Markov-chains and graphs for linking facies with environments and biology in space and time (Recent Arabian Gulf, Miocene Paratethys)
and an ODE-based model of biotically-driven facies dynamics £5XNCRI
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Let us apply this theory to

another sedimentary system.

Here a part of the Great Pearl Bank
in the Arabian Gulf

hoods preferentially into shallower (falling sea level) or deeper
(rising sea level) facies. Our model can also be used as a numeri-
cal analogue to a Ginsburg-type autocyclic model. The fixed proba-
bility vector was used as a proxy for final facies distribution. Using
Markov chains it is possible to use vertical outcrop data to evaluate
the relative contribution of each facies in any time-slice which can
aid, for example, in estimation of reservoir sizes and to gain insight

Model of temporal transition probabilities in the Arabian Gulf: ergodic/absorbing Markov chain

Here the crux of the model: From the Transition probability Matrix, one can derive a ,

unique Fixed Probability Vector (FPV). This expresses the likelihood with which dense live Sparse algae lawns
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Indeed, the FPVs of the facies, which are ecologically and sedimentologically equivalent,
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. From the modofied TPMs, we obtain changed FPVs, reflecting the changed landscape in response to C Falling sealevel scenario
o . . ¢ different conditions. We can simulate the changes in facies-extent under, for example, different sea-
This is thee facies-sequence in the A level regimes.
Mi P h LN eve eg €s increased reflection increased absorption
IOCG!'le aratet yS OUthOp. . at lower facies boundary at upper facies boundary
What is encoded? .
Environmental variability or interspecific .
(=inter-facies) competition? . Just as above, we pixel-count transitions, calculate the TPM and turn
A it into a graph. The graph is linked to the underlying TPM. We can now
M . simulate changed conditions by modifying individual transition liklyhoods.
N shallow facies increase in frequency This is shown by bold lines on the graphs to the left.
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0 20 40 =1 o 1o 20 140 gl 100 200 corals outcompete oysters mental carrying capacity. As long as there are oysters 270
Generations thus no environmental cha’nge around, coral space limitation is mitigated against.
is necessary for switch in dominance Hence the sharp point to the right of the phase-plane. & Tarbellastrea-coral

Oysters and corals occur regularly
next to each other.
Outcrop verification: true

The phase-plane solution that includes the red algae shows that competition with corals and oysters does
not allow red algae to realize their full carrying capacity However, being the most common taxon, they still do-
minate the sediment.
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