

Cohesive Sediment Transport in COAWST

Courtney Harris, Chris Sherwood, Alfredo Aretxabaleta, Danielle Tarpley CSDMS Webinar November 18, 2019

COAWST: Coupled-Ocean-Atmosphere-Wave- Sediment Transport Modeling System.

Sediment Transport Components

- Erosion / deposition / bed model (sand, mud, or mixed)
- Settling
- Bedload transport and flux divergence
- Morphological evolution
- Flocculation/aggregation
- Sediment influence on density
- Positive-definite advection scheme (MPDATA, HSIND)
- Wave input (specified, or SWAN, 1- or 2-way coupled)
- Wave-current combined bottom stresses
- Wetting and drying

Resuspension and Deposition

• Active layer thickness

 $\delta_{mix} = \max[k_1(\tau_b - \tau_{cr})/\tau_{cr}, 0] + k_2 D_{50}$

$$k_1 = 0.007 \text{mPa}^{-1}; \quad k_2 = 6$$

• Erosion

 $F_e = E(\tau_b - \tau_{cr})/\tau_{cr}$

- Sedimentation $F_d = -w_s C$
- Net deposition

 $\frac{\Delta C}{\Delta t} = F_d + \max\left[F_e, \ \frac{m_0}{\Delta t} - F_d\right]$

Bedload

- Meyer-Peter Müeller (1948) $\Phi = \max[8(\theta_{sf} \theta_c)^{1.5}, 0]$
- Or Soulsby and Damgaard (2005) $\vec{\Phi} = \max[A_2 \theta^{0.5} (\theta_{sf} \theta_c) \frac{\theta_{sf}}{\theta_{sf}}, 0]$ $\vec{\Phi} = (\Phi_{\parallel}, \Phi_{\perp}), \quad \vec{\theta}_{sf} = (\theta_{sf\parallel}, \theta_{sf\perp})$
- Accounts for net transport over a wave cycle of components parallel and perpendicular to mean currents
- Bed slope effect $q_{bl_slope} = \frac{\tan \varphi_m}{(\tan \varphi_m \tan \beta) \cos \beta}$

where $\beta = \tan^{-1}(dz / dx)$ $\varphi_m =$ friction angle

• Upwind flux differencing

...presently adding asymmetrical wavedriven bedload transport similar to SANTOSS formula

Bottom Boundary Layer

Roughness (z₀): grains, saltation, ripples, biogenic features

 $z_0 = \max[z_{0N} + z_{0ST} + z_{0BF}, z_{0MIN}]$

• Law of the wall $|u| = \frac{u_{*wc}}{\kappa} \ln\left(\frac{z}{z_{0a}}\right)$

where |u| is current speed, $u_{*_{cw}}$ is shear velocity, z is elevation, κ is von Kármán's constant

• Apparent roughness (z_{0a}) is a function of z_0 and wave-current interaction

Wave-Current Bottom Boundary Layer

- Orbital motions of waves near bottom creates more turbulence than currents alone
- More turbulence, better coupling of flow to bottom, more drag on mean flow $(u_{*_{cw}}, z_{0a})$
- Also, higher instantaneous bed stresses to mobilize sediment
- Madsen (1994) or Styles and Glenn (2000) or Soulsby (1997)

Ripple Roughness

- Ripples increase roughness of seabed, adding drag and increasing stresses
- Ripple geometry (height, wavelength, maybe orientation) are computed from instantaneous equilibrium (Malarky and Davies, 2003 method of Wiberg and Harris, 1994)
- $z_{OBF} \sim height^2/wavelength$
- Some of this is form drag; that portion does not contribute to the skin friction stresses that move sediment: corrected according to Smith and McLean (1997) and Wiberg and Nelson (1992)

COAWST/CSTMS Sediment

- Cohesive/mixed bed
- Biodiffusion
- Stratigraphy
- Flocs
- Biogeochemistry

Courtney Harris and students (Aaron Bever, J.P. Rinehimer, Kelsey Fall, Julia Moriarty, Danielle Tarpley)

```
if SEDIMENT
 sediment.F - Initiate sediment routines
 if BEDLOAD
   sed bedload.F - Bedload transport
 endif
 if SUSPLOAD
   if SED FLOCS
    sed flocs.F - Floc dynamics
   endif
   sed settling.F - Suspended sediment settling
   sed fluxes.F - Erosion / Deposition
 endif
 if COHESIVE BED or MIXED BED
   sed bed cohesive. F *- Cohesive / mixed stratigraphy
   if SED FLOCS and SED DEFLOC
    sed bed cohesive. F *- Adjust floc distribution in bed
   endif
 elseif NONCOHESIVE_BED2
   sed bed2.F *- Non-cohesive stratigraphy (revised)
 else
   sed bed. F - Non-cohesive stratigraphy (original)
 endif
 if SED BIODIFF
   sed biodiff.F* - Biodiffusive mixing of bed
 endif
 sed surface.F - Update surface properties
endif
```

Example: non-cohesive bed

Study the sediment size distribution (Mass Bay):

Warner et al., CSR, 2008

Cohesive behavior

$$\tau_{cb\,eq} = \exp\left(\ln(M) - offset\right) / slope$$

$$\begin{split} \Delta \underline{\tau_{cb}} \\ \Delta \underline{\tau_{cb}} \\ \Delta t \\ = \begin{cases} \frac{1}{T_c} \left(\tau_{cb \, eq} - \tau_{cb} \right) &, & \tau_{cb} < \tau_{cb \, eq} \\ 0 &, & \tau_{cb} = \tau_{cb \, eq} \\ -\frac{1}{T_s} \left(\tau_{cb \, eq} - \tau_{cb} \right) &, & \tau_{cb} > \tau_{cb \, eq} \end{cases} \end{split}$$

 T_c = Time scale of consolidation T_s = Swelling time scale (order 100 times slower)

Development:

- Harris, Rinehimer + VIMS
- Sherwood, Ferré, Aretxabaleta
 + USGS

Rinehimer, 2008 Sherwood et al., 2018

Erosion of a Cohesive Bed

• Key bed property: critical shear stress

Deposition on a Cohesive Bed

- 1) Initial profile.
- 2) Deposition of 2 mm. τ_c profile (black) is extended to new surface; sediment at surface is easier to erode.
- 3) In absence of further deposition or erosion, τ_c profile slowly reverts toward reference profile (red)

Cohesive behavior

1-D case with 4 sediment classes

Mixed bed behavior

Thresholds from Mitchener and Torfs, Coast.Engin., 1996

Mixed bed behavior

Determine how cohesive the bed is (P_{coh})

f_c is the cohesive fraction:

 $\begin{array}{l} f_c < f_{nc \ thresh} \ (\sim 0.03) \ -> \ fully \ non-cohesive \ behavior \ (Pcoh = 0) \\ f_c > f_{c \ thresh} \ (\sim 0.20) \ -> \ fully \ cohesive \ behavior \ (P_{coh} = 1) \\ f_{nc \ thresh} < f_c < f_{c \ thresh} \ -> \ intermediate \ behavior: \end{array}$

$$P_{\text{coh}} = \min \left| \max \left(\frac{f_c - f_{nc \text{ thresh}}}{f_{c \text{ thresh}} - f_{nc \text{ thresh}}}, 0 \right), 1 \right|$$

"Cohesive behavior" P_{coh} is then applied to the critical shear stress and active - layer thickness.

Mixed bed behavior

Resuspension flux near bottom

If *dt* is the time step, E_0 the surface erosion rate, fr_i the fraction for each class, τ_w the maximum bottom shear stress and φ the bed porosity:

 $flux_i = \max (0, dt E_0(1-\phi) fr_i (\tau_w - \tau_{cr}))$

Biodiffusion

Flocculation

Verney et al., 2011

Flocculation

Description of the SCB model – FLOCMOD

Verney et al., 2011; Maerz et al., 2011; Mietta et al., 2011

Based on the population equation proposed by Smoluchowski (1917) :

$$\frac{dn_k}{dt} = G_{aggr} + G_{break_shear} + G_{break_coll} - L_{aggr} - L_{break_shear} - L_{break_coll}$$

The floc population is described by *N* size classes, logarithmically distributed, e.g.: *D* - 1: 50μm ; 2: 77μm ; 3: 118μm ; 4: 180μm ; 5: 275μm ; 6: 421μm ; 7: 643μm *Ws* - 1: 0.13 ; 2: 0.19 ; 3: 0.28 ; 4: 0.41 ; 5: 0.61 ; 6: 0.89 ; 7: 1.30 mm/s

assuming a fractal dimension of nf=1.9. nf relates floc mass to volume through floc density. nf = 3 are solid spheres, lower nf = lower floc densities.

Mass moves among these classes through aggregation and fragmentation processes represented by kernel formulations.

FLOCMOD in COAWST

- FLOCMOD computed at each x,y,z,t
 - $\Delta t = 1/4 \text{ to 1 s}$
 - 7 to 15 floc classes (4 1500 μm)
 - 1 to 3 sand classes (125 250 $\mu m)$
 - $D_p = 4 \,\mu\text{m}, \,\rho_s = 2650 \,\text{kg/m}^3, \,n_f = 2$
 - Binary fragmentation

Verney Tank Experiment Constant concentration = 0.093 kg/m³

- No floc deposition
- Other parameters according to Verney et al., 2011

FLOCS in COAWST Steady flow, no settling, no deposition

Winterwerp (equilibrium profile) Study of different aggregation/disaggregation constants

FLOCS in COAWST Example: Steady flow

Sherwood et al., 2018

Vegetation Module Beudin et al., 2017, Comp. & Geosci.

Effect of SAV on flow dynamics

- 3-D SAV represented by o structures
- Modify mean and turbulent flow
- Local adjustment of water level
- Wave dissipation
- Within the canopy, reduced TKE
- Above the canopy, enhancing TKE

Schematic showing submerged vegetation canopy

Modeling SAV effect on flow dynamics

Process modeled	Additional terms in the model
1. Momentum extraction	Drag force in momentum equation (ROMS)
2. Turbulence production	Turbulent generation in the TKE equation (ROMS), Uittenbogaard (2003),
3. Turbulence dissipation	Generic length scale (ROMS)
4. Flexible SAV	Reduction of drag due to bending of flexible SAV (ROMS), Luhar and Nepf, 2011
5. Wave dissipation	Source term in wave action equation (SWAN), Dalrymple et al. (1984) and Mendez and Losada (2004)
6. Wave streaming	Wave averaged forcing in momentum (SWAN+ROMS), Luhar et al., 2010; Luhar and Nepf, 2013

What is different about sediment in COAWST? (external differences)

- Minimal
 - Switches in **.h** file
 - Changes in .in file
 - Need **sediment**.in file
 - Need to modify (a copy of) ana_sediment.F
 - …or provide more info in init.nc file
 - New output in his.nc file
- Many applications also need
 - More info in init.nc file (initial bed)
 - Wave input
 - River sediment input
 - Boundary conditions

Cohesive Sediment Transport Models in an Idealized Estuary

Danielle Tarpley (Ph.D. Candidate)

Courtney K. Harris*, Carl Friedrichs

Department of Physical Sciences

Chris Sherwood US Geological Survey

*presenting the webinar today

CSDMS Webinar November 18, 2019

Community Sediment Transport

Modeling System

- Described in Warner et al. (2008).
- Implemented in ROMS.
- Versions have also been ported to SCHISM, FVCOM, and other models.
- Noncohesive sediment model.
- Treats particulate tracers as inert.

CSTMS Now Includes Flocculation and Bed Consolidation

Danielle R.N. Tarpley¹ K. Harris¹, Carl T

0

rec

2

Tarpley et al. 2019. Tidal variation in cohesive sediment distribution and sensitivity to flocculation, bed consolidation in an idealized, partially mixed estuary. *JMSE*

Including Cohesive Processes in an Idealized Estuary

Flocculation shifted distribution

toward coarser sediment in FTM

Tarpley, Harris, Friedrichs and Sherwood, 2019.

Question: Do floc sizes reach equilibrium in the idealized estuary?

Answer: Sometimes.

Sherwood et al., 2018

ETM Near Bed (~3 cmab)

Equilibrium D

Modeled D

Disaggregation

ETM Near Bed (~3 cmab)

Equilibrium D

6

3

ETM @ ~90 cmab

Equilibrium D

Modeled D

Depth Averaged U-Velocity

Conclusions from Idealized Estuary:

- The idealized estuary model reproduced key features such as estuarine circulation the ETM, and and relied on inclusion of cohesive processes (bed consolidation and flocculation). (*Tarpley et al. 2019*)
- Flocculation had the largest impact on SSC within the ETM. It reduced the average depth-integrated suspended mass by ~50% there. (*Tarpley et al. 2019*)
- Outside of the ETM, bed consolidation had the largest impact. It decreased the average depth-integrated suspended mass by ~50%. (*Tarpley et al. 2019*)
- Flocculation transferred as much or more sediment mass than horizontal and vertical advection and settling in the ETM.
- The floc model produced floc sizes that were often not equilibrated with the scaling expected by $^{C}/_{\sqrt{G}}$

COAWST: Model Coupling

from: https://woodshole.er.usgs.gov/operations/modeling/COAWST/