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Abstract

An enduring obstacle to reliable modeling of the short and long-term evolution of the stream channel-hillslope ensemble has been the difficulty of estimating stresses
generated by stream hydrodynamics. To capture the influence of complex three-dimensional (3D) flows on bedrock channel evolution, we derive the contribution of
hydrodynamaic stresses to the stress state of the underlying bedrock through a Smoothed Particle Hydrodynamics (SPH) approximation of the Navier-Stokes equations as
calculated by the DualSPHysics code (Crespo et al., 2015). Coupling the SPH flow solutions to the stress-strain formulation of the Failure Earth Response Model (FERM)
(Koons et al., 2013) provides three-dimensional erosion as a function of the strength-stress ratio of each point in the computational domain. From the coupling of SPH and
FERM we gain a 3D physics-based erosion scheme and a two-way link between complex flows and hillslope dynamics in a finite element framework.

Motivating Questions

1.) What are the hydraulic stresses generated in bedrock channels, and how do they vary in time and space?
2.) What 1s the geomorphic response to the hillslope stresses and hydraulic stresses 1in a bedrock channel with heterogeneous rock strength?
3.) Can SPH be used to support decisions related to dam removal and fish habitat rehabilitation activities in river locations where conditions are atfected by remnant

structures from past industrial operations??
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Model Veritication: Observation and Models of Obstructions in Maine's Penobscot River
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Maine's Penobscot River.
Recent large dam removal
projects have restored access to
extensive river segments that
contain the remnant log drive
era structures. Questions
remain about the cumulative
effect of the structures on
habitat for fish such as
Shortnose Sturgeon that is . _
partly governed by water flow depth and velocity in the river.

By scaling up numerical flow simulations calibrated
=8 with field measurements we will evaluate the zone
B of influence from boom island structures and
estimate their cumulative effects over a range of Y
flow conditions in the river. The information is TR N P s
framed around the development of decision tools for RO U T
dam removal and fish habitat rehabilitation
X - projects 1n locations with legacy structures and
debris that may affect modern hydraulic conditions.

Conclusions and Future Work

The coupling of a particle-based flow solution with a finite element geomorphic solution 1s a novel approach to bedrock channel incision which robustly approximates the 3D
stresses and geomorphic response of bedrock channels with complex geometries and lithologies. Future development of this model will focus on real-time cosimulation of
failure and flows in order to capture the complex dynamics of sediment transport and the erosional effects of mobile sediment in bedrock channels and surrounding hillslopes.
Acoustic Doppler velocimetry will be performed 1n June 2018 will be used to constrain and validate the flow modeling around relict logging structures in the Penobscot River.
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