
The Landlab SPACE Component Users Manual

Charles M. Shobe

July 5, 2017

Background on SPACE component

The Landlab SPACE (Stream Power with Alluvium Conservation and Entrain-
ment) component computes sediment transport and bedrock erosion across two-
dimensional model landscapes. The SPACE model provides advantages relative
to many other fluvial erosion models in that it 1) allows simultaneous erosion of
sediment and bedrock, 2) explicitly treats sediment fluxes rather than relying on a
proxy for bed cover, and 3) is easily coupled with other surface process components
in Landlab. The SPACE component enhances Landlab’s functionality by enabling
modeling of bedrock-alluvial channels, rather than simply using parameterized
sediment-flux-dependent incision models.

This user manual teaches users how to use the SPACE component using two
examples provided in Shobe et al (submitted to Geoscientific Model Development).
This user manual serves as a supplement to that manuscript.

Prerequisites: A working knowledge of the Python programming language
(SPACE and Landlab support both Python 2.x and 3.x) as well as the NumPy
and MatPlotLib libraries. Basic familiarity with the Landlab modeling toolkit (see
Hobley et al., 2016) is recommended.

Accompanying Jupyter notebook: This user manual is accompanied by a Jupyter
notebook, which allows users to run the code presented in the user manual and
generate the figures shown in this guide. The notebook is called
‘SPACE user guide short example.ipynb’ and may be accessed from the terminal
by typing ‘jupyter notebook’ from the directory containing the notebook.

Model description

Input parameters

• Sediment erodibility Ks: Governs the rate of sediment entrainment; may
be specified as a single floating point number, an array of length equal to

1

the number of grid nodes, or a string naming an existing grid field.

• Bedrock erodibility Kr: Governs the rate of bedrock erosion; may be
specified as a single floating point number, an array of length equal to the
number of grid nodes, or a string naming an existing grid field.

• Fraction of fine sediment Ff : The unitless fraction (0–1) of rock that does
not get converted to sediment, but is assumed to exit the model domain as
“fine sediment,” or wash load.

• Sediment porosity φ: The unitless fraction (0–1) of sediment thickness
caused by pore space.

• Sediment entrainment length scale H∗: Length scale governing the
shape of the exponential sediment entrainment and bedrock erosion func-
tions. H∗ may be thought of as reflecting bedrock surface roughness, with
larger H∗ representing a rougher bedrock surface.

• Effective settling velocity V : Settling velocity of sediment after account-
ing for the upward effects of turbulence. For details, see discussion by Davy
and Lague, 2009.

• Stream power exponent m: Exponent on drainage area or discharge in
the stream power framework. Generally ≈ 0.5.

• Stream power exponent n: Exponent on channel slope in the stream
power framework. Generally ≈ 1.

• Sediment erosion threshold ωcs: Threshold erosive power required to
entrain sediment.

• Bedrock erosion threshold ωcr Threshold erosive power required to erode
bedrock.

• Erosion method: String. Method by which sediment entrainment and
bedrock erosion are calculated. Choice of “simple stream power,” “thresh-
old stream power,” or “stochastic hydrology.”

• Discharge method: String. Method by which water discharge Q is cal-
culate. Choice of “None,” in which case Q = Am using Landlab’s default
drainage area calculation, “drainage area,” in which case the user supplies an
“area field” (see below), or “discharge field,” in which case the user supplies
a “discharge field” (see below).

2

• Area field: Only used if discharge method is drainage area. May be an
array of length equal to the number of grid nodes, or a string naming an
existing grid field.

• Discharge field: Only used if discharge method is discharge field. May be
an array of length equal to the number of grid nodes, or a string naming an
existing grid field.

Model Variables

Variables listed here are updated by the component at the grid locations listed.
NOTE: because flow routing, calculation of discharge, and calculation of flow depth
(if applicable) are handled by other Landlab components, variables such as water
discharge and flow depth are not altered by the SPACE model and are not listed
here.

• soil depth, node, [m]: Thickness of soil (also called sediment or alluvium)
at every node. The name “soil” was used to match existing Landlab compo-
nents. Soil thickness is calculated at every node incorporating the effects of
sediment entrainment and deposition and bedrock erosion.

• sediment flux, node, [m3/yr]: The volumetric flux of sediment at each
node. Sediment flux is used to calculate sediment deposition rates.

Steps of a SPACE model

Note: these steps are for a SPACE model that is not coupled to any other Landlab
components. To see examples of how to couple Landlab components, please refer
to the Landlab documentation: http://landlab.github.io/#/.

1. Import the necessary libraries: The SPACE component is required, as
are the model grid component and a flow routing component. It is generally
a good idea to also include the DepressionFinderAndRouter, a supplemental
flow router that routes flow across flats or pits in a digital elevation model.

’’’

Example of driver file construction for the SPACE model.

Written by Charles M. Shobe, July 2017

’’’

Import Numpy and Matplotlib packages

import numpy as np

3

http://landlab.github.io/#/

import matplotlib.pyplot as plt #For plotting results; optional

Import Landlab components

#Pit filling; optional

from landlab.components import DepressionFinderAndRouter

#Flow routing

from landlab.components import FlowRouter #Flow router

#SPACE model

from landlab.components import Space #SPACE model

Import Landlab utilities

from land lab import RasterModelGrid #Grid utility

from landlab import imshow grid #For plotting results; optional

Two Landlab components are essential to running the SPACE model: the
model itself, and the FlowRouter, which calculates drainage pathways, to-
pographic slopes, and surface water discharge across the grid. The Depres-
sionFinderAndRouter is extremely useful if a grid is likely to have pits or
closed depressions. For this reason, it is generally a good idea to use the
DepressionFinderAndRouter in addition to the FlowRouter. However, it is
not required.

In addition to the relevant process components, some Landlab utilities are re-
quired to generate the model grid (RasterModelGrid) and to visualize output
(imshow grid). Note that it is possible to visualize output through function-
ality in other libraries (e.g., MatPlotLib), inshow grid provides a simple way
to generate 2-D maps of model variables.

Most Landlab functionality requires the Numpy package for scientific com-
puting in python. The MatPlotLib plotting library has also been imported
to aid visualization of results.

2. Define the model domain and initial conditions: The SPACE compo-
nent works on raster grids. For this example we will use a synthetic raster
grid. An example and description of the Landlab raster model grid are given
in (Shobe et al., submitted), with a more complete explanation offered in
(Hobley et al., 2017). In addition to using user-defined, synthetic model
grids, it is also possible to import digital elevation models for use as a model
domain. The procedure for doing so is described in (ADAMS) and the as-
sociated user guide. In this example, we create a synthetic, square model

4

domain by creating an instance of the RasterModelGrid. In this case, the do-
main will be a plane slightly tilted towards the lower-left (southwest) corner
with random micro-scale topographic roughness to force flow convergence
and channelization. The grid is composed of 20 rows and 20 columns for a
total of 400 nodes, with user-defined spacing.

Once the grid has been created, the user defines a grid field to contain val-
ues of land surface elevation and then imposes the desired initial condition
topography on the model grid. In the case shown below, the field ‘topo-
graphic elevation’ is added to the model grid and given initial values of all
zeros. After that, initial model topography is added to the field. To create
a plane tilted to the southwest corner, which is referenced by x–y coordi-
nate pair (0, 0), topographic elevation is modified to depend on the x and
y coordinates of each grid node. Then, randomized micro-scale topographic
roughness is added to the model grid. While not strictly necessary for the
SPACE model to run, the micro-roughness allows flow convergence, channel-
ization, and the development of realistic landscapes.

In this example, we initialize the model domain with 2 meters of sediment
thickness at every core (non-boundary) node. The sediment thickness will
shrink over time as water mobilizes and removes sediment. To do this, the
fields ‘soil depth’ and ‘bedrock elevation’ must be added to the model grid.
If they are not added, the SPACE model will create them. In that case,
however, the default sediment thickness is zero and the default bedrock to-
pography is simply the provided topographic elevation.

Set grid parameters

num rows = 20

num columns = 20

node spacing = 100.0 #m

#Instantiate model grid

mg = RasterModelGrid((num rows , num columns), node spacing)

#Add field ’topographic elevation’ to the grid

mg.add zeros(’node’, ’topographic elevation’)

#Set constant random seed for consistent topographic roughness

np.random.seed(seed = 5000)

Create initial model topography

#plane tilted towards the lower−left corner
topo = mg.node y / 100000 + mg.node x / 100000

5

#topographic roughness

random noise = np.random.rand(len(mg.node y)) / 1000

#impose topography values on model grid

mg[’node’][’topographic elevation’] += (topo + random noise)

#Add field ’soil depth’ to the grid

mg.add zeros(’node’, ’soil depth’)

#Set 2 m of initial soil depth at core nodes

mg.at node[’soil depth’][mg.core nodes] = 2.0 #meters

#Add field ’bedrock elevation’ to the grid

mg.add zeros(’node’, ’bedrock elevation’)

#Sum ’soil depth’ and ’bedrock elevation’

#to yield ’topographic elevation’

mg.at node[’bedrock elevation’][:] = mg.at node[’topographic elevation’]

mg.at node[’topographic elevation’][:] += mg.at node[’soil depth’]

3. Set the boundary conditions: The user must determine the boundary
conditions of the model domain (i.e., determine across which boundaries
water and sediment may flow). Boundary conditions are controlled by setting
the status of individual nodes or grid edges (see Hobley et al., 2017). We
will use a single corner node as an “open” boundary and all other boundary
nodes will be “closed.” We first use set closed boundaries at grid edges to
ensure that no mass (water or sediment) may cross the model boundaries.
Then, set watershed boundary condition outlet id is used to open (allow flow
through) the lower-left corner of the model domain.

#Close all model boundary edges

mg.set closed boundaries at grid edges(bottom is closed=True,

left is closed=True,

right is closed=True,

top is closed=True)

#Set lower−left (southwest) corner as an open boundary
mg.set watershed boundary condition outlet id(0,

mg[’node’][’topographic elevation’], −9999.)

6

In this configuration, the model domain is set to drain water and sediment
out of the only open boundary on the grid, the lower-left corner. There are
several options for changing boundary conditions in Landlab. See (Hobley
et al., 2017) or the Landlab online documentation.

4. Initialize the SPACE component and any other components used:
Like most Landlab components, SPACE is written as a Python class. The
class was imported at the beginning of the driver script (step 1). In this
step, the user declares the instance of the SPACE class and sets any relevant
model parameters. The same must be done for any other components used.

#Instantiate flow router

fr = FlowRouter(mg)

#Instantiate depression finder and router; optional

df = DepressionFinderAndRouter(mg)

#Instantiate SPACE model with chosen parameters

sp = Space(mg, K sed=0.01, K rock=0.001, F f=0., phi=0.,

H star=1., v s=5., m sp=0.5, n sp=1., sp crit sed=0.,

sp crit br=0., method=’simple stream power’)

5. Run the time loop: The SPACE component calculates sediment entrain-
ment and deposition, bedrock erosion, and changes in land surface elevation
over time. The code shown below is an example of how to run the SPACE
model over several model timesteps. In the example below, SPACE is run in
a loop that executes until elapsed model time has reached a user-defined run
time. The user is also responsible for choosing the model timestep. Within
the loop, the following steps occur:

(a) The flow router runs first to determine topographic slopes and water
discharge at all nodes on the model domain.

(b) The depression finder and router runs to map any nodes located in lo-
cal topographic minima (i.e., nodes that water cannot drain out of) and
to establish flow paths across the surface of these “lakes.” Using the
depression finder and router is optional. However, because the SPACE
model may in certain situations create local minima, using the depres-
sion finder and router can prevent the development of fatal instabilities.

(c) The depression finder and router generates a list of flooded nodes, which
is then saved as a variable called “flooded” and passed to the SPACE
model.

7

https://github.com/landlab/landlab/wiki/Grid#boundary-condition-details-and-methods

(d) The SPACE model runs for the duration of a single timestep, computing
sediment transport, bedrock erosion, and topographic surface evolution.

(e) The elapsed time is updated.

#Set model timestep

timestep = 1.0 #years

#Set elapsed time to zero

elapsed time = 0 #years

#Set model run time

run time = 500 #years

#Run time loop

while elapsed time < model run time:

#Run the flow router

fr.run one step()

#Run depression finder and router; optional

df.map depressions()

#Get list of nodes in depressions; only

#used if using DepressionFinderAndRouter

flooded = np.where(df.flood status==3)[0]

#Run the SPACE model for one timestep

sp.run one step(dt = timestep, flooded nodes=flooded)

#Add to value of elapsed time

elapsed time += timestep

Visualization of results

Sediment flux map

2-D grid fields in Landlab may be visualized using the imshow grid utility (im-
ported in step 1), which relies on the MatPlotLib plotting library. For example,
the field ‘sediment flux’ at every node may be visualized with the following com-
mands:

8

#Instantiate figure

fig = plt.figure()

#Instantiate subplot

plot = plt.subplot()

#Show sediment flux map

imshow grid(mg, ’sediment flux’, plot name=’Sediment flux’,

var name = ’Sediment flux’, var units=r’m3/yr’,
grid units=(’m’, ’m’))

#Export figure to image

fig.savefig(’sediment flux map.eps’)

The result is shown in figure 1. The patterns in figure 1 are intuitive. A drainage
network has formed across the landscape, with channels that carry progressively
more and more sediment as they reach the outlet in the lower-left corner.

Sedimentograph

There are many cases in which it may be desirable to extract a time series of
values from a single node or set of nodes in the model domain. In this case, we
will extract a time series of sediment flux values from the outlet (lower-left corner)
node. This is accomplished by creating a Numpy array of length equal to the
number of model timesteps, and saving the value of sediment flux at the boundary
node after each timestep.

#Set model timestep

timestep = 1.0 #years

#Set elapsed time to zero

elapsed time = 0 #years

#Set timestep count to zero

count = 0

#Set model run time

run time = 500 #years

#Array to save sediment flux values

sed flux = np.zeros(run time // timestep)

9

0 500 1000 1500
X (m)

0

250

500

750

1000

1250

1500

1750

Y
(m

)

Sediment flux

100

200

300

400

500

600

Se
di

m
en

t f
lu

x
(m

3 /y
r)

Figure 1: Map of sediment flux across the model domain resulting from the example
described in this guide.

10

#Run time loop

while elapsed time < model run time:

#Run the flow router

fr.run one step()

#Run depression finder and router; optional

df.map depressions()

#Get list of nodes in depressions; only

#used if using DepressionFinderAndRouter

flooded = np.where(df.flood status==3)[0]

#Run the SPACE model for one timestep

sp.run one step(dt = timestep, flooded nodes=flooded)

#Save sediment flux value to array

sed flux[count] = mg.at node[’sediment flux’][0]

#Add to value of elapsed time

elapsed time += timestep

#Increase timestep count

count += 1

Once the data required for the time series has been saved during the time loop,
the time series may be plotted using standard MatPlotLib plotting commands:

#Instantiate figure

fig = plt.figure()

#Instantiate subplot

sedfluxplot = plt.subplot()

#Plot data

sedfluxplot.plot(np.arange(500),sed flux , color = ’k’, linewidth = 3)

#Add axis labels

sedfluxplot.set xlabel(’Time [yr]’)

sedfluxplot.set ylabel(r’Sediment flux [m3/yr]’)

#Export figure to image

11

fig.savefig(’sedimentograph.eps’)

0 100 200 300 400 500
Time [yr]

500

1000

1500

2000

2500

3000

3500

Se
di

m
en

t f
lu

x
[m

3 /y
r]

Figure 2: Time series of sediment flux at the outlet of the model domain.

The code shown above results in figure 2. There is an initial increase in sediment
flux from the model domain as the water reaches its equilibrium transport capacity.
Over the long run, topographic gradients are reduced by the erosion of sediment,
which results in lower and lower sediment fluxes from the domain over time.

12

References

[1] Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton,
W. E. H., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.0 Over-
landFlow component: a Python tool for computing shallow-water flow across
watersheds, Geosci. Mod. Dev., 10, 1645-1663, doi:10.5194/gmd-10-1645-2017,
2017.

[2] Davy, P. and Lague, D.: Fluvial erosion/transport equation of land-
scape evolution models revisited, J. Geophys. Res.-Earth, 114, F03007,
doi:10.1029/2008JF001146, 2009.

[3] Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gas-
parini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing with
Landlab: an open-source toolkit for building, coupling, and exploring two-
dimensional numerical models of Earth-surface dynamics, Earth Surf. Dynam.,
5, 21-46, doi:10.5194/esurf-5-21-2017, 2017.

[4] Shobe, C. M., Tucker, G. E., and Barnhart, K. B.: The SPACE 1.0 model: A
Landlab component for 2-D calculation of sediment transport, bedrock erosion,
and landscape evolution, submitted to Geoscientific Model Development.

13

