Glacier hydrology - water in and around glaciers

Motivations
Introduction to glacial hydrology
Emphasis on data, not models
Examples from Alaska

Bench Glacier

Kennicott Glacier
(Greenland...)

The components
Simple models
Emphasis on the challenges
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Motivations

The glacier hydrograph

Temperature structure

Sliding... hence erosion...hence landscape evolution
Surges

Depositional forms: eskers

Outburst floods from blockage of drainage
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Start with surface hydrology, then subsurface

Point 1. A distinction with other systems is that the
glacial plumbing system collapses and must be
re-grown

Point 2. We are finding that the alpine model can indeed
be applied to Greenland outlet glaciers




The daily hydrograph... and a surge




Snowmelt input requires models of meteorologically driven snowmelt,
infiltration, warming of the snowpack, and vadose-zone behavior.

Note the timescale is <1day
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Figure 2. Meltwater discharge records for the Haut Glacier d’Arolla for the summers of (a) 1990 and (b) 1991. Data provided by
Grande Dixence SA

Nienow, Sharp & Willis (1998) Earth Surf. Process. and Landforms 23: 825-843.




Accumulation Zone Ablation Zone —————

Snow/firn
Water saturated

Englacial
conduit

Rothlisberger and Lang 1987




Glacier-wide water balance

Glacier-wide water balance
outlet hydrograph

dS/dt = I-O

Lag of outlet due to:

* Filling of pore space by melt
bringing the snowpack to isothermal §
* Development of through-going
conduits...




Supraglacial streams
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CrevasSses

These serve to interrupt
the supraglacial drainage

system, and serve as local
reservoirs




Englacial system

Hard to see.
But basically a low porosity material, perhaps
1-2% voids




Subglacial hydrology

Distributed
system of

linked
cavities '
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Subglacial
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The slow system,
Linked cavities

Note high connectivity
Normal to sliding direction

Fountain & Walder (1998) Rev. Geophys. 36:299-328.
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View of the bed as a fault - between rock and ice

Sliding of initial fracture surface results in anisotropic
topographic/hydraulic connectivity

sliding

—

after Hari Rajaram




Also analogous to karst systems:

Pipes grow in size and hence efficiency
But the glacial system can collapse...
and operates on much shorter timescales

flux magnitude dissolution rate

o ,.“\’»,\,J‘

flux magnitude (m®/s)

- 71210 0.49-10° 0000E<00 7.678E-15 5604E-12 5305E-00  0.0044
dissolution rate .'ﬁmol.""n?!s)

0.000E<00 9.947E-16 2813E-13 4633E-11  1.41.1070

Hari Rajaram karst models




..but all this stuff happens beneath tens to hundreds
of meters of opaque substance...




What can we tell from observations at
the surface of a glacier?

Sliding results in surface uplift...

Bench Glacier, Alaska
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GPS to the rescue!




Discharge

Horizontal displacement
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Bench Glacier

The Spring event
on an alpine glacier

Note timescale of collapse

Note abrupt onset of high Q
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Note 8-day decay time

...S0 the vertical GPS records cavity size through time...



















Rate of change of area of cavities
= growth rates - collapse rates

Growth by sliding =3
Growth by melting

Nonli heol
Collapse by creep eriinearmeciogy

Crudely...

@ _ Ush+m7L—2A[ﬂ} S

dt n

S = cross section of the cavity

But Us ~ Pw or really as 1/(Pi-Pw)




Modeling the bed separation record

Assumes that sliding is proportional
to local shear stress and inversely
proportional to the effective stress:
N = (P| B PW)1

so that as P, increases, sliding

Increases.
Also, roof collapse goes as N3, so
iIncreases as P,, decreases.
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The pipe system

Again a competition between growth and decay of a
cross section

L=circumference
A = flow law parameter

m~Q

Melt rate ~ Q
As melt rate->0, S declines... exponentially




Linking them all together

Kessler and Anderson GRL 2005

Inspired by Clarke’ s lumped element model



Distance from Glacier Toe (km)
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Rug-flap sliding & outburst flood
Kessler and Anderson GRL
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Greenland outlet glaciers show the same annual cycle of sliding




How should the time scale depend upon
Ice thickness?

How quickly is pipe size reset to “small”
Under what ice thicknesses might

we expect pipes to persist overwinter...

Let’'s go to another, bigger glacier...




Kennicott Glacer, Wrangell
Mountains

40 km long, ~400 m thick

Annual jokulhlaups from
Hidden Creek Lake
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Hidden Creek Lake

Donoho, 6696
ak

Donoho
Falls
Lake

Photo by Christy Swindling




Hidden Creek Lake...before







Lake stage record- first step toward lake volume history
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GPS records
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Bottom line: Response to Diurnal Patterns
Sliding occurs whenever the B og| oo Spocs

subglacial plumbing system
Is overwhelmed by inputs,
I.e. whenever dS/dt >0
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Weight and sprocket assembly

...How to explain

Upper platen Shear zone

the dalily sliding cycle...

Normal-load
Specimen- lever arm
thickness :
LvDT -
(10f3) o ) e — [— To weights—»
Shear load cell

< H- 21 (10f2)
Pore- s Specimen

-
pressure [ .
sensor Rotating base

s Analogy with shearing
of porous granular materials

14 -

e Nl Mioore and Iverson, Geology

10 : :
Normal stress reduced Shear-zone porosity

8 - from 21.9 to 20.7 kPa

Change in
shear-zone porosit

Horizontal displacement

In the subglacial system
cavities serve as the dynamic
porosity element
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melt inputs

sliding
rule

water
outputs

unit cell
of glacier bed




melt inputs
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The shorter the time scale the stronger the feedback
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There is much left to do:

« weather forcing of system

* point-wise inputs of water to the subglacial system

* proper characterization of sliding vs water pressure

» challenge of crossing from sub-daily to many-ka timescales

B U
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Measuring the Kennicott River discharge




Fountain & Walder (1998) Rev. Geophys. 36:299-328.




But first, a little on films...

Regelation Process

mean ice motijon

stoss side water film migration

melting .
(absorbs heat) ee side
relreezing
(releases heat)

high
pressure

conductive

h low
heat flow

pressurc

Regelation requires pressure-melting, transfer of
water around the bump, and transfer of heat through it




Foreland of Blackfoot Glacier
Glacier National Park




The Kennicott Hidden Creek Lake floods

Why Kennicott? It happens every year...




And this sets up the 2006 experiment
to explore the glacial response to the outburst
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Fieldwork: _ Hidden Creek Lake

1) Hidden Creek
Lake
monitoring

Kennicott
River
monitoring

Donoho Falls
Lake level o\
observations Firowood

Mountain

Kilometers
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Baseline Ice Speeds




2006 River flow and chemistry
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Low chloride state

No distributed system
drainage
High water pressure

High chloride state

Distributed system
drains
Low water pressure
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Low CI during rising discharge
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Ice trajectory during sliding ..note the consistent slopes
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Figure 1. Map of Haut Glacier d’Arolla, showing the location of dye injection sites used during the summers of 1990 and 1991, the
fluorometry station and the Grand Dixence gauging station. The labelled moulins are referred to in the text. A four-digit code is used to
classify sites as either moulins (m) or extraglacial streams (s), to show their longitudinal (1-8 in 500 m long segments, with 1 being the
segment closest to the glacier snout) and transverse (E, C. W) position on the glacier, and their relative proximity to the glacier snoutin a
given segment (a to z, with a being closest to the snout)

Nienow, Sharp & Willis (1998) Earth Surf. Process. and Landforms 23: 825-843.



B. Hubbard and P. Nienow: Alpine subglacial hydrology

Travel distance = 1077 m
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FIG. 1. Two typical breakthrough curves from dye tracer experiments conducted from a single moulin at Haut Glacier
d"Arolla in 1990. Injection #1, conducted in June, is characterised by a delayed and dispersed concentration curve. The travel
time to peak dye concentration (7;) of ~180 min yields a mean transit velocity of 0.1 m s ', indicating flow principally
through a distributed subglacial drainage network. In contrast, Injection #2, conducted in July, is characterised by a much
more rapid and peaked return curve. The travel time to peak concentration (75) of ~30 min yields a mean transit velocity of
0.54 m s ', indicating the development of a more efficient channelised subglacial drainage sysiem by this time.

Hubbard & Nienow (1997) Quat. Sci. Rev. 16: 939-955.
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Figure 4. Sequence of four retum curves derived from injections made at moulin m3Ca between 17 June and 4 July 1990

Nienow, Sharp & Willis (1998) Earth Surf. Process. and Landforms 23: 825-843.
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Figure 3. Plots of (a) dve retun time and (b) flow velocity as a function of date of injection for selected moulins during the summers of 1990 and 1991. For days on which
more than one injection was made at a given site, the shortest return time/highest velocity is plotted. Lines added by hand to aid interpretation

Nienow, Sharp & Willis (1998) Earth Surf. Process. and Landforms 23: 825-843.
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Figure 5. Plots of (a) dye return time, (b) flow velocity, () dispersion coefficient, and (d) dispersivity as a function of date of injection for
moulin m3Ca during summer 1990. The poor record of dispersion coefficient results from problems involved in analysing breakthrough
curves derived from fluorescein tracer tests (see Methods)

Nienow, Sharp & Willis (1998) Earth Surf. Process. and Landforms 23: 825-843.
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Figure 9. Position of the head of the channelised component of the drainage system during the 1990 melt season, as determined from
observed dye retum times and the assumption that water flowed through a r\vo-conpponent drainage system. Velocity in the distributed

system=0-025m s, velocity in the channel system is between 0-3 and 0-5m s = depending upon meltwater discharge (see text for
details)

Nienow, Sharp & Willis (1998) Earth Surf. Process. and Landforms 23. 825-843.




Englacial
passages

Subglacial
tunnel

Bedfock
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Figure 4. Fluid equipotentials (dotted curves) and a hypo-
thetical network of arborescent englacial channels [after
Shreve, 1985]. Reproduced with permission of the publisher,
the Geological Society of America, Boulder, Colorado USA.
Copyright @ 1985 Geological Society of America.

Fountain & Walder (1998) Rev. Geophys. 36:299-328.
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Figure 6. Schematic sketch il-
lustrating the type of arborescent
conduit system we envisage. Each
individual conduit is considered
to be braided as shown in Figure
4. Moulins M1, M2, and M3 are
in their true positions, but are
shown for reference only. Possi-
ble path from M1 to terminus is
shown by heavy line. Locations of
conduits and bifurcations is to-
tally hypothetical; the essential
point is that there are probably
many bifurcations.

Hock and Hooke (1993) Geol. Soc. Am. Bull. 105: 537-546.
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Figure 2. Meltwater discharge records for the Haut Glacier d’Arolla for the summers of (a) 1990 and (b) 1991. Data provided by
Grande Dixence SA




The sink(s). Outlet rivers

How do we measure the discharge?

What do you expect a rating curve to look like?

Law of the wall, Mannings, Darcy-Weisbach formulations
What 1f a braided river? — Larry Smith method from satellites
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Figure 3. Time of daily peak water discharge for stream 3 at South Cascade Glacier, Washington, USA. The broken line is the inter-

polated snow depth at the equilibrium line; open diamonds indicate measured thickness; closed circles are times of peak daily discharge

following a snowfall (adapted from Fountain, 1992b). Reproduced courtesy of the International Glaciological Society from the Journal
of Glaciology, 1992, 38 (128), 191, figure 2

Fountain (1996), Hydrological Processes 10: 509-521.




Q=WHU

W(H) from the geometry of the channel

We need U, the vertically-averaged velocity
current metering
salt dilution
theory




What should the rating curve look like?

Q(H)




Kennicott River as it passes beneath the McCarthy
bridge during peak glacial outburst flooding.

P.I. Dr. Andrew Fountain and
Dr. Bob Anderson measure
discharge at the terminus of the
glacier to construct a flood

hydrograph.

Direct measurement
of river discharge, USGS
Protocol... points on a rating curve

wetted perimeter, WP

hydraulic radius, R, = A/WP




An aside: what sets their shapes?
how or why do these streams meander?

How does it melt 1ce 1 0°C?
Heat source in turbulent dissipation.
Strain heating = product of stress™strain rate
The channel meander problem
this 1s NOT about sediment pointb

ars shoving the flow

s )

AR

AT o

Gates Glacier




For the most part ice is impermeable...but...




[] Debris-covered ice

Bed elevation contours (20 m apart)
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Figure 1 Map of Storglacidren showing the location of the drill sites. Four sites were the over-deepened section of the glacier with the exception of the first set in the upper
composed of at least seven holes, each 10m apart in a grid plan, and three sites were  right.
composed of three holes, each ~20m apart in a triangular plan. All sites were drilled in

Fountain et al. (2005) Nature 433: 618-621.




Figure 2 Video image of an englacial fracture. The fracture width is about 4 cm and the
continuation of the vertical drill hole is identified. The camera is tilted obliquely downward
towards the fracture.

Fountain et al. (2005) Nature 433: 618-621.




The drilling and radar results point to copious water-filled
cavities within temperate ice. Images showed that 80% of
these cavities were steeply dipping fractures, most of which were
hydraulically connected, forming an englacial hydraulic system.
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Figure 3 Radar (50-Mhz) reflections from the glacier interior showing a dipping reflector 18 m. The reflector, inferred to be a fracture, dips to the north (right), with the strongest
before and afterdrilling. a, The radar reflections before drilling with a hot water drill; b, the  reflection between depths of ~40 and ~55 m.
reflections after intersecting the top of the reflector ata depth of 38 m near a distance of

Fountain et al. (2005) Nature 433: 618-621.




How should the water pressure field be oriented englacially?

Consider it a groundwater problem
fluid moves normal to equipotentials
potential = elevation head + pressure head
equipotentials are tilted upglacier at 11x the ice slope

Relevance to eskers:
ice can climb UP subgacial topography
as long as the bed slopes are < 11x the ice
surface slope
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Figure 1. Map of Storglaciéiren showing locations of sampling sites and of moulins used as
injection sites.

Note two outlet
streams... a result of
surface topography of
ice driving flow in
divergent directions.

Hock and Hooke (1993) GSA
Bull 105: 105: 537-546.
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Smith et al.
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