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10 km 

Lena Delta 
Siberia 

Deltas as a Morphodynamic System 
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Deltas as a Morphodynamic System 

Gilgel Abay River Delta in Tana Lake 
Ethiopia 
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Questions 
n  How do deltas self-organize into 

such diverse natural geomorphic 
forms? 

  
n  What are their feedback loops and 

parameters governing the length 
scales and response times? 

n  How will deltas respond to 
perturbations in sediment fluxes and 
types, sea level rise, changes in 
salt/nutrient fluxes, and climate 
change? 
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FESD Delta Dynamics 
Collaboratory (DDC)  
n  Five-year effort to develop tested, high-resolution, 

quantitative models incorporating morphodynamics, 
ecology, and stratigraphy to predict river delta 
dynamics over engineering to geologic time-scales  

n  Funded through the National Science Foundation’s 
“Frontiers in Earth System Dynamics” (FESD) 
Program 

n  Specifically address questions of delta system 
dynamics, resilience, and sustainability 
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n  Two laboratories  
n  Wax Lake Delta—a field laboratory for discovering 

process-interactions and testing model predictions 
 (contact Dave Mohrig--mohrig@jsg.utexas.edu--for 
more information) 

n  Virtual Modeling Laboratory in CSDMS for model 
                   development and hypothesis testing 

FESD Delta Dynamics 
Collaboratory 

n  Three types of models 
n  reduced complexity 
n  multidimensional  
         ecomorphodynamic  
n  ecologic 
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n  DeltaRCM a “2.5-D” cellular delta formation 
model 
n  Team: Man Liang, Paola Passalacqua, Corey Van 

Dyk w/ collaborators Doug Edmonds, Nathanael 
Geleynse, Vaughan Voller, Chris Paola 

n  Focus on large-scale system dynamics 

Reduced Complexity Delta Models 
(RCDM) 
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At each time step 
-  Calculate routing probabilities for water parcels 
-  Route water and update flow field and water surface elevation 
-  Calculate routing probabilities for sediment parcels 
-  Route sediment and update bed elevation 

Cellular routing framework  
-  Lattice domain of square cells 
-  Calculates unit discharge vector, bed elevation 

and water surface elevation at each cell 
 
Weighted random walk 
-  Water and sediment flux are treated as 

“parcels” in a Lagrangian view 
-  Parcels are routed stochastically based on a 

probability field calculated from simplified 
physics 

H - water surface elevation 
η - bed elevation 
                 - water unit  
                   discharge 
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DeltaRCM 
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Water Routing Probabilities 

DeltaRCM 

Key elements in deciding the routing weight 
(probability) of flow to a neighbor cell 
-  Water depth in that cell (an approximation of 

conductivity, or the inverse of flow resistance) 
-  Whether the cell is in the “downstream” direction 

(determined by a combination of flow inertia and 
water surface gradient) 

Water surface is updated along the 
paths of water parcels assuming a 1-D 
profile (finite difference scheme) 
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Sediment Routing Probabilities 

DeltaRCM 

Two types of sediment parcels  (sand/mud) that have: 
-  Different routing probabilities 
-  Different rules for deposition/erosion 

Updating topography 
-  A sediment parcel loses mass by deposition and gains mass by 

erosion; the bed adjusts accordingly 
-  Erosion and deposition are determined by local flow conditions 
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Flow over a bump (river mouth 
bar) 

Validation of the hydrodynamic component 

DeltaRCM 

Flow through Wax Lake 
network 

DeltaRCM  

Delft3D V (m/s)  
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Other Reduced Complexity 
Models 
n  A network-based modeling framework for 

understanding delta vulnerability to change 
n  Team: Efi Foufoula-Georgiou, Alej Tejedor, Anthony 

Longjas, Ilya Zaliapin 
n  Map delta network into a directed graph composed of 

a set of nodes (or vertices) and links (or edges) and 
represented by its connectivity or adjacency matrix 

n  Operations on the adjacency matrix quantify 
immediate or distant connectivity, distinct sub-
networks, and downstream regions of influence from 
any point on the network.   

n  Use these representations to construct “vulnerability 
maps” 
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Other Reduced Complexity 
Models 
n  A network-based modeling framework for 

understanding delta vulnerability to change 

1 2 

3 4 

5 6 
7 
. 
. 
. 

-  Index each link 
 

-  N is the total number of links = 59 
              

       Adjacency Matrix  A  (N x N) 
 

        if there is a connection iàj   

       otherwise 
 

(Note: 1* replaced with wij for flux propagation) 
 

-  Directed Graph:   
-  Node  è Junction 
-  Link   è  Stream 

1*
0

ij

ij

A
A
=⎧

⎨ =⎩

Wax Lake Delta 
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Other Reduced Complexity 
Models 
1.  Find Sub-networks  (apex to specific outlets) 

                                => Each vi represents a different sub-network 
      Degree Matrix  D  (N x N): Diagonal matrix with  dii = number of links  
     directly downstream from i.  

2.  Find Downstream Regions of Influence of a link k, Rk. 

 

 
3.  Find ‘hotspots’ of change (links where a flux reduction would cause most drastic 
reduction at the shoreline) 

0)( =⋅− ivAD

{ }∪  0)(        0)( ,,, ≠≡⇒=⋅− kvvRvAD ikikkikkk

(D-A) with first (k-1) columns and rows are set equal to zero  

Apex 

High 
reduction  

k 

Low 
reduction  

Same reduction applied 
to different links 

Causes different  
reductions at the 

 same outlet 

Outlet 

Union of all v vectors with non-zero entries at link k 
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Other Reduced Complexity 
Models 
n  A 1D delta restoration model 

n  Team: Matt Czapiga Gary Parker, Enrica Viparelli 
n  Treatment of alluvial-bedrock and bedrock-alluvial 

transitions in low-slope sand-bed rivers 

∂∂η
− λ = −

∂ ∂
c tc

p c
p q( 1 )p

t xShaw and Mohrig 
 2014 

Exner equation for bedrock-alluvial and 
purely alluvial morphodynamics: 
 

pc = areal fraction cover of alluvium 
qtc = capacity sed. transport rate/width 
η = bed elevation 
λp = alluvial porosity 

Wax Lake Delta 

stiff bay mud 
 

alluvium 



16 

Other Reduced Complexity 
Models 
n  An Implicit 2D Delta Model: The Depositional 

Web 

θ

Channel 

Floodplain 

New self-formed channel closure: 
Each channel deposits a width LD to left 
and right,  LD = ϕBbf (hence the web); Bbf 
= bankfull width, ϕ can be partitioned for 
sand and mud. 
 
Number of channels λ varies 
continuously, so channels are implicit: 
 
 
 
Closure finished with bifurcation relation 
similar to Edmonds and Slingerland 
(2008) 
 
 

θ
λ =

+ ϕbf

r
B ( 1 2 )

λ λ
= bf

B
B f

Hd , L ~
dr L S

,  where LB = length to bifurcation 
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Multidimensional 
Ecomorphodynamic Models 
n  Current open-source, state-of-the-art in 3D delta 

morphodynamic modeling: 
n  Delft3D-FLOW Version 6.00.00.2367 

http://www.deltares.nl/en or 
http://csdms.colorado.edu/wiki/Model:Delft3D  

n  Example: Caldwell Keynote earlier this morning 
n  Example: Flow and sediment routing through 

Wax Lake Delta 
n  Team: Ehab Meselhe, Ben Roth, Ashok Khadaka 
n  Objective: Investigate the interaction and feedback 

among hydraulics, morphology, vegetation, and 
nutrient loading 
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Multidimensional 
Ecomorphodynamic Models 
n  Model Setup 

n  Discharge and Sediment 
Inflow at Calumet Bridge 
Station  

n  Stage/Tide at Atchafalaya 
Bay near Eugene Island 

n  Orthogonal curvilinear grid 
with resolution 25m by 25m 
to 100m by 100m 

n  10 sigma layers in vertical direction 
n  Initial Bathymetry: USACE 1998 Hydrographic survey 

bathymetry & DDC lidar 
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Multidimensional 
Ecomorphodynamic Models 

Vertical velocity profiles                Suspended sediment profiles 
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n  But there are problems…… 

Multidimensional 
Ecomorphodynamic Models 
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1)  morphodynamic simulations of 
deltas are an artifact of the 
underlying orthogonal grid 
structure 

2) self-formed channel hydraulic  
    geometries are inaccurate  
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n  Problems with current models (cont.) 

Multidimensional 
Ecomorphodynamic Models 

3) the algorithms for eroding 
channel banks are ad hoc 

4) the ecogeomorphic interactions 
are primitive 

cohesive   non-cohesive 

dx dx 
dry cells wet cells 

No dynamic vegetation with its effects on 
sediment trapping, turbulence 
generation, nutrient uptake 
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n  A mass-conservative, staggered, three-
dimensional, shallow water model 

n  Includes: 
n  ghost-cell immersed boundary method for land/water 

boundaries 
n  a sub-grid vegetation-flow interaction module 

n  Team: Alberto Canestrelli, Aukje Spruyt, Bert 
Jagers, Rudy Slingerland, Fei Xing, James Syvitski, 
Doug Edmonds, William Nardin 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 
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n  Ghost cell immersed boundary method for land/
water boundaries 
n  A hybrid cut-cell/ghost-cell method: ghost cells are used 

for the momentum equations 
n  Cut-cells are used in the continuity equation in order to 

conserve mass 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 
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n  Test Case: Flow in channel not oriented with grid 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 

Longitudinal water level 

Longitudinal velocity 
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n  Test Case: Flow in an infinite river bend 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 

Periodic BC 

Deltares 
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n  A mass-conservative, staggered, three-
dimensional, shallow water model 
n  Can now treat lateral bank erosion…..  

n  Use wall shear stress to predict particle-by-particle bank 
erosion (e.g. Darby & Thorne formulation) 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 

cohesive   non-cohesive 

dx dx 
dry cells wet cells 

( )nb cE k τ τ= −

E 
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n  A sub-grid vegetation-flow interaction module 
n  based upon the Baptist et al. (2005) equations 

§  Vegetation modeled as rigid cylinders characterized by plant 
height, density, stem diameter, and drag coefficient in the model. 

§  Vertical flow velocity profile is divided into a constant zone of 
flow velocity inside the vegetated part and a logarithmic velocity 
profile above for submerged vegetation 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 
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n  A sub-grid vegetation-flow interaction module 
n  Results 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 

n  Adding vegetation 
increases the local 
fraction of sediment 
deposited inside a marsh 
but….. 

§  the vegetative roughness 
also forces more water 
into the channels, leading 
to more erosion in the 
channels and more water 
by-passing the marsh 
surface RS(nc) = the ratio between vegetated and non- 

vegetated sand deposition 

intermediate vegetation 
height maximizes 
sedimentation on bars 
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n  A sub-grid vegetation-flow interaction module 
n  Turf Erosion Module 

§  A new module calculates the critical shear stress needed to rip 
up turf 

§    

 
§  turf parameters are a 3D function 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 

( )wc root cohesionτ τ τ≥ +
Stress balance on a cube of turf….. 
 
 

where:  τwc = wave-current shear 

 τroot = root strength 

  τcohesion = sediment strength 

wcτ

root cohesionτ τ+
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Numerical Scheme: Add a vegetation 
root routine in Delft3D model 
n  Turf Erosion Module 

n  Application: Wax Lake Delta during 
Hurricane Rita in 2005 

n  Delft3d Flow + SWAN wave model 
yields wave-current shear stresses 

n  Figure: Predicted bed elevations at 
end of storm from original Delft3D -  
predicted bed elevations from 
Delft3D with root module 

n  Conclusion: can now quantify the 
amount that roots protect 
vegetated marshes from erosion el

ev
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n 
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m
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n  An individual-based community model for predicting 
fish productivity on an evolving coastal delta 
n  Team: Paul Venturelli, Manuel Garcia-Quismondo  
n  Objectives 

n  develop an individual-based community model to predict fish 
productivity on an evolving delta 

n  determine the structural features of a delta that are highly 
correlated to fish productivity 

n  develop a mechanism for evaluating alternative restoration 
scenarios in terms of fish productivity 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 
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n  An individual-based fish productivity cellular model 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 

Layer 1: bathymetry 
- 1.8 x 106 cells, each 2 x 2 m 
-  DELFT3D output (Edmonds)  

Layers 2 and 3: water and vegetation 
-  hourly water levels (from station data) 
-  vegetation (empirically-derived inundation rules) 
-  also temperature 

Layer 4: individual-based 
fish model 

-  400 x 400 m sub-grid 
-  5 species 
- Δt = 1 hour 
-  feed and grow 
-   swim about 
-  reproduce 
-  die 
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n  An individual-based fish productivity cellular model 
n  Results: snapshot of biomass distribution showing habitat 

associations 

A New Multidimensional 
Ecomorphodynamic Model: D3D+ 
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Summary Remarks 

n  As these models reach maturity in the next two years they will be further 
tested against Wax Lake data and incorporated into the CSDMS 
architecture and framework   

n  All models will be open source and made freely available via the 
CSDMS Repository  

n  If you have a specific immediate request please email sling@psu.edu. 


