow in conduits, surface-water flow, 
solute or heat transport, or landscape hydrological processes, for example. All models should be subclasses 
of BaseModelType, as shown in figure 1. 

The procedure calls from the main program to BaseModelType methods are shown in figure 11. These 
methods are empty placeholders that can be overridden by models that are subclasses of BaseModelType. 
Thus, if a new model is added that is a subclass of BaseModelType, then overriding methods of the new 
model will automatically be called by the main program, as shown in figure 11. This design makes it relatively 
easy to add a new model into the framework without having to make changes to the main program. 

Numerical Models 

The Numerical Model, defined by NumericalModelType, is a special type of model that is designed to 
work with the Numerical Solution. Consistent with previous MODFLOW versions, a numerical model can be 
based on individual packages to handle specific aspects of the model function. Calls to NumericalModelType 
methods are shown in figure 12. Calls to these methods are made from the main program and also from the 
Define and Calculate procedures of the NumericalSolutionType. If the model implements packages, then 
these model methods will likely make calls to package methods. The following is a description of the proce­
dures of the Numerical Model that are called from the main program or from the Numerical Solution: 

‚	 Create (CR) Procedure—Create the Numerical Model and any model packages that are required by the 
model. 

‚	 Define (DF) Procedure—Define the Numerical Model by reading model size information. 

‚	 Add Connections (AC) Procedure—Add model connections to the Numerical Solution by reserving space 
within the coefficient matrix. 

‚	 Map Connections (MC) Procedure—Create an index array that maps the model connections within the 
Numerical Solution matrix equations. The index array is used in subsequent procedures to add terms to 
the matrix equations in the correct locations. 

‚	 Allocate and Read (AR) Procedure—Allocate model arrays and read model information that is constant 
for the entire simulation. 

‚	 Read and Prepare (RP) Procedure—Read model information from input files, as needed, to update hydro-
logic stresses or other time-varying input. 

‚	 Advance (AD) Procedure—Advance the model for the next time step, typically by storing the old value of 
model-dependent variables. 

‚	 Calculate Coefficients (CF) Procedure—Calculate or update coefficients that depend on results from the 
last iteration. 

‚	 Fill Coefficients (CF) Procedure—Calculate and add model terms to the Numerical Solution coefficient 
matrix and right-hand side vector. 

‚	 Newton-Raphson (NR) Procedure—Calculate and add Newton-Raphson terms for the model to the
 
Numerical Solution coefficient matrix and right-hand side vector.
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‚	 Convergence Check (CC) Procedure—Perform a convergence check on model-dependent variables that 
are not part of the Numerical Solution. 

‚	 Newton-Dampening (ND) Procedure—Adjust the calculated values for model-dependent variables. This 
can improve convergence for models that use a Newton-Raphson formulation. 

‚	 Budget (BD) Procedure—Calculate the model budget based on the updated solution for the dependent 
variable. 

‚	 Output (OT) Procedure—Write model results to output files for each time step, or as required. 

‚	 Final Processing (FP) Procedure—Write termination messages and close files associated with the model. 

‚	 Deallocate (DA)—Deallocate memory for the model. 

Packages 

Numerical models may be divided into “packages.” A package is that part of the program that deals with a 
single aspect of simulation. Some boundary conditions can be implemented for a numerical model by adding 
to the coefficient matrix diagonal position and to the right-hand side vector. For these types of boundary con­
ditions, the BaseNumericalPackageType can be subclassed to created specific boundary package types. 
With this implementation, the model stores a list of the boundary packages that it contains. Then as part of 
the Numerical Model methods, the model can iterate through the list of boundary packages and call individual 
package methods. This design makes it relatively straightforward to implement new types of boundary pack­
ages because the package methods will be called automatically at the correct times within the program. 

Exchanges 

The purpose of an exchange object is to connect or pass information between two models. The con­
cept of an exchange was implemented as a way to maintain model independence. With the concept of an 
exchange, a model does not need to be updated every time there is a need to connect it to another model. 
Instead, only an exchange needs to be written. In order to couple two different types of models within the 
MODFLOW 6 framework, a new exchange class needs to be programmed. The advantage of the exchange 
concept is that the instructions for coupling the two models is isolated within a single exchange object. This 
approach makes it possible to develop models independently of other models. 

Numerical Exchanges 

The Numerical Exchange, defined by NumericalExchangeType, is a special type of exchange that is 
designed to work with the Numerical Solution. A Numerical Exchange can be used to add the off-diagonal 
terms to the A matrix, as shown by the purple squares in figure 7. Calls to NumericalExchangeType methods 
are shown in figure 13. Calls to these methods are made from the main program and also from the Define and 
Calculate procedures of the NumericalSolutionType. 

The following is a description of the procedures of the Numerical Exchange that are called from the main 
program or from the Numerical Solution: 

‚	 Create (CR) Procedure—Create the Numerical Exchange. 

‚	 Define (DF) Procedure—Define the Numerical Exchange by reading exchange size information. 
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‚	 Add Connections (AC) Procedure—Add exchange connections to the Numerical Solution by reserving 
space within the coefficient matrix. 

‚	 Map Connections (MC) Procedure—Create an index array that maps the exchange connections within the 
Numerical Solution matrix equations. The index array is used in subsequent procedures to add terms to 
the matrix equations in the correct locations. 

‚	 Allocate and Read (AR) Procedure—Allocate exchange arrays and read exchange information that is con­
stant for the entire simulation. 

‚	 Read and Prepare (RP) Procedure—Read exchange information from input files, as needed. 

‚	 Advance (AD) Procedure—Advance the exchange for the next time step. 

‚	 Calculate Coefficients (CF) Procedure—Calculate or update coefficients that depend on results from the 
last iteration. 

‚	 Fill Coefficients (CF) Procedure—Calculate and add exchange terms to the Numerical Solution coeffi­
cient matrix and right-hand side vector. 

‚	 Newton-Raphson (NR) Procedure—Calculate and add Newton-Raphson terms for the exchange to the 
Numerical Solution coefficient matrix and right-hand side vector. 

‚	 Convergence Check (CC) Procedure—Perform a convergence check on exchange terms. 

‚	 Budget (BD) Procedure—Calculate the exchange budget terms based on the updated solution for the 
dependent variable. 

‚	 Output (OT) Procedure—Write exchange results to output files for each time step, or as required. 

‚	 Final Processing (FP) Procedure—Write termination messages and close files associated with the
 
exchange.
 

‚	 Deallocate (DA)—Deallocate memory for the exchange. 

Utilities 

MODFLOW 6 has a variety of utility classes and routines. There are utilities for opening files, reading and 
writing arrays, storing information in linked lists, and so forth. There are also several larger utility functions 
related to time series, observations, and memory management. Descriptions for these larger utility functions 
are described next. 

Time Series 

The Time Series functionality of MODFLOW 6 allows time-dependent package input to vary from time 
step to time step. The input may be for such a boundary stress as well discharge rate or river stage. Alter­
natively, the input may be for such a boundary property as drain conductance. Time series can also be used 
to provide time-varying values for other package variables (such as auxiliary variables). A time-array series 
is similar in concept to a time series, but a time-array series is used to define time-varying input for a two-
dimensional array. In effect, a time-array series can be thought of as a two-dimensional array in which each 
array element is a time series. 
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A time series is an ordered sequence of records of discrete times and corresponding values in which the 
time of each subsequent record is later than the time specified in the preceding record. The start of the simula­
tion defines time zero. If a simulation contains three stress periods of length 1.0, 3.3, and 5.7 days, the start of 
stress period 3 would be at time 4.3 days and the end of stress period 3 would be at time 10 days. A time series 
used to control a stress for stress periods 2 and 3 would need, at a minimum, to encompass times from 1 day to 
10 days. A time series can start before, or end after, the stress period(s) in which values are to be used. Once 
referenced in package input for a stress period, a time series remains in effect until the next stress period for 
which a PERIOD input block is listed for that package. 

The time/value pairs that define a time series are provided in a file that also identifies a name and inter­
polation method for the time series. A time series is referenced in package input by specifying the time-
series name in place of selected numeric values within a PERIOD block. When a package reads a time-series 
name in a position where a numeric value defining a boundary stress or other property is required, MOD­
FLOW 6 links that time series to the numeric input. At each time step, the time series is queried to provide 
a value for the stress or other property. In general, a numeric value representing an average over the dura­
tion of the time step is appropriate. For example, if the boundary represents a well, one would want the time 
series to generate an average discharge of the well over that time step. The interpolation methods supported 
by time series are STEPWISE, LINEAR, and LINEAREND. The STEPWISE and LINEAR options provide 
a time-averaged value for a time step; the distinction between these options is the method by which values are 
interpolated between the time/value pairs provided in the time series. In some situations one might want the 
package to use a numeric value representing the time at the end of the time step, as defined by piecewise linear 
interpretation, rather than a value averaged over the time step; the LINEAREND option is provided to meet 
this need. 

The effects of the three interpolation options and time discretization are shown in figure 14. In each case, 
the time/value pairs defined in the time series are the same (black circles). The black lines represent interpo­
lation according to the specified interpolation method. The STEPWISE option is illustrated in figures 14A 
and 14B. The LINEAR option is shown in figures 14C and 14D. The LINEAREND option is shown in fig­
ures 14E and 14F. In figures 14A, 14C, and 14E, time steps are 1 day long. In figures 14B, 14D, and 14F, time 
steps are 2 days long. In figures 14A through 14D, the value produced by the time series for each time step is 
shown by the height of the blue bar. In figures 14E and 14F, the value produced by the time series for each 
time step is shown by the red triangle at the end of the time step. 

Time-array series can be used in packages for which numeric input by arrays is supported. These packages 
include the Recharge and Evapotranspiration packages. The interpolation method for a time-array series may 
be specified as either STEPWISE or LINEAR; the LINEAREND option is not supported for time-array series. 

Observations 

The Observation (OBS) utility of MODFLOW 6 enables the user to specify selected model values for out­
put to files suitable for further processing. In many cases, the model values are such model-calculated values 
as hydraulic head or flow rates. In other cases, the model values are properties of simulated features (for exam­
ple, conductance). In contrast to earlier versions of MODFLOW, the OBS utility of MODFLOW 6 does not 
support specifying observed values. For consistency with earlier versions of MODFLOW, the term “observa­
tion” is retained to identify values to be extracted. 

Observation output can be written to either a text or binary file. A header record containing observation 
names is written to the beginning of each observation file. The header is followed by one record for each time 
step. Each record contains the simulation time and an extracted value for each observation listed in the header. 
Values are written to output files as the simulation progresses. If the output file is a text file, the values can be 
monitored throughout the simulation. 
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Memory Management 

Most of the scalar and array variables in MODFLOW 6 are declared as Fortran pointers. Before a For­
tran pointer can be used by the program, it must be allocated (or pointed to another variable). A memory man­
ager was designed for MODFLOW 6 to serve as a centralized location for allocating these Fortran pointers. 
The memory manager maintains a list of all the variables in MODFLOW 6 that have been allocated using the 
memory-manager allocate routines. Any variable in this last can be accessed by other parts of the program 
using memory-manager utility subroutines. The memory manager also provides functionality for printing a 
table of memory usage. Routines for managing memory are located within the MemoryManagerModule. 
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