

Event versus Post- Event Sediment Transfer Processes in a UK Upland System

IAG SEDIBUD, Colorado 10th September 2008

Richard Johnson Halcrow Group Ltd

Jeff Warburton Department of Geography Durham University

Upland Catchment Sediment Budget Research Issues

- Detailed data of sediment dynamics in mountainous catchments are limited, more is required given hazard, risk, & climate change scenarios
- Sediment Budgets are KEY to furthering understanding of mountain/ upland catchment sediment dynamics
- Significant questions include:

(1) Relative importance of event and post-event geomorphic processes in the sediment transfer cascade;

(2) Change of channel sinks into sediment supply hotspots;

(3) Hydro-meteorological triggers as controlling variables

Study Area

Lake District Northern Fells

(660- 307 m ASL, 0.65 km², 0.18 m m⁻¹)

Wet Swine Gill Investigations

- Hillslope slide scar (500 m ASL, 492 m², 0.58 m m⁻¹)
- 2002 Hillslope debris-slide deposit (2310 m², 0.53 m m⁻¹)

Rive

2002

2002 Channelised debris-flow & fluvial flood

(279 m runout, 338 m reach)

NERC, April 2005

- <u>Sediment Budget 1</u> Failure Event
 2002
 Earth Surface Processes & Landforms (2008)
 - Sediment Budget 2 Post- event June 2003 - Jan. 2004
 - Sediment Budget 3 Post- event April 2008
 - Scar repeat photography & crosssection measurement 2002-2008

2002 Hillslope- Channel Failure Event

- Failure trigger: 1 Feb. 2002 (54 mm in 8h, 1h rain max. = 9.7 mm)
- Land use preparatory conditions:
 - Heather burn 4 Jan. 2002
 - Excess water supply
- Translational slide in mineral substrate, underlying organic soils $(181 m^3, 203 \pm 36 \text{ t} \text{ erosion}; \text{ c. } 4 m^3 \text{ deposition})$
- Blocky debris slide deposit (c. *91 m*³ deposition)
- Channelised debris flow (142 m³ deposition)
- Fluvial flood (trace deposition)

Sediment Budget 1: 2002

Fluvial flood

Sediment Budget 2: June 2003- January 2004

•Elevated channel sediment yield downstream of debris- slide deposits (3.95 t versus 0.01- 0.02 t)

•Channel sediment: store (event) to supply (post-event) switch. Accounts for 3.3 t

•Hillslope erosion (0.62- 1.32 t) is less than channel activity (3.95 t)

•Gully erosion is the dominant hillslope sediment production and transfer process (1.29 t)

•Un-vegetated hillslopes (1.32 t) yield greater sediment than vegetated hillslopes (0.05- 0.57 t)

Durham

University

Halcrow

Sediment Budget 2: Meteorological Conditions

Long-term Slide Scar Change

• Evaluated using:

28 July 02

- Repeat fixed point photography
 - (13 times, 5.75 years: June 02- March 08)
- Scar cross sections (4 times, August 02-March 08)

4 March 08

 Gully cross sections linked to meteorological data (Sediment Budget 2)

Long-term Slide Scar Change

- Evaluated using:
 - Repeat fixed point photography
 - (13 times, 5.75 years: June 02- March 08)
 - Scar cross sections (4 times, August 02-March 08)
 - Gully cross sections (Sediment Budget 2)

Sediment Budget Comparison (2002 & 2008)

System zone	2002 (m ³)	2008 (m ³)
Slide Scar	181.1	393.4
Debris Slide (RB)	10.4	57.2
Debris Slide (Runup)	80.5	7.5
Channel	142.3	328.7

• Scar:

- 212 m³ post-event erosion (c. 117% of failure volume)
- Feb 02: 181.1 m³ d⁻¹
- Feb 02- April 08: Mean 0.09 m³ d⁻¹, but rapid gullying up to 2004 (rate variable)

Debris Slide:

- Net storage reduction (90.9 m³ to 64.7 m³)- vegetation re-growth & channel erosion
- Storage gain on right bank (c. + 47 m³), Storage loss on run-up (c. 73 m³)

• Channel:

- Net increase in channel sediments (2008 residual), so new influx from hillslope activity, c. 166 m³
- SB 2 shows sensitive to erosion. Absence of new deposit so downstream transfer
- c. 247 ± 35 t (or 40 t p.a.), a plausible value?

Summary- Sediment Dynamics

- Timing & length of sediment budget investigation is important, as different rates and phases of geomorphic activity:
 - 2002 event
 Large one day transfer (181 m³) (SB1)
 - 2002-2004 Rapid scar gully development (pre and during SB2)
 - 2003-2004 (1) Evacuation of event and post-event channel sediments (5.3× > hillslope activity: 6 months) (SB2)
 (2) Channel yield much greater downstream of event impacts (4 t v 0.02 t) (SB2)
 (3) Sensitivity to thunderstorms & winter storms
 - 2002-2008

Hillslope scar erosion greater than 2002 event (212 m³). Much more significant than evident during SB2

Conclusions

- 6 years after the failure, post-event hillslope erosion is greater than the event sediment yield. Over time gully erosion succeeded by channel reworking
- Need long-term monitoring of sediment dynamics, to determine the significance of large events in sensitive localities (nested sediment budgets)
- Direct measurements of all key processes to avoid errors inherent in residual components
- Need to better integrate hydro-meteorological and sediment yield data (i.e. a higher frequency of sediment yield records)
- Need to consider alternative techniques to improve accuracy & precision of measurements, e.g. terrestrial laser scanning of scar