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Source-to-Sink in Deep Time

« spatial and temporal resolution diminished, but long-term (>104 yr)
landscape evolution can be evaluated

» stratigraphic surfaces vs. geomorphic surfaces -- paleogeographic
reconstructions are time-averaged representations of landscapes

* sources lost to erosion over long time scales, but integrated
analysis (with new technologies) can address the nature of long-
gone landscapes

» when sink becomes source (S2S2S ...); tectonic recycling
especially relevant in foreland basin systems

« applying insights from LGM-to-present S2S studies to ancient



Source-to-Sink at ‘Time Zero’

» production and transport of sediment in net-erosional source areas
» transfer of mass to net-depositional sinks (sedimentary basins)

* spatial configuration of sediment routing on full display
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« emphasis on quantifying rates of erosion, transfer, and storage (10'-103 yr)
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S2S at time zero permits robust investigation of
forcings: climatic fluctuation, sea-level changes,
oceanographic conditions, tectonics (activity/geometry), etc.




Source-to-Sink in Deep Time

As We Scroll Back Through Geologic Time ...

* source area modified; removed completely as mass is transferred

* sinks in transfer zone might be preserved in long-lived S2S systems; terminal
sinks only segment remaining (if anything) when tectonic regime changes el V4

« temporal resolution diminishes (degree of time-averaging increases)

« direct to inferential

Chronostratigraphic (Paleogeographic) Surface
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In some cases, this is all that is left of an ancient S2S system




Source-to-Sink in Deep Time

As We Scroll Back Through Geologic Time ...

* source area modified; removed completely as mass is transferred

* sinks in transfer zone might be preserved in long-lived S2S systems; terminal
sinks only segment remaining (if anything) when tectonic regime changes il V4

« temporal resolution diminishes (degree of time-averaging increases)

« direct to inferential

Chronostratigraphic (Paleogeographic) Surface

But ... the opportunity to document long-term landscape
evolution exists only in the deep-time record



Source-to-Sink in Deep Time -- Preservation

Cartoon depicts a long-lived (>10s m.y.) S2S system along a basin margin (prior to significant
tectonic regime change). Increasing preservation potential from source to transfer zone to
terminal sinks.
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Source-to-Sink in Deep Time -- Preservation & Approaches

Cartoon depicts a long-lived (>10s m.y.) S2S system along a basin margin (prior to significant
tectonic regime change). Increasing preservation potential from source to transfer zone to
terminal sinks.
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Sediment-Routing Configuration in Stratigraphic Record

’lw" - ’."

Clinoforms [ v AL
J» Distributary o
channel complex

,/»Z ’

Ve SN, s

linoform
oS Dlstnbutary
channel complex

Maln submarme
2 channel complex K

'&.‘ - 10

3D data published with
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Mitchell et al. (2009)

3D seismic-reflection
has allowed us to slice
through stratigraphy in
map view



Sediment-Routing Configuration in Stratigraphic Record
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We are beginning to analyze the
morphology of these time-
averaged landscapes more
quantitatively
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Source-to-Sink in Deep Time -- Preservation & Approaches

Cartoon depicts a long-lived (>10s m.y.) S2S system along a basin margin (prior to significant
tectonic regime change). Increasing preservation potential from source to transfer zone to
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Long-Term Landscape Evolution -- Exhumation

Thermochronology uses the fossil record of heat flow to determine rates of exhumation.
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Long-Term Landscape Evolution -- Exhumation

Determining the age of a detrital grain, the
depositional age, and the thermal history of
the grain can help constrain interpretations
of exhumation timing and, thus, general
source-to-sink characteristics
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Long-Term Landscape Evolution -- Changes in Elevation

Integrated analyses combining isotope
paleoaltimetry, geochronology, and
sedimentological characterization improve
landscape reconstructions by quantifying
ancient elevations
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Long-Term Landscape Evolution -- Changes in Drainage Divide

Changes in composition and age of late Coniacian-Campanian
detrital material preserved in sink (~87-70 Ma)
used to interpret changes in
geomorphology of source

Cenomanian-early Coniacian
(~100-87 Ma)

interpreted drainage
divide
Late Jurassic-Early Cretaceous

eastern limit of distinct
(~150-100 Ma)

source terrane

139%1.2

4 i

200 225 50

. 141.2%1.6| Surpless et al.
(2006)

00 125 150 175 200 225 250

U-Pb dating of = 140z 2.7

detrital zircons

15

200 225 250

o
o
N
o
o
o
o



Long-Term Landscape Evolution -- Sediment Routing

Sandstone composition, especially when

combined with detailed strat characterization . Tres Pasos and Dorotea Formations

and other provenance methods, can provide
insights into sediment-routing configuration.
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Long-Term Landscape Evolution -- Source Area Proximity & Basin

Configuration
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Quaternary S2S as Analog for Deep Time

Information about sediment routing pathways, fluxes between

segments, and forcings -- as derived from modern (LGM-

present) S2S studies -- ifeeAS our interpretations of the record.  source
piases
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Questions about whether the modern snapshot of
Earth’ s S2S systems are important -- Should we
compare only to other highstand times? Should we
compare only to other icehouse times? Etc.
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Insights from Quaternary S2S Studies
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Insights from Quaternary S2S Studies
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Quaternary S2S systems can be used to improve one of our main
tools for interpreting the deep-time record -- conceptual models.
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Source-to-Sink in Deep Time

Paleo-S2S investigation requires combining analysis of how the
detritus piled up (stratigraphic characterization) AND the nature of
the detritus itself (composition, age, thermal history, etc.) 7= ==,

Concepts about signal transfer/propagation, material fluxes at different
timescales, influence of episodicity/intermittency, etc. coming from the S2S
community are changing the way we think about the development of the

stratigraphic record.
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