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Morphodynamics and evolution of estuaries
IN response to climate and anthropogenic forcing

 Millennial time scale
natural, sea-level change,
(sediment discharge)

e Decadal time scale

reclamation, dykes, sea-level change, sand
mining, decrease of sediment/water
discharge
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Schematic diagram of an estuary and its integration with the
river. Boundaries between reaches may change in position
depending on river discharge and tidal range (modified from
Perillo, 1995).
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ESTUARIES

There are many definitions of an estuary (FIGURE 31); one of the most useful and
geological is that of Dalrymple et al:

"an estuary is the seaward portion of a drowned valley system which receives sediment
from both fluvial and marine sources and which contains facies influenced by both tide,
wave and fluvial processes"

The phrase drowned valley system implies that estuaries form during transgression. The
formation and lifespan of an estuary depends on the rate of sea level rise and the volume and

rate of sediment input. A very useful classification of estuaries has been proposed by Reinson
(FIGURE 32):

1. Wave-dominated
a) lagoonal (closed to the sea except for small tidal inlets
b) partially closed (some bars or spits across the seaward end
c) open ended (no obstruction at the seaward end)

2. Tide-dominated (no obstruction at the seaward end)



Definition of estuaries

An estuary is
1) a drowned valley system (used to be)
2) developing at a river mouth

3) receiving both influences of river and marine
processes



Major estuaries of the world and related deltas and bays
with estuaries characteristics
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Figure 2-3. Major estuaries of the world and related deltas and bays with estuarine characteristics, (from Olausson and Cato, 1980). Hachured areas
on continents represent major drainage basins, Modified and reproduced with permission of John Wiley and Sons.
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Figure 2-1. Basic estuarine physiographic types. Hydrodynamic characteristics are
not considered here; discharge, tidal range, latitude (climate), and exposure all play
important roles in modifying these examples, in addition to long-term secular
processes such as tectonics and eustasy (schematic) (from Fairbridge, 1980).
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Drowned river valley estuary
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FIGURE 3. Stages of infilling in the evolution of a drowned
river valley estuary. Arrows indicate direction of delta
growth (sediment symbols, scales and tidal representations
as for Figure 2).
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FIGURE 5. Stages of infilling in the evolution of a coastal
lake (sediment symbols, scales and tidal representations as
for Figure 2).

FIGURE 4. Stages of infilling in the evolution of a barrie,
estuary. (Sediment symbols, scales and tidal representations
as for Figure 2).
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teristics of each estuary type. See Ashley (1988) and Cook and Mayo (1977) for Great Sound and Broad Sound examples, respectively.

Classification of estuaries based on volume of the Tidal prism
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RELATIVE ENERGY

—Distribution energy types. B) morphological components i jew. and C) sedimentary facies in longitudinal section within Fi0. 7.—Distribution of A) energy types, B) morphological elemeats in plan view, and C) sedimentary facies in longitudinal section within 21
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Fia. 6.—Facies map of the wave-dominated, Miramichi River estuary (12 in Fig. 3 and Table 1), Due to the large tidal prism, three tidal inlets
dissect the barrier sand body. The bay-head deitas are small because of the low sediment yield. They do not show a birdsioot morphology because
the incised valleys are 100 narrow.
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Holocene evolution of

Drowned river valley
estuary
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FiG. 5.— Drowned river valley at Port Hacking near Sydncy (see Fig.
3 for location). Distribution and sectional geometry of lithofacics are
shown together with time lines based on radiocarbon dates. Tidal delta
growth is indicated for the last 10,000 years.
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Estuary evolution: estuary filling
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Fig. 9. Paleogeographic map illustrating the evolution of the Changjiang delta and the surrounding arca. The distribution of tidal sand ridges
with shaded tone shows the only shallow part, which is less than about 10 m water depth. Palcoshorelines are from Wang et al. (1981), Chen
(1998). Paleo-water depth is estimated from Fig. 6.
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Fig. 10. Palcogeographic map illustrating the evolution of the Song Hong delta during the past 9 kyr Modifiod after Tanabe etal (2003b) using
newly collected data,
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FiG. 2.—Evolutionary classification of coastal environments. The long
axis of the three-dimensional prism represents relative time with ref-
erence to changes in relative sea level and sediment supply (i.e., trans-
gression and progradation). The three edges of the prism correspond to
conditions dominated by fluvial, wave and tidal processes. Deltas oc-
cupy the uppermost area; the intermediate, wedge-shaped space contains
all estuaries; and the bottom wedge represents non-deltaic, prograding
coasts. Transgressive, barrier-lagoon systems which form along coasts
without incised valleys occupy part of the estuary field. During a sea-
level cycle, a coastal area will track forward and backward through the
prism at a rate, and by an amount, determined by the rate of sca-level
change, the sedimentation rate and basin size. |
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Relative sea-level changes

Eustasy (seawater volume)
Glacial isostasy
Hydro-isostasy
Local tectonics



Glacio-isostasy

Modern rate of sea level rise or fall: Component due to changes
in ice-loading (glacio-isostasy) over last glacial cycle
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Hydro-isostasy

Modern rate of sea level rise or fall: Component due to changes
in water loading (hydro-isostasy) over last glacial cycle

sea-level fall sea-level rise




Hydro-isostasy
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Paired sea level curves
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Holocene
Sea-level
Changes
are
controlled by
1) Eustatic
SLC
2) Glacio-
3) Hydro-
Isostasy,
Globally

4) Tectonics
Locally
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Transgressive depositional systems
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regressive depositional systems
High sea-levels at 6-7 ka
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Fig. 9. Paleogeographic map illustrating the evolution of the Changjiang delta and the surrounding arca. The distribution of tidal sand ridges
with shaded tone shows the only shallow part, which is less than about 10 m water depth. Palcoshorelines are from Wang et al. (1981), Chen
{(1998). Paleo-water depth is estimated from Fig. 6.
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Estuary morphology
Sediment discharge
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Estuary morphology
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Millennial scale evolution

Concave estuary morphology

\

Convex deltaic morphology

Controlling factors
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Morphodynamics and evolution of estuaries
IN response to climate and anthropogenic forcing

 Millennial time scale
natural, sea-level change,
(sediment discharge)

e Decadal time scale

reclamation, dykes, sea-level change, sand mining,
decrease of sediment/water discharge



Impacts of sea-level rise on estuarine
sedimentation/morphology

Sea-level rise

1) Eustasy (global warming)
2) Glacio-& hydro-isostasy
3) Tectonics

4) Subsidence (extraction of
subsurface materials)
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flooding flooding

sediment deposition
In channels
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examples

1) Po river delta (Syvitski et al. 2005)
Riverine sediments trapped in channels
2) Chao Phraya (Saito et al, 2007)

rapid sediment accumulation in the intertidal zone related
to 1m relative sea-level rise due to ground water

pumping
3) Ganges Brahmaputra system (Goodbred)

30 % deposition on coastal plains/ sea-level rise on
millennial scale
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Land subsidence
During 1992-2000

>20 cm/ 8 years

More than 1m
Sea-level rise
For the last 50 y

Total Land subsidence between 1992 - 2000
| | | |

Guif of Thailand
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Figure 4. Measured land subsidence in the period 1992-2000.




1 km shoreline retreat at the river mouth of
the Chao Phraya

1352 W 1987 | 1087
W ges W 2000 T 2004



During 1969-1976, accretion: 8.9 km? erosion: 4.5 km? net accretion rate: 0.62 km?/y;
During 1976-1987, accretion 4.9 km? erosion 10.3 km?, net accretion rate: —0.49 km?/y
During 1987-1997, accretion 7.4 km? , erosion 4.5 km?, net accretion rate 0.25 km?/y
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examples

1) Po river delta (Syvitski et al. 2005)
Riverine sediments trapped in channels
2) Chao Phraya (Saito et al, 2007)

rapid sediment accumulation in the intertidal zone related
to 1m relative sea-level rise due to ground water

pumping
3) Ganges Brahmaputra system (Goodbred)

30 % deposition on coastal plains/ sea-level rise on
millennial scale



sediment partitioning of Ganges-Brahmaputra delta

Delta plain subaqueous delta deep-sea fan

——

30%

Sea-level curve

TECTONIC SUBSIDENCE o
Rising sea level during the Holocene  Islam & Tooley, 1999




coastal/flood plain sedimentation
related to extreme flood events

1998 Yangtze flood: half of sediments are deposited
on the flood plain

Thick floodplain sediments (~7 m for 5 ky) in the Mekong






Impacts of reclamation on estuarine
sedimentation/morphology

Reduction of estuary area

l

Decrease of tidal amplitude
tidal prism

Sedimentation
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Yanagi and Ohnishi, 1999
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Fig. 2. Changes of sea surface area, arca with depths
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shallower than 5 i, volume, bay length, and
mean depth of Tokyo Bay from 1923 to 1983.



Average Amplitude Transport

cm m’/cycle
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ig. 5. Changes of average amplitude of My tide and
water cxchange volume by My tidal current

Yanagi & Ohnishi, _
1999g across the bay mouth in Tokyo Bay from 1923

to 1983.
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Fig. 6. M, tidal current amplitude in Tokyo Bay in 1923, 1968, and 1983 (upper) and the difference of My tidal current
amplitude between 1923 and 1968 (lower left), 1968 and 1983 (lower center), and 1923 and 1983 (lower right).



Bottom sediment
of Tokyo Bay




Mud content of bottom sediments
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Tidal amplitude decrease
(tidal gauge data)

Tokyo Bay
Nagoya Bay
Osaka Bay
Ariake Bay




Impacts of sand mining

Deepening of estuary morphology

l

Salt water intrusion v

Coastal erosion
l (Mekong ?)

Turbidity maximum change?




Pearl River
(Zhujiang) example
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Figure 4 Temporal changes of the cross section at the
Sanshui station (Fig. 1). The data in the figure were provided by
the Sanshui Hydrologic State.
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Figure 7 Brackish-water intrusion ranges in the 1980s and the present days within the Pearl River Delta.




Survey area
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Impacts of decrease in sediment/water
discharge on estuarine
sedimentation/morphology

Sediment decrease Water decrease
sediment distribution more marine influence
accumulation rate tidal pumping effect

coastal erosion Seasonal change




Morphodynamics and evolution of estuaries
IN response to climate and anthropogenic forcing

 Millennial time scale
natural, sea-level change,
(sediment discharge)

» Decadal time scale

reclamation, dykes, sea-level change, sand mining, decrease of
sediment/water discharge

Rate of sea-level changes: natural ~5cm/y anthropogenic ~10 cm/y
Sediment discharge: 10-folded increase and 1/10-folded decrease
Reclamation: 10 to 100-folded faster than natural progradation

Sand mining: several times larger than natural sand supply



1923 Futtu

1923 .

f +7m
i —E>—  +5m 1968 :‘—i
L — +3m
=z +1m
(‘)ﬁds cm/'s 1983
B+1m
9—-—-—&%:!/8

Fig. 7. Vertical distribution of My tidal current ellipses
at the station with the depth of 8 m north of
Futtu point (left). Mo tidal current ellipses 1 in
above the sea bottom near Futtu point in Tokyo
Bay in 1923, 1968, and 1983 (right).




