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Abstract: The CSDMS2.0 focus is on developing a software modelling 
environment that offers the earth and ocean communities products to enable easier 
penetration into the world of high performance computing, plug-and-play 
component modelling, and access to vetted open source surface-dynamics 
models.  Protocols and standards define modelling interfaces, standard names, 
service components, and DOIs labelling. 
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1 INTRODUCTION 
 
The Community Surface Dynamics Modeling System, or CSDMS, develops, 
integrates, archives and disseminates software to define the earth’s surface 
dynamics. CSDMS coordinates a large (67 country) international community in 
building a toolbox of surface dynamics component models. The challenge 
encapsulates the variety of users, the volunteer effort, and the hundreds of very 
different models.  The CSDMS Integration Facility develops the cyber-architecture 
and framework, to populate a plug-and-play component-modeling environment, 
able to operate within a cloud-sourced High Performance Computing environment.  
 
 
2 WMT: THE CSDMS WEB MODELING TOOL 

 
The CSDMS Web Modeling Tool (WMT) is the web-based successor to the 
desktop Component Modeling Tool (Peckham et al., 2013). WMT provides a client-
side drag-and-drop graphical interface and a server-side database and application 
programming interface (API) that allows users to build and run coupled surface 
dynamics models on a high-performance computing cluster (HPCC) from a web 
browser on a desktop, laptop or tablet computer. With WMT, a user can: 

• Select a component model from a list to run in standalone mode, 
• Build a coupled model from multiple components organized as nodes of a 

tree structure, 
• View and edit the parameters for these model components, 
• Upload custom input files to the server, 
• Save models to a server, where they can be accessed on any Internet-

accessible computer,  
• Share saved models with others in the community, and 
• Run a model by connecting to a remote HPCC where the components are 

installed. 
Although WMT is web-based, the building and configuration of a model can be 
done offline. Reconnection is necessary only when saving a model and submitting 
it for a run. 
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2.1 Client Overview 
 

WMT presents a streamlined graphical interface, consisting of three scrollable 
panels, or views, and one menu (Fig. 1).  

• Components view — a list of Common Component Architecture (CCA) 
components (Armstrong et al., 1999) that are available on the HPCC.  

• Model view — a component can be dragged from the Components view 
into the tree structure of the Model view. Once in the tree, the component 
displays its CCA uses ports as leaves on the tree. By adding other 
components that provide ports for these open leaves, a coupled model can 
be created. A component instance that provides feedback to the coupled 
model is displayed as a link (e.g. CEM in Fig. 1). 

• Parameters view — displays model parameters in the Model view for 
viewing and editing. Type and range checks are performed immediately on 
any parameter that is modified. 

• Model menu — provides selections for opening, closing, saving, deleting 
and running models. Models developed with WMT are currently saved to a 
server at CSDMS. When a model run is initiated, the user is provided with 
a list of available HPCC nodes on which it can be run, and prompted to 
provide login credentials for the selected HPCC. 

 

 
Figure 1. The WMT client, showing the construction of a coupled model. 

 
A model run can be initiated and its status (uploaded, staged, launched, complete) 
viewed; on completion, the model output can be retrieved by FTP. 
 
 
2.2 Client Architecture 

 
The WMT client is written with GWT (GWT Project, 2013), a toolkit for building 
browser-based applications. Using GWT over native JavaScript offers the 
advantage that the client code is written in Java, which allows the developer to 
employ object-oriented design principles and mature Java development tools such 
as Eclipse. GWT provides a development mode for rapid prototyping and 
debugging, and a production mode, where the Java source is compiled to 
JavaScript for deployment on the web. GWT is used in several Google projects, 
and boasts a large user community. GWT is supported on all modern browsers, 
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including Firefox, Internet Explorer (6+), Safari (5+), Chromium/Chrome and Opera. 
The WMT client uses the model-view-presenter (MVP) pattern (Fowler, 2006): 
• Model: The layer providing data for the application. 
• View: The user interface for viewing and modifying the application data (Fig. 2). 
• Presenter: The mediator between the Model and the View. Messages are 

passed between View and Presenter, and between Model and Presenter, but 
the View and Model are designed to have no knowledge of the other. 

MVP architecture separates the domain logic of an application, where rules are set 
for how data are stored and modified, from the client interface, where the user can 
interact with the data. This separation of responsibilities makes it easier to test, 
modify and maintain an application. MVP is particularly useful in applications that 
have a graphical user interface, since the testing of the interface often must be 
done manually (Wellman, 2008). The GWT Project recommends MVP for GWT 
applications (GWT Project, 2010). 
 

 
Figure 2. The Model-View-Presenter (MVP) architecture pattern is adapted from 

Wellman (2008). 
 
 
2.3 Server Overview 
 
The WMT server is a RESTful (Fielding, 2000) web application that provides a 
uniform interface through which client applications interact with the CSDMS model-
coupling framework. Although opaque to a client, behind the WMT server is a 
layered system that consists of the following resources: 

• A database server that contains component, model, and simulation 
metadata 

• One or more execution servers on which simulations are launched 
• A data server from which simulation output is stored and can be 

downloaded. 
 

The database server provides, as JSON encoded messages, the component 
metadata necessary for an end-user to couple components, and set input 
parameters. The metadata includes descriptions of component exchange items, 
uses and provides ports, as well as user-modifiable input parameters. It is held on 
a server separate from the execution server so that it is easily and quickly 
accessed without need to connect to a firewalled or inaccessible execution server. 
Execution servers are computational resources that contain the software stack 
needed to run a coupled or uncoupled model simulation. These servers can range 
from large high performance computing clusters, to smaller web servers, or even to 
an end-user’s personal computer. The requirements are only that the WMT server 
has network access to the execution server and that the CSDMS software stack is 
installed on the server. This includes the CCA-toolchain, the CSDMS framework 
tools, and compiled shared libraries for each of the component models. Once a 
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simulation completes, its output is packaged and uploaded to a data server where 
it is stored and from which the end-user is able to download it as a single 
compressed archive file. 
 
 
2.4 Incorporating BMI Models into the CSDMS Modeling Framework 
 
The CSDMS Basic Modeling Interface (BMI) specification (Peckham et al., 2013) 
describes an application-programming interface (API) for scientific numerical 
models. The interface identifies entry points into software components to provide a 
calling application with the necessary level of control over the components that is 
necessary for two-way model coupling. CSDMS as well as other modeling 
frameworks, such as ESMF (Hill et al., 2004), OpenMI (Gregerson), and OMS 
(David et al., 2002), have identified the minimum granularity of control to be an 
interface that provides functionality to initialize, update, and finalize a component 
model. BMI establishes precise names, calling signature and return types for each 
of these functions in a language agnostic manner and also provides bindings for 
each of the CSDMS supported languages (Python, C, C++, Fortran, Java).  
Because modeling-coupling frameworks share this common requirement, any 
model that exposes a BMI can be incorporated into any number of frameworks, not 
just the CSDMS model-coupling framework.  
 
A component model that strictly follows the BMI specification allows for a 
streamlined workflow that enables it to function inside the CSDMS model-coupling 
framework. Templates exist for each supported language, and consists of 
boilerplate code that makes functions calls to CSDMS and CCA services but will 
only access the underlying component model through BMI function calls. Wrapper 
templates will never make reference to component-specific functions or data. 
Rather, component control (initialize, update, finalize) and data access (getters, 
setters) is always through BMI functions. Then, at run-time, these function 
references are linked dynamically to the shared library that contains the compiled 
BMI implementation for the appropriate component. BMI functions provide most 
component metadata (names of input / output exchange items). Additional 
metadata the CSDMS framework needs to incorporate a new component include: 

• Source code: author(s), license, version, link to source code, etc. 
• Input files: File templates that contain placeholders for adjustable 

parameters 
• Input parameters: description of user-adjustable input parameters 

 
These additional source code metadata provide end users with standardized model 
information. If a component requires input files to operate, the component 
contributor must provide template versions of these files. Additionally, if the 
contributor would like some of these parameters to be editable by an end user, the 
template files should include placeholders for the adjustable parameters. A 
placeholder is simply a key name, which refers to the parameter, enclosed in curly-
braces. Each input parameters must be described (float, int, string, etc.), along with 
suggested ranges, and a short description of the parameter. This additional 
metadata is used by various CSDMS tools to enhance the end-user experience 
and help overcome the “black-box syndrome” that results from users running 
models without being aware of the model’s inner workings. 
 
 
3 CSDMS Standard Names and Model Metadata 
 
In order to develop a modeling framework that would allow automated coupling of 
models and data sets from different contributors, semantic mediation or matching is 
required. Each model and data set uses its own terms or labels for input and output 
variable names, often domain-specific or abbreviated. To ensure that one model’s 
output variable is appropriate for use as another model’s input, a precise 
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description of the variable, its units and certain other attributes are required. To 
address this need, a semantic matching called the CSDMS Standard Names was 
developed.  These standardized names avoid domain-specific terms and 
abbreviations, are based on a set of rules or conventions and are designed to 
eliminate ambiguity.  Contributors of models or data sets are asked to map each of 
their own terms to the appropriate "long name" in the CSDMS Standard Names.  
For models or data sets, this can be done by implementing a CSDMS Basic Model 
Interface (BMI) that provides standardized self-description as well as model control 
functions (i.e. initialize, update, finalize). The model control functions provide the 
modeling framework with fine-grained control of the model and allow 
heterogeneous models to be coupled within the CSDMS framework. Contributors 
create the mapping (e.g. Python dictionary) from their model’s internal variable 
names to CSDMS standard names, and supply information about the spatial grid, 
time-stepping scheme, and assumptions.  
 
The CSDMS Standard Names provide a comprehensive set of naming rules and 
patterns for creating unique labels for model variables that are not specific to any 
particular modeling domain. These naming conventions consist of an extensive set 
of patterns that cover a wide variety of cases gleaned from models in the CSDMS 
repository as well as from the CF Standard Names.  They are designed to have 
features such as parsability and natural alphabetical grouping.  CSDMS Standard 
Names for variables always consist of an object part and a quantity/attribute part 
and the quantity part may have an operation prefix that can consist of multiple 
operations. Unlike the CF Standard Names, assumptions and explanations are not 
included in the name itself; they are instead selected from a standardized list and 
specified with <assume> tags in a Model Metadata File (XML) that clarifies how a 
given model uses the name.  The additional metadata in this file supports the 
names by including assumptions, units, equations used, boundary conditions, 
object name source, geo-referencing information (e.g. standard ellipsoid, datum 
and projection names), and so on, thereby fully describing the model and its 
associated input and output variables. 
 
At the highest level, CSDMS Standard Names (v. 0.7.1) consist of Model Variable 
Names and Model Metadata Names, and consist of numerous supporting parts.  
Model Variable names are constructed from valid Object Names, Operation Names 
and Quantity Names, and the Quantity Names often include a Process Name.  
Model Metadata Names attempt to provide complete metadata for describing key 
attributes of a model other than the input and output variable names and are stored 
in Model Metadata Files. The Model Metadata Names include additional metadata 
to support the variable names, such as units, object name source and geo-
referencing data (e.g. standard ellipsoid, datum and projection names) and 
different types of Assumption Names. For further detail, readers are referred to 
http://csdms.colorado.edu/wiki/CSDMS_Standard_Names. Developers can 
continue to use whatever variable names they want to in their model code or data 
set, but must then "map" each of their internal variable names to the appropriate 
CSDMS standard name in their BMI implementation.  
 
 
3 CSDMS SERVICE COMPONENTS 
 
CSDMS employs two versions of ESMF regridding tools, in combination with 
CSDMS regridding tools. The serial version is used on single-processor 
platforms; Message Passing Interface (MPI) is employed for use with multiple 
processors.  The parallel version of the mapper scales nearly linearly up to several 
dozen processors. These mappers map elements from one unstructured grid to 
another.  While grid elements are typically either three or four sided, ESMF offers a 
more general tool that supports polygonal cells with an arbitrary number of sides.  
This makes it possible for a model that uses watershed polygons as its 
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"computational cells" to obtain spatially interpolated rainfall data from a data source 
that uses rectangular cells.  
 
Earth surface process models may use fixed or adaptive time-stepping schemes, 
and coupled models may use time-steps that are significantly different in size.  A 
snowmelt model may employ hourly time-steps and be coupled to a channelized 
flow model that uses time-steps of several seconds. "Temporal misalignment" may 
have unintended consequences.  Application of a smooth interpolation function to 
each of the state variables in the model with the larger time-step allows the smaller 
time-step model to retrieve and use interpolated values that vary more smoothly 
and which can be updated (with every time-step) with very low computational cost. 
A new time interpolation service component is made available too components 
run through the CSDMS WMT framework.  
 
CSDMS has created file-writing tools for use within the CSDMS framework. The 
new writer class receives data from a component model and outputs the data to 
either a VTK file or a NetCDF file. VTK files are written in binary using the “new-
style” XML format for VTKs. For structured grids, NetCDF files follow the CF 
conventions. Since there are currently no CF standards for storing unstructured 
meshes in NetCDF format, we provide for an additional format: (1) Values of the x- 
and y-coordinate for each node; (2) Array of integers as indices into data arrays for 
each element of the mesh; and (3) Array of integers that indicate the shape of each 
element (triangle, polygon, cube, etc.). Element types are defined in the same way 
as the VTK standard. Variable values (at either nodes or elements) are then listed 
with the same ordering as the x and y, or connectivity arrays. 
 
 
4 BEYOND THE BLACK BOX MODEL 
 
A “black box” model can be manipulated in terms of its input and then generates 
output for a user without having knowledge of its internal workings or without being 
able to get insight in the model engine, or its process routines. The model 
algorithms and their implementation are then "opaque" or “black”. CSDMS strives 
to take models and components beyond black box state.  Science practice in 
principle condemns a “black box”; it is of crucial importance to know the level of 
process simplification within a model engine and the implementation into equations 
and a numerical scheme. Without such transparency the analysis of model output 
is of much less value.  
 
CSDMS also offers web-based metadata on each model, submitted by the original 
developers, and maintained as a wiki database and thus updatable by users 
themselves. CSDMS maintains an online model repository where the original code 
can be downloaded, viewed, compiled and run. The model engines are thus 
available to any user. WMT components are documented in more detail on the 
CSDMS wiki (Figs. 3 and 4). With WMT, a user can access: 1) more extensive 
model description, 2) notes on input parameters, 3) key model equations, 4) notes 
on coupling ports, and 5) essential references provided by the original developer. 
 
Pedagogical research shows the importance of hands-on activities in learning 
(Campbell et al., 2013). Students show significant learning gains when they work 
with inquiry-based modules and receive instantaneous feedback (Fogleman et al., 
2011). The CSDMS Educational Working Group noted that hands-on modeling 
labs are more valuable if they are combined with mathematical and physics 
problems based on the careful analysis of the underlying model engine (Schwarz 
et al., 2009). CSDMS offers an educational repository with modeling labs for 
graduate and advanced undergraduate students. These labs support students to 
run models, analyze output and highlight some critical aspect of the modeled 
processes and model engine, the selection of which depend on the learning 
objective and lesson plan. 
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Figure 3. All components in the WMT have live links to online detailed 

documentation maintained on the CSDMS wiki. 
 
 

 
Figure 4. Detailed model description of the CEM-Coastline Evolution Model as 

displayed within WMT. 
 
 
5 DIGITAL OBJECT IDENTIFIERS FOR NUMERICAL MODELS 
 
All code in CSDMS is open source (see Ince et al., 2012).  Source code exposes 
the scientific hypotheses embodied in a numerical model, and the solution to the 
set of equations. Code transparency allows for full peer review and replication of 
results — the foundation of modern science.  Code transparency allows for reuse 
in new and clever ways, and reduces redundancy. CSDMS ensures that model 
developers receive recognition for their work, even when code is submitted and not 
yet described in a scientific journal by adopting the Digital Object Identifier (DOI). 
The DOI system provides a unique identification to content that is available on 
digital networks. Since 2005 DOIs were made available for research data (Paskin, 
2005). CSDMS is the first to assign Digital Object Identifiers (DOIs) to numerical 
source code.  The advantages of adopting a DOI system for models include:  
• Guarantee credit to a model developer. 
• Reuse and replication of research with direct access to a referenced code. 
• Higher visibility — content with a DOI is 5 times more likely to deliver active 

links. 
• The opportunity for funding agencies to track usage, so to measure impact. 

 
CSDMS collaborates with Integrated Earth Data Applications (IEDA), a formal 
Publication Agent of the DOI system through the German National Library of 
Science and Technology, to assign unique identifiers for those models that contain 
metadata and are physically part of the CSDMS repository. An archive of all 
numerical models of the CSDMS model repository that have a DOI, together with 
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limited metadata and source code is provided to IEDA to guaranty access beyond 
the CSDMS program; a DOI for an object is permanent, whereas its location and 
other metadata may change in future.  A new DOI is provided for each new version 
of a model (i.e. major upgrade/version of the source code). CSDMS uses Apache 
Subversion, better known as SVN, for tracking source code versioning and revision 
control so that current and past releases and changes can be accessed through 
the web. As of March 2014, 109 models within the CSDMS model repository have 
a DOI. Model source code can be viewed as ‘data’ and therefore CSDMS endorses 
citations defined by DataCite guidelines (Brase, 2010). Following these guidelines, 
CSDMS strongly recommends the following structure for citing a model: 
ModelDeveloper (PublicationYear). ModelName, ModelVersion. Identifier. 
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