8 Appendix D: Frequently Asked Questions

1.

What is the maximum current this model can handle?

The program can handle currents that are of the same order as the wave speed.
However, opposing currents which are strong enough to stop the waves cause a singu-
larity in the wave height due to the absence of reflection effects and no provision for
steepness-limited breaking. These extensions will be added in the future.

. In which situations should the user specify totally reflecting lateral boundaries (tbc =

0), and when should partially transmitting lateral boundaries (ibc = 1) be used?

It is common practice to use the closed boundary condition as the amount of reflection
can be identified and the domain width can be chosen so that there are no reflections
in the region of interest. The final run may be made using partially transmitting
boundaries, but it should be noted that there will still be a certain amount of reflected
waves present in the domain.

. What is the difference between user-specified subdivisions and user-specified subgrid?

User-specified subdivisions and user-specified subgrids are two completely independent
options. The user has to specify the desired number of subdivisions in the y-direction
nd. However, the user has an option between specifying the number of subdivisions in
the z-direction md(ir) or having the program specify those. If the program specifies
md(ir), the switch ispace has to be set to zero and the program performs interpolations
of the depth and velocity grids. If the user choses to specify the md(ir) values himself,
the switch ¢space has to be set to unity. In this case, the user again has a choice: The
user can specify isp = 0, then the program will perform interpolations. The user can
set ¢sp = 1, in which case he/she has to specify a subgrid in the file subdat.dat.

What are the guidelines for the specification of the number of subdivisions md(ir) in
the z-direction?

It is recommended that the number of subdivisions md(ir) be determined by the
program. However, if the user wants to specify md(ir)’s, the user should make sure
that the subdivided grid is at least as fine as the program would have determined.
In order to achieve this, the user can first run the program by letting it pick its
own subdivisions. Then the user can chose his/her subdivision using the programs
subdivisions as a guideline.

. What are the guidelines for the choice of the number of subdivisions nd in the y-

direction ?

nd should be chosen such that the final subdivided reference grid cells have increments
in the z- and y-directions that are fairly close in size. This is best determined by
running REF/DIF 1 once to check how many z-direction subdivisions are introduced
in the most finely subdivided grid, and then subdividing in y by a corresponding
amount

. Where is the origin of the grid ?

The origin of the domain is always chosen to be the lower right-hand corner of the
domain with the z-axis pointing in the propagation direction and the y-axis pointing
towards the left.
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if (x0ld(i).1t.0) go to 20
read(10,*) (surfold(i,j),j=1,ny)
continue

continue
close(10)
m=i-1

write(6,*) ’ number of x points in file = ’, m
write(6,*) ’ maximum x = ’, xold(m)

dy=y(2)-y(1)
dx=dy

write(6,*) ’ grid spacing (x and y) in new image = ’, dy
nx=int(xold(m)/dx)+1
write(6,*) ’ number of x points in interpolated image = ’, nx

do 25 j=1,ny

jj=(ny-j)+1
surface(1,j)=surfold(1,jj)
continue

x(1)=0.

do 40 i=2,nx-1

x(i)=float(i-1)*dx

do 35 ii=1,m-1

if((xo0ld(ii).le.x(i)).and.(x0ld(ii+1).gt.x(i))) then
fac=(x(i)-x01d(ii))/(x0ld(ii+1)-xo0ld(ii))
do 30 j=1,ny
jj=(ny-j)+1
surface(i,j)=(1.-fac)*surfold(ii,jj)+fac*surfold(ii+1,jj)
continue

endif

continue

continue

do 45 j=1,ny

jj=(ny-j)+1

surface(nx, j)=surfold(m,jj)
continue

close(11)

return
end
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call w_hdf(fnamel4,out_array,ixr,iyr,mr,nr,x,y,hdfarray,

$ ’x axis’,’f8.1’,’meters’,’y axis’,’f8.1’,’meters’,
$ ’radiation stress syy’,’el0.3’,’kg/sec”2’,coordsys,iswap)
yy g y P
endif
=== m e e e e e eeee
C* surface data.
=== m e e e e e eeee
if (fname6.ne.’ ’) then

write(6,*) ’in surface out’
call surface2hdf(fname6,nx,ny,logfileout)
call w_hdf(fname6,surface,ixr,iyr,nx,ny,x,y,hdfarray,

$ ’x axis’,’f8.1’,’meters’,’y axis’,’f8.1’,’meters’,
$ ’surface_image’,’e10.3’,’kg/sec”2’,coordsys, iswap)
endif
call exit(0)
end
CRmm = m e e e e
C* surface
cx
C* Interpolate the surface image onto a regular grid.
CRmm = m e e e e

subroutine surface2hdf(fname6,nx,ny,logfileout)
include ’param.h’
common/surf/surface(iy,iy)

integer i,j,m,nx,ny
real x(iy),y(iy),dx,dy,xo0ld(iy),surfold(iy,iy)

character*255 fname6, logfileout
open(10,file=fname6)

c Enter output file name.

¢ Read number of y-direction points from surface.dat

read(10,*) ny
read(10,*) (y(j),j=1,ny)

write(6,*) ’ number of y points = ’, ny
write(6,*) ’ maximum y = ’, y(ay)

¢ Read surface data.
do 10 i=1,100000

read(10,*) xo0ld(i)
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if (fnamell.ne.’ ’) then
open(10,file=fnamell)

do 20 i=1,mr
read(10,*) (out_array(i,j),j=nr,1,-1)
20 continue
close(10)
write(6,*) ’in height w_hdf’
write(6,*) ’iyr,mr,nr=’,iyr,mr,nr
write(6,*) ’height=’,out_array(1,1),out_array(100,100),
1 out_array (mr,nr)

call w_hdf(fnamell,out_array,ixr,iyr,mr,nr,x,y,hdfarray,

$ ’x axis’,’f8.1’,’meters’,’y axis’,’f8.1’,’meters’,
$ ’wave height’,’e10.3’,’meters’,coordsys,iswap)
endif
= == m e e e e e
¢ Read radiation stress data.
= == m e e e e e
if (fnamel2.ne.’ ’.and.fnamel3.ne.’ ’.and.fnameld4.ne.’ ’) then
write(6,%*) ’in stress out’
open(10,file=fnamel2)
do 30 i=1,mr
read(10,*) (out_array(i,j),j=nr,1,-1)
30 continue
close(10)
call w_hdf(fnamel2,out_array,ixr,iyr,mr,nr,x,y,hdfarray,
$ ’x axis’,’f8.1’,’meters’,’y axis’,’f8.1’,’meters’,
$ ’radiation stress sxx’,’e10.3’,’kg/sec”2’,coordsys,iswap)
open(10,file=fname13)
do 40 i=1,mr
read(10,*) (out_array(i,j),j=nr,1,-1)
40 continue
close(10)
call w_hdf(fnamel3,out_array,ixr,iyr,mr,nr,x,y,hdfarray,
$ ’x axis’,’f8.1’,’meters’,’y axis’,’f8.1’,’meters’,
$ ’radiation stress sxy’,’e10.3’,’kg/sec”2’,coordsys,iswap)
open(10,file=fname14)
do 50 i=1,mr
read(10,*) (out_array(i,j),j=nr,1,-1)
50 continue

close(10)
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call infile(fnamein)
open(8,file=fnamein)

read(8,nml=fnames)
read(8,nml=ingrid)

c Compute grid spacing data.

do 1 i=1,mr
x(i)=float(i-1)*dxr

1 continue
do 2 j=1,nr
y(j)=float(j-1)*dyr
2 continue
ot e et e e L L L L e
c values used for labels, formats, units are your choice
C coordsys is usually just null string = ’’
C iswap is usually O
ot e et e e L L L L e
coordsys=’ "’
iswap=0
ot e ettt e E L L L e e

¢ 1if output file names are not null strings, then
c wWrite out data in hdf format

if (fname8.ne.’ ’) then
write(6,*) ’in angleout w_hdf’
write(6,*) ’iyr,mr,nr=’,iyr,mr,nr
open(10,file=fname8)
do 10 i=1,mr
read(10,*) (out_array(i,j),j=nr,1,-1)

10 continue
close(10)
print*, ’angle=’,out_array(1l,1),out_array(100,100),
1 out_array (mr,nr)

call w_hdf(fname8,out_array,ixr,iyr,mr,nr,x,y,hdfarray,
$ ’x axis’,’f8.1’,’meters’,’y axis’,’f8.1’,’meters’,
$ ’reference_grid_angles’,’e10.3’,’degrees’,coordsys,iswap)

endif

¢ height file output
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7.3 rfohdff

o e e e s
C*

C* rf2hdf . f

c*

c* This program converts selected refdifl files at the reference

c* grid spacing to hdf format, for use by other LRSS algorithms and
C* by the Matlab Image Processing Toolbox.

c*
C* James T. Kirby

C* Center for Applied Coastal Research
C* University of Delaware

Cc* Newark, DE 19716

c*

c* kirby@coastal.udel.edu, (302) 831-2438, FAX (302) 831-1228.
c*

c* Last revision 12/22/94.

c*

program rf2hdf

include ’param.h’
dimension iff(3)
common/surf/surface(iy,iy)

integer nx,ny, iwrite

integer iret, igetarg, error_write
external itegarg

real out_array(ixr,iyr),hdfarray(ixr,iyr)
real x(ixr),y(iyr),dxr,dyr

character*255 fnamel,fname2,fname3,fname4,fname5,fnameb,

1 fname7,fname8,fname9,fnamel0,fnamell,fnamel?2,
1 fnamel3,fnamel4,fnamel5,fnamein
character*255 coordsys

integer iswap

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, dxr, dyr, dt,

ispace, nd, iff, isp, iinput, ioutput

/inmd/ md

/fnames/ fnamel,fname2,fname3,fname4,fname5,fnames,
fname7,fname8,fname9,fnamel10,fnamell,fnamel?2,
fnamel3,fnamel4,fnamelb

/wavesla/ iwave, nfregs

/waves1b/ freqs, tide, nwavs, amp, dir

/waveslc/ thetO, freqs, tide, edens, nwavs, nseed

/waves2/ freqin, tidein

N e e e = N e

open(6,file="rf2hdf.log’)
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2 k=kn
return

100 format(’ wavenumber iter. failed to converge on row’,il0,
1’ column’,il0/

1 k=’,£f15.8,"’ u=’,f15.8/
1 d=’,f15.8,"’ f=>,f15.8/
1 t=’,f15.8)

end
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do 101 i=1,mr-1
if (md(i) .gt .mdmax) mdmax=md(i)
101 continue

write(10,*) ’ md(ir) max = ’, mdmax
dx=dxr/float (mdmax)

write(10,*) ’ dxmin = °’, dx

dy=dx

nd=ifix(dyr/dy)

return

200 format(’ model tried to put more spaces than allowed in’,
1’ grid block ’,i3)

end
ot e ettt e e L L L e
c*  wvnum
c*
c* Compute wavenumbers.
c*
ot e ettt e E L L e

subroutine wvnum(d,u,s,k,eps,icdw,i,j)
include ’param.h’
real k,kn

¢ Constants.

g=9.806
pi=3.1415927
k=s*s/(g*sqrt(tanh(s*s*d/g)))

¢ Newton-Raphson iteration.

do 1 ii=1,20
f=s*s5-2. *sxkrutkxkrxuru-gkk*tanh(k+*d)
fp=-2.*s*u+2 . xkxuru-gxtanh (k*d)-gxk*d/(cosh(k*d)**2.)
kn=k-f/fp
if ((abs(kn-k)/kn) .1t.eps)go to 2
k=kn
1 continue
t=2.*pi/ (sqrt(gxk*tanh(k*d))+k*u)
write(10,100)1i,j,k,u,d,f,t
icdw=1

return
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dimension bath(ixr,iyr),md(ixr)
real k(ixr,iyr),kb(ixr)

mdmax=1
pi=3.1415927
eps=1.0e-05
omega=2.*pi/period

ot e et e L L e
c* Compute x-direction subdivisions just as in REF/DIF 1
ot e et e E L L e
depthmin=0.
depthmax=0.

do 100 i=1,mr-1

npts=0
sumk=0.

do 13 j=1,nr

dref=bath(i,j)+tideoffset

if (dref.gt.depthmax)depthmax=dref

if(dref.1t.0.001) dref=0.001

call wvnum(dref,0.0,omega,k(i,j),eps,icdw,i,j)

if(dref.gt.0.05) then
sumk=sumk+k (i, j)
npts=npts+1

endif

13 continue

if (npts.eq.0)then

kb(i)=k(i,1)

else

kb(i)=sumk/float(npts)

endif

alw=2.*pi/kb(i)

anw=dxr/alw

np=ifix(5.*anw)

if(np.1t.1) np=1

if(npts.gt.0) then

md (i)=min((ix-1) ,np)
if(np.gt.(ix-1)) write(10,200) i
else

md(i)=md(i-1)

endif

100 continue

dt=depthmax
ol e e L L LT
c* Find the biggest one, compute the corresponding dx and dy, and
C* compute the resulting nd.
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c*
c*

c*
c*
c*
c*
c*
c*

icur=0
ibc=1
ispace=0
if£(1)=0
if£(2)=0
if£(3)=0
isp=0
iinput=1
ioutput=1

iwave=1

nfreqs=1
freqs(1)=period
tide(1)=tideoffset
nwavs(1)=1
amp(1,1)=height/2.
dir(1,1)=angle

open(7,file=datafileout)

write(7,nml=fnames)
write(7,nml=ingrid)
write(7,nml=wavesia)
write(7,nml=wavesib)

close(7)

Compute wavenumbers and number of waves per grid space in order to
estimate the required level of subdivision.

subroutine con

include ’param.h’

common/indat/ height,period,angle,tideoffset, mr, nr, dxr, dyr

common/refdat/ bath,nd,dt
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c*
c*

c*
c*
c*

c*
c*
c*
c*
c*
c*

c*
c*

subroutine indatgen(datafileout)

include ’param.h’

common/indat/height,period,angle,tideoffset,mr,nr,dxr,dyr
common/refdat/bath,nd,dt
common/fname_s/fnamel,fname2,fname3,fname4,fname5,fname6,fname7,
1 fname8,fname9,fnamel0,fnamell,fnamel2,fnamel3,

1 fnamel4,fnamelb

character*255 datafileout

dimension iff(3)

dimension bath(ixr,iyr)

dimension freqs(ncomp), nwavs(ncomp)

dimension amp(ncomp,ncomp), dir(ncomp,ncomp), tide(ncomp)

character*255 fnamel,fname2,fname3,fname4,fname5,fname6,fname7,
1 fname8,fname9,fnamel0,fnamell,fnamel2,fnamel3,
1 fnamel4,fnamel5

The following files correspond to a portion of REF/DIF 1 which is
never used by LRSS, but are required for input into REF/DIF 1.

Names are specified here in order to avoid having the system or user
invent an arbitrary name for a non-existant file.

data fname4/’fname4d.dat’/,fname5/’fname5.dat’/

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, dxr, dyr, dt,
ispace, nd, iff, isp, iinput, ioutput
/fnames/ fnamel,fname2,fname3,fname4,fname5,fnameb,
fname7,fname8,fname9,fnamel10,fnamell,fnamel?2,
fnamel3,fnamel4,fnamelb
/wavesla/ iwave, nfregs
/waves1b/ freqs, tide, nwavs, amp, dir

N e

iu=1
ntype=1
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ch--=

c*
c*

ch-==

chk--=

c*

chk--=

chk-==

c*
c*
c*
c*

labelx,formatx,unitx,labely,formaty,unity,
labelf,formatf,unitf,coordsys,iswap)

write(10,*) ’ end of r_hdf’

write(10,*) ’mr=’,mr
write(10,*) ’nr=’,nr

dxr=abs(x(2)-x(1))
dyr=abs(y(1)-y(2))

open(8,file=fnamel)

do 10 i=1,mr

write(8,20) (bath(i,j),j=nr,1,-1)
continue

close(8)

format (20f10.4)

Now we must inspect the depth grid to get an estimate of what the
level of automatic grid subdivision should be. This is done as in
REF/DIF 1 itself.

Now we need to generate the namelist file (usually indat.dat) for
REF/DIF 1.

call exit(0)
end

indatgen

Generate the ascii namelist file indat.dat for input into REF/DIF 1
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c*
c*

Cc*
Cc*
Cc*
c*

c*
c*
c*

c*
c*
c*

Cc*
Cc*
c*
c*
c*
c*

integer igetarg
external igetarg

namelist/input/height,period,angle,tideoffset,isurface,ibottom,
gridfilein,datafileout,logfile,
fnamel,fname2,fname3,fname6,fname7,
fname8,fname9,fnamel0,fnamell,fnamel2,fnamel3,
fnamel4,fnamelb

N

add this call to work around SGI bug (not needed if program being
used as a free-standing program).

iret=igetarg(l,datafilein, 255)

if(iretl.eq.-1) then
iwrite = error_write

1 (’no filename for datafilein specified on command line’)
call exit(1)

endif

open(5,file=datafilein)
read(5,nml=input)
close(5)

open(10,file=logfile)

First, we will read in information about the grid from the LRSS

HDF formatted file (specified by gridfilein) and generate the ASCII
file refdat.dat usually used by REF/DIF 1. It is assumed that the

REF/DIF 1 parameters ixr and iyr are set large enough (in param.h)

to contain the bathymetry grid being read in.

write(10,%*) ’ begin r_hdf’

call r_hdf(gridfilein,bath,ixr,iyr,mr,nr,x,y,hdfarray,
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c*

c* The standard names for REF/DIF 1 input files would correspond to:
c*

c* datafileout = indat.dat

C* fnamel= refdat.dat

c*

c* but any arbitrary file name may be specified. Runtime messages are
c* stored in lrss2rf.log.

c*

c*

o e et e L e L L L e
c*

c*

C* James T. Kirby

c* Center for Applied Coastal Research

C* University of Delaware

Cc* Newark, DE 19716

c*

c* (302) 831-2438, FAX (302) 831-1228, kirby@coastal.udel.edu
c*

c* Last revision 12/21/94.

c*

program lrss2rf
include ’param.h’

common/indat/ height,period,angle,tideoffset, mr, nr, dxr, dyr
common/refdat/ bath,nd,dt
common/fname_s/fnamel,fname2,fname3,fname4,fname5,fname6,fname7,
1 fname8,fname9,fnamel0,fnamell,fnamel2,fnamel3,

1 fnamel4,fnamel5

¢ Information about hdf file.

integer i,j,k,m,n,iswap,n3,n4

integer iret, iwrite, iout, error_write, error_exit

external itegarg

real bathflip(ixr,iyr),bath(ixr,iyr) ,hdfarray(ixr,iyr)

real x(ixr),y(iyr),dx,dy

character*255 infile, fileout

character*255 coordsys

character*255 labelx,labely,labelf,unitx,unity,unitf
character*255 formatx,formaty,formatf,filein

character*255 datafilein, datafileout, gridfilein, logfile
character*255 fnamel,fname2,fname3,fname4,fname5,fname6,fname7,
1 fname8,fname9,fnamel0,fnamell,fnamel2,fnamel3,
1 fnamel4,fnamel5

integer idimsizes(2)

ck First, set up the ability to read the input file and output file
c* names from the command line.
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c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
Cc*
Cc*
Cc*
Cc*
Cc*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*

(otherwise, the system will need to specify a u,v current
field at the bathymetry grid resolution.)
Deviations from any of these assumptions will require the user
to construct the desired datafileout (=indat.dat) data file
following the instructions in the user’s manual.
Running the program.
The program is to be run with a command line file specifications:
lrss2rf datafilein
Runtime messages are stored in lrss2rf.log. REF/DIF 1 is then
started using the command line:
refdifl filein
where ’filein’ is a namelist file containing the file name ’datafileout’
in the namelist group ’lrss_name’. (See the code fragment ’infile2.f’).
’gridfilein’ is the name of the HDF bathymetry file.
’datafilein’ is the name of the single namelist group input data file.
A sample of this file follows.
Sample data file:
$input
height=1.
period=10.
angle=0.
tideoffset=0.

gridfilein=’camppend.hdf’
datafileout=’indat.dat’
logfile=’1rss2rf.log’
fnamel=’refdat.dat’
fname2=’outdat.dat’
fname3=’subdat.dat’
fname6=’surface.dat’
fname7=’bottomu.dat’
fname8=’angle.dat’
fname9="
fnamel0="refdifl.log’
fnamell=’height.dat’
fnamel12="

fnamel13="

fnamei4="
fname15=’depth.dat’
$end
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7.2 rss2rf.f

ot e ettt e L L L e e
c* lrss2rf.f

c*

c*

c* REF/DIF 1 requires two principle input files for data if only the

c* basic option of running an initially monochromatic, long-crested

c* wave component is chosen. The structure of these files is somewhat at
c* odds with the requirements for input data file structure in LRSS.

C* The present program is provided to carry out the necessary conversion.
c*

C* This program takes the single namelist group input file provided by

c* LRSS, together with the HDF formatted bathymetry file, and generates an
c* indat.dat file for REF/DIF 1. This intermediate

c* step is taken because REF/DIF 1 can generally be initialized in several
c* different ways, only one of which (running a single monochromatic

c* component with only wave height, period and direction specified at the
c* offshore boundary) is provided as an option for LRSS at this point. The
c* standard indat.dat file thus has several possible configurations of
c* namelist groups, only one of which will be utilized here.

c*

c* It is assumed that:

c*

c* (1) The dimensions of the bathymetry grid in the HDF input file

c* are to be the same as the reference grid dimensions in the

c* output ascii file refdat.dat and as specified in the output

c* indat.dat.

c*

c* (2) Aside from bathymetry, the user is specifying the wave period,
c* wave angle, wave height and tidal offset relative to grid datum
c* for a single long crested monochromatic wave. Spectral

c* simulations are handled by the related program REF/DIF S.

c*

C* (3) The user tells REF/DIF 1 to generate the data for an image of
c* the water surface at the computational resolution by setting

C* the parameter isurface=1. The user requests data on bottom

C* velocities at the bathymetry grid resolution by setting the

c* parameter ibottom=1.

c*

c* (3) The program will attempt to determine its own computational

c* subgridding based on resolution requirements computed in this
C* program.

c*

C* (4) The program will assume that:

c*

c* - input data is in MKS units.

c* - the lateral model boundaries will be open and transmitting.
c* - the composite nonlinear model described in the user’s manual
c* is used.

c* - frictional dissipation is ignored.

c* - there will be no user specified subgridding.

c* - wave-current interaction effects are being neglected.
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7.1 infile2.f

cx infile2.f

c*

cx* Provide code for reading the namelist file name from the command line
cx for refdif 1 or refdifs.

c*

cx igetarg provided on SGI by the link to liblrss, provided by SAIC.
c*

ck* James T. Kirby, October 10, 1994.

c*

c* LRSS mods made November 22, 1994 by Kurt Schmitt at SAIC

c*

c* Last revision 11/26/94

subroutine infile(fnamein)
character*255 fnamein2,fnamein
integer igetarg

external igetarg

character*255 input_namelist
namelist/lrss_name/fnamein2

C call lrss_setup
cx read the filename
iret=igetarg(l,input_namelist,255)

if(iret.eq.-1) then

iret =

1 error_write(’no namelist filename specified on command line’)
call exit(1)

endif

open(unit=10,file=input_namelist)
read(10,1lrss_name)
close(10)
fnamein=fnamein?2
return
end
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The LRSS user is referred to instructions appearing in the documentation of the program
lrss2rf.f for creating data files and running refdift in the LRSS system. Additional infor-
mation is given in the file README.refdif1 supplied with the program distribution.
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7 Appendix C: Notes on Using REF/DIF 1 in the LRSS
System.
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isurf=input(’do you want to plot the surface? 1=yes: ’);

if isurf ==1, load surf.dat

figure(3),clf,hold off
cf=contour(x,y,surf’) ;clabel(cf, ’manual’),xlabel(’x’),ylabel(’y’)

hold on, contour(x,y,depth’,’--’), axis(’equal’)

end
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6.6 refdifplot.m

% refdifplot.m

h Script file to read in wave height, wave angle, water depth and surface data
% from refdifl output,

% and construct various plots. This

h program uses the quiver routine from Matlab 4.2

% James T. Kirby

% Center for Applied Coastal Research

% University of Delaware

% Newark, DE 19716

% kirby@coastal.udel.edu, (302) 831-2438, FAX (302) 831-1228.

ho 11/27/94

% Read data files.
load height.dat
load angle.dat
load depth.dat

dx=input(’ enter dx: ’);
dy=input(’ enter dy: ’);

sz=size(height);
% Compute x,y vectors.

x=dx*(1:8z(1))-dx;
y=dy*(1:s52(2))-dy;

h Constructing scales arrow plot for wave heights and directions.
% Compute x,y components of arrows.

DX=height.*cos(pi*angle/180);
DY=height.*sin(pi*angle/180);

% Now do contours of wave height over depth contours.
figure(1),clf,hold off
cf=contour(x,y,height’);clabel(cf,’manual’),xlabel(’x’),ylabel(’y’)
hold on,contour(x,y,depth’,’--’),axis(’equal’)

h Now overlay scaled arrows on contours of wave height.
figure(2),clf,hold off
cf=contour(x,y,height’);clabel(cf,’manual’),xlabel(’x’),ylabel(’y’)
hold on,quiver(x,y,DX’,DY’),axis(’equal’)

% Now plot the surface.
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30

35
40

45

50

51

surface(i,j)=(1.-fac)*surfold(ii,jj)+fac*surfold(ii+1,jj)

continue
endif
continue
continue

do 45 j=1,ny

surface(nx, j)=surfold(m,j)
continue

open(11,file=fileout)

do 50 i=1,nx

write(11,51) (surface(i,j),j=1,ny)
continue

close(11)

stop

format (500(£10.4))

end
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write(*,*) ’enter output file name in single quotes’
read(*,*) fileout

¢ Read number of y-direction points from surface.dat

read(10,*) ny
read(10,*) (y{(j),j=1,ny)

write(*,*) ’ number of y points = ’, ny
write(*,*) ’ maximum y = ’, y(ny)

¢ Read surface data.
do 10 i=1,100000
read(10,*) xo0ld(i)
if (x0ld(i).1t.0) go to 20
read(10,*) (surfold(i,j),j=1,ny)
10 continue

20 continue

m=i-1
write(*,*) ’ number of x points in file = ’, m
write(*,*) ’ maximum x = ’, xold(m)

dy=y(2)-y(1)
dx=dy

write(*,*) ’ grid spacing (x and y) in new image = ’, dy
nx=int(xold(m)/dx)+1
write(*,*) ’ number of x points in interpolated image = ’, nx

do 25 j=1,ny

jj=(ny-j)+1

surface(1,j)=surfold(1,jj)
25 continue

x(1)=0.

do 40 i=2,nx-1
x(i)=float(i-1)*dx
do 35 ii=1,m-1
if((xo0ld(ii).le.x(i)).and.(x0ld(ii+1).gt.x(i))) then
fac=(x(i)-x01d(ii))/(x0ld(ii+1)-x0ld(ii))
do 30 j=1,ny
jj=(ny-j)+1
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6.5 surface.f

ot e ettt e L L L e e
c*

C* surface.f

c*

c* This program converts the file (usually surface.dat) containing

c* an instantaneous snapshot of the water surface at the computational
c* grid spacing to a regularly spaced ascii file, suitable for directly
c* reading into Matlab format.

c*

C* James T. Kirby

C* Center for Applied Coastal Research

C* University of Delaware

Cc* Newark, DE 19716

c* kirby@coastal.udel.edu, (302) 831-2438, FAX (302) 831-1228
ck

c* Last revision 12/22/94.

ck

program surface
include ’param.h’

integer i,j,k,m,n,nx,ny,iswap

integer iret, iout

real surface(iy,iy)

real x(iy),y(iy),dx,dy,xo0ld(iy),surfold(iy,iy)
character*255 fileout

integer idimsizes(2)

character*255 fnamel,fname2,fname3,fname4,fname5,fnameb,
1 fname7,fname8,fname9,fnamel0,fnamell,fnamel?2,
fnamel3,fnamel4,fnamel5,fnamein

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, dxr, dyr, dt,

ispace, nd, iff, isp, iinput, ioutput

/inmd/ md

/fnames/ fnamel,fname2,fname3,fname4,fname5,fnameb,
fname7,fname8,fname9,fnamel10,fnamell,fnamel?2,
fnamel3,fnamel4,fnamelb

/wavesla/ iwave, nfregs

/waves1b/ freqs, tide, nwavs, amp, dir

/waveslc/ thetO, freqs, tide, edens, nwavs, nseed

/waves2/ freqin, tidein

N e = N S e

open(8,file=’indat.dat’)
read(8,nml=fnames)

open(10,file=fname6)

c Enter output file name.
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551

do 551 i=1,m
x(i)=float(i-1)*dx
do 551 j=1,n
y(i)=float(j-1)*dy
xp=(x(i)-xh)*co+(y(i)-yh) *si
yp=-(x(i)-xh)*si +(y(i)-yh)*co
see if we are in front of the trunk
if(xp.1t.0.0) then
r=sqrt (Xp*xp+yp*yp)

dep=sl*r-10.
else
dep=sl*abs(yp)-10.
endif
if (dep.gt.do) dep=do
d(i,j)=dep
continue
endif
return
end

function erfjk(x)
dimension a(5)
a(1)=0.254830
a(2)=-0.284497
a(3)=1.421414
a(4)=-1.453152
a(5)=1.061405
t=1./(1.40.327591%*x)

erfjk=1.-exp(-(x**2))*t*(a(1)+t*x(a(2)+tx(a(3)+t*(a(4)+t*a(5)))))

return
end
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if (j.1t.n/2) then
r=sqrt ((x(i)-xt)**x2+y(j)**2)
if(r.eq.0.) then
cr=0.
else
cr=abs((x(i)-xt))/r
endif
dep=sl*r+.05
c* add bulbous head
c dep=dep-sl*sqrt(r)*cr
else
r=sqrt ((x(i)-xt) **2+(y () -w) **2)
if(r.eq.0.) then
cr=0.
else
cr=abs((x(i)-xt))/r
endif
dep=sl*r+.05
c add bulbous head
c dep=dep -sl*sqrt(r)*cr
endif
if (dep.gt.do)dep = do
if (dep.lt..05)dep = .05
d(i,j)=dep
501 continue
else
do 502 j=1,n
if (j.1t.n/2) then
yt=0.
else
yt=w
endif
dep=sl*abs(y(j)-yt)+.05
if (dep.gt.do)dep = do

d(i,j)=dep
502 continue
end if
503 continue

endif

if ( itype .eq. 10) then

ot e e e e e e e e e e e L e
c* generate a breakwater with rounded head

c* with an orientation alpha (degrees) to the x axis

Cc* xh, yh= locus of breakwater head;

c* sl= slope of the sides of the breakwater;

c* do= constant depth section.

ot e e L L L L L e

write(*,*) ’ input m,n,dx,dy,xh, yh,alpha,sl,do’
read(*,*) m,n,dx,dy,xh,yh,alpha,sl,do
al=alpha*3.1415927/180.

write(*,*)’ alpha =’,al

co=cos(al)

si=sin(al)
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g=sqrt(y(j)*(6.096-y(3)))
do 404 i=1,m
if(x(1i).1t.(10.67-g))d(i,j)=0.4572
if((x(i).ge.(10.67-g)) .and.(x(i) .1le.(18.29-g)))d(i,j)=
10.4572+(10.67-g-x(i))/25.
if(x(i).gt.(18.29-g))d(i,j)=0.1524
404 continue
do 405 i=1,m
d(i,1)=d(i,2)
d(i,n)=d(i,n-1)
405 continue
endif

if ( itype .eq. 8) then

K m m o -
c* surface piercing breakwater
K m m o -
write(*,*)’ input m,n,dx,dy’
read(*,*) m,n,dx,dy
c* breakwater tip radius
xt=1.5
yt=4.

do 451 j=1,n
y(j)=float(j-1)*dy
451 continue

do 452 i=1,m

x(i)=float(i-1)*dx

do 452 j=1,n

if (x(i).1t.xt) then
r=sqrt ((x(i)-xt) **2+(y(j) -yt)**2)
dep=.66%r-.37

else
dep=.66*abs(y(j)-yt)-.37
endif
if(dep.gt..36) dep=.36
d(i,j)=dep
452 continue
endif

if ( itype .eq. 9) then

o e ettt
c* generate a pair of breakwaters with rounded heads on each

c* side of a channel.

c* xt= beginning location for trunk of breakwater

C* sl= slope of the sides of the breakwater

o et e e e L E L L e Tt

write(*,*) ’ input m,n,dx,dy,xt,sl,do’
read(*,*) m,n,dx,dy,xt,sl,do
w=float(n-1)x*dy
do 503 i=1,m

x(i)=float(i-1)*dx

if (x(i).le.xt) then

do 501 j=1,n
y(j)=float(j-1)*dy
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c*

303

351

352

353

401

402

403

if(r.gt.rad)d(i,j)=dep
if(r.le.rad)d(i,j)=dm+eO*r*r
if(r.le.rad)d(i,j)=dm+eO*r
continue

endif

if ( itype .eq. 6) then

write(iun(3),#*)’ input m,n,dx,dy,depth,period’
read(*,*)m,n,dx,dy,dep,per

pi=3.1415927

sig=2.*pi/per

d2=2.*dep

alph=atan(0.02)

thet=25.*pi/180.

b=(d2-dep)/tan(alph)

tt=tan(thet)

do 351 j=1,n

y(j)=float(j-1)*dy

continue

do 352 i=1,m

x(i)=float(i-1)*dx

continue

do 353 i=1,m

do 353 j=1,n

if(y(3) .1t. (y(m)-x(i)*tt))d(i,j)=dep
if(y(j).ge. (y(n)-x(i)*tt))d(i,j)=dep+cos(thet)*tan(alph)
1x(x (1) *tt+y(j)-y(n))

if(y(j).gt. (y(n)-x(i)*tt+b/cos(thet)))d(i,j)=d2
continue

endif

if ( itype .eq. 7) then

write(iun(3),401)
format(’ whalins channel, input wave period’)
read (*,*)period

write (iun(3),*)period
m=100

n=74

iu=1

dx=.242424242
dy=.33866666/4.
pi=3.1415927
sig=2.*pi/period

do 402 i=1,m
x(i)=float(i-1)*dx

do 403 j=1,n
y(j)=float(j-1)*dy-dy/2.
do 404 j=2,n-1
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x(i)=float(i-1)*dx
201 continue

do 202 j=1,n

y(j)=float(2*j-n-1)*dy/2.
202 continue

xm=x (m)

do 203 j=1,n

do 203 i=1,m

d(i,j)=(xm-x(i)+dx)*slope
203 continue

endif

if ( itype .eq. 4) then

write(iun(3),#*)’ input m,n,dx,dy,depth,period’
read (*,%) m,n,dx,dy,dep,period
write(iun(3),#*) ’ input bottom slope’
read(*,*) xm
sig=2.%3.1415927/period
do 251 i=1,m
do 251 j=1,n
d(i,j)=dep-xm*float(i-1)*dx

251 continue
do 252 i=1,m

252 x(i)=float(i-1)*dx
do 253 j=1,n

253 y(j)=float(j-1)*dy
endif

if ( itype .eq. 5) then

write(iun(3),#*)’ input m,n,dx,dy,depth’
read (*,%*)m,n,dx,dy,dep
iu=1
rad=dep/0.116
dm=0.1379%*dep
e0=(dep-dm) /rad
ak0=2.%3.1415927/(0.288%rad)
8ig2=9.806*ak0*tanh (akO*dep)
sig=sqrt(sig2)
do 301 i=1,m
x(i)=float(i-1)*dx
301 continue
do 302 j=1,n
y(j)=float(j-1)*dx
302 continue
do 303 i=1,m
do 303 j=1,n
r=sqrt (((x(i)-x(ifix(rad/dx)+1))**x2 . )+((y(§)-y((n+1)/2)
1)%%2.))
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104 continue
do 105 j=1,n
y(j)=(float(j-1)-0.5)*dy
105 continue
xc=xa+3.*dx
do 106 i=1,m
do 106 j=1,n
d(i,j)=dep-(1.-sqrt((((x(i)-xc)/xa)**2)+((y(j)/ya)**2)
1) )*hb
if(d(i,j).gt.dep)d(i,j)=dep
106 continue
end if

if ( itype .eq. 2) then

iu=1
m=100
n=100
c20=cos(20.%3.1415927/180.)
520=5in(20.%3.1415927/180.)
dx=0.25
dy=0.25
do 151 i=1,m

151 x(i)=float(i-1)*dx
do 152 j=1,n

152  y(j)=float(j-1)*dy
do 154 i=1,m
do 154 j=1,n
xp=(x(i)-10.5)*c20-(y(j)-10.)*s20
yp=(x(i)-10.5)*520+(y(j)-10.)*c20
test=((yp/4.)**2)+((xp/3.)**2)
if(xp.1t.(-5.84))d(i,j)=0.45
if(xp.ge.(-5.84))d(i,j)=0.45-0.02%(xp+5.84)
if(test.gt.1) go to 153
d(i,j)=d(i,j)-(0.5%sqrt(1.-((yp/5.)**2)-((xp/3.75)**2))
1-0.3)

153 continue

154 continue
end if

if ( itype .eq. 3) then

iu=1

icur=1
dx=5.0
dy=5.0
slope=0.02
m=100

n=100

do 201 i=1,m
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101

102

103

endif
continue

return
end

include ’param.h’

common/ref/ d(ixr,iyr),u(ixr,iyr),v(ixr,iyr),m,n,dx,dy,itype
common/ind/ iu,ntype,icur,ibc,ispace,nd,iff(3),isp,iinput,
liwave,nfreqs,freqs,tide,nwavers,amp,dir,edens

common/dims/ x(ixr),y(iyr)

dimension iun(3)

dimension amp(ncomp,ncomp),dir(ncomp,ncomp),tide(ncomp),

1 freqs (ncomp),edens(ncomp) ,nwavs (ncomp)

write(iun(3),1)

format (? *k*xkk*kk*x*k* parabolic model in rectangular’,
?ogrid  kkskkkckkkk’ [/

> input type of bottom desired’//

> 1=surface piercing island’/

> 2=bbr, submerged shoal’/

> 3=arthur rip current’/

4=test case, planar bottom’/

> b=radder(1979), configuration 2’/

> B=grazing incidence on linear caustic’/
> 7=whalin’’s channel’/

> 8=surface piercing breakwater’/

> 9=channel’/

’10=breakwater’)

read (*,*) itype

WN OO0 ~NO O WN -

if ( itype .eq. 1) then

write(iun(3),101)

format(’ surface piercing island’)
write(iun(3),102)

format(’ input m,n,dx,dy,depth,period’)
read (*,%) m,n,dx,dy,dep,t
write(iun(3),#*)m,n,dx,dy,dep,t
write(iun(3),103)

format(’ input crest height, x semiaxis, y semiaxis’)
read (*,*) hb, xa, ya

write (iun(3),*)hb,xa,ya
sig=2.%3.1415927/¢

do 104 i=1,m

x(i)=float(i-1)*dx
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113

nseed=500

endif
continue

if (iwave .eq. 1) write(iun(4), nml=waveslb)
if (iwave .eq. 2) write(iun(4), nml=waveslc)

endif

if ( iinput .eq. 2) then

write(iun(3),*)’ input wave period and tide stage’
read(*,*) freqin ,tidein

write(iun(4), nml=waves2)
endif

close(iun(4))

endif

stop
end

include ’param.h’

common/ref/ d(ixr,iyr),u(ixr,iyr),v(ixr,iyr),m,n,dx,dy,itype
common/ind/ iu,ntype,icur,ibc,ispace,nd,iff,isp,iinput,
liwave,nfreqs,freqs,tide,nwavers,amp,dir,edens

common/dims/ x(ixr),y(iyr)

dimension iff(3)

dimension amp(ncomp,ncomp),dir(ncomp,ncomp),tide(ncomp),

1 freqs(ncomp) ,edens(ncomp) ,nwavs (ncomp)

do 1 i=1,m

do 1 j=1,n

if((icur.eq.1) .and. (itype.eq.3))then

xp=x(m)-x(i)
u(i,j)=-0.02295%exp(-((xp/76.2)*%*2) /2. ) *exp(-((y(j)/7.62)**2)
1/2.) *xp

v(i,j)=-0.2188%(2.-(xp/76.2)**2) *exp(-((xp/76.2)**2) /2.) *
lerfjk(abs(y(j))/107.76)*y(j)/abs(y(j))

else

u(i,j)=0.

v(i,j)=0.
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if (ispace.eq.1) write(iun(4) ,nml=inmd)

if (iinput.eq.1) then

K= m o o -
c* write wavesl portion of indat.dat
K= m o o -
write(iun(3),#*)’ input iwave (1 discrete, 2 directional spread)’
read(*,*) iwave
write(iun(3),#*) ’ input nfreq (# of frequencies)’
read(*,*) nfregs
write(iun(4), nml=wavesla)
if (iwave.eq.2) then
write(*,*)’ enter central direction thetO’
read(*,*) thetO
endif
do 113 ifreq=1,nfreqs
K= m o o -
c* line 10, iinput=1
K= m o o -

write(iun(3),109)
109 format(’ input wave period and tide stage’)
read(*,*) freqs(ifreq), tide(ifreq)

if(iwave.eq.1) then

write(iun(3),110)
110 format(’ input # of waves per frequency, nwavs’)
read(*,*) nwavs(ifreq)

do 111 iwavs=1,nwavs(ifreq)
write(iun(3),#*)’ input amplitude and direction’
read(*,*) amp(ifreq,iwavs), dir(ifreq,iwavs)

111 continue

else
BT T et T e E L e e
c* iwave=2, iinput=1
BT T et T e E L e e

write(iun(3),112)
112 format(’input en. density and on next line, directional’,
1’ spreading factor’)
read(*,*) edens(ifreq)
read(*,*) nwavs(ifreq)
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write(iun(3),#*)’ input dispersion relationship; ntype: O=linear,’

write(iun(3),*)’ l1=composite, 2=stokes’
read(*,*)ntype

write(iun(3),#*)’ input lateral boundary condition; ibc: O=closed’
write(iun(3),*)’ 1=open’

read(*,*) ibc

write(iun(3),102)
102 format(’ input ispace (O=program picks x spacing, l=user choses)’)
read(*,*) ispace
write(*,*)’ input nd (# y divisions, 1 is minimum)’
read (*,*) nd

if (ispace.eq.0) go to 105
write(iun(3),*)’ constant or variable x spacing?(0 for constant)’
read(*,*) iansi
if(iansl.eq.0) then
write(*,*) ’ input constant md’
read(*,*) mdc
do 103 iko=1,mr-1
md (iko)=mdc

103 continue
else
write(iun(3),104)

104 format(’ input md(i) for i=1 to mr-1°)
read(*,*) (md(i),i=1,mr-1)
endif

105 write(iun(3),108)

106 format(’ input if(1) turbulent, if(2) porous, if(3) laminar’)
write(iun(3),*) ’ standard choice: 1, 0, O’
read(*,*) iff(1), iff(2), iff(3)

write(iun(3),107)
107 format(’ input isp (subgrid features) :standard 0’)
read(*,*) isp

write(iun(3),108)
108 format(’ input values of iinput, ioutput:’/
1’ iinput: 1 standard, i.e., not starting from previous run’/

1’ 2 if starting from previous run’/
1’ ioutput: 1 standard, not saving restart data’/
1’ 2 if saving restart data’)

read(*,*)iinput,ioutput

write(iun(3),115)

115 format(’ input value of isurface:’/
1> isurface = 0: no surface picture generated’/
1> isurface = 1: surface picture generated’)
read(*,*) isurface
if (isurface.eq.0) fname6 = ’ °’

write(iun(4) ,nml=ingrid)
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1

c*
c*

c*
c*
c*

c*
c*

call depth(iun)

do 1 i=1,mr

write(iun(2),100) (dr(i,j),j=1,nr)

continue
if(icur.eq.1)then

do 2 i=1,mr

write(iun(2),100) (ur(i,j),j=1,nr)

continue

do 3 i=1,mr

write(iun(2),100) (vr(i,j),j=1,nr)

continue
endif
close(iun(2))

00 format(20f10.4)

write(*,*) ’ do you want to create indat.dat? yes=1’

read(*,*) ians

if(ians.eq.1) then
open(iun(4),file=’indat.dat’)

if(iu.eq.0)then

write(iun(3),*)’ input iu: 1=mks, 2=english’

read(*,*) iu
endif
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c*
c*
c*
c*
c*
c*

c*
c*
c*
c*

c*
c*
c*

c*
c*

ispace,nd,iff,isp,iinput, ioutput

/inmd/ md

/fnames/ fnamel,fname2,fname3,fname4,fname5,fnames,
fname7,fname8,fname9,fnamel10,fnamell,fnamel?2,
fnamel3,fnamel4,fnamelb

/wavesla/ iwave, nfregs

/waves1b/ freqs, tide, nwavs, amp, dir

/waveslc/ thetO, freqs, tide, edens, nwavs, nseed

/waves2/ freqin, tidein

N e

setup the logical devices for input:
*=keyboard input
iun(2)=output file "refdat.dat"

iun(3)=screen output (use O for sun, 3 for pc)
iun(4)=output file "indat.dat"

iun(2)=20

iun(3)=0

call infile(fnamein)

iun(4)=24
open(iun(4),file=fnamein)

initialize all entries for indat.dat prior to generating the
depth grid.
iu=0
ntype=0
icur=0
ibc=0
ispace=0
nd=1

if1=0
if2=0
if3=0
isp=0
iinput=0
iwave=0
nfreqs=0

nwaves=0
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6.4 datgenv25.f

Ck=—mmmmmmmm e -
Cx

Cx datgenv25.f

Cx

C* This program generates input data files for several example

c* applications of REF/DIF 1. In particular, the first three cases
c* listed here correspond to the three test cases shown in the

C* User’s Manual.

c*

C* James T. Kirby

c*

C* kirby@coastal.udel.edu, (302) 831-2438, FAX (302) 831-1228
C*

c* Center for Applied Coastal Research
c* Department of Civil Engineering

c* University of Delaware

c* Newark, DE 19716

Cx

C* January 1991, revised July 1994 for REF/DIF 1 version 2.5.
c*

C* Last revision 12/22/94.

Cx

include ’param.h’
dimension iun(4), md(ixr)

common/ref/ dr(ixr,iyr),ur(ixr,iyr),vr(ixr,iyr),mr,nr,dxr,dyr,
litype

common/ind/ iu,ntype,icur,ibc,ispace,nd,iff,isp,iinput,
liwave,nfreqs,freqs,tide,nwavers,amp,dir,edens

common/dims/ x(ixr),y(iyr)

dimension iff(3)

dimension amp(ncomp,ncomp),dir(ncomp,ncomp),tide(ncomp),

1 freqs(ncomp) ,edens(ncomp) ,nwavs (ncomp)
character*255 fnamel,fname2,fname3,fname4,fname5,fname6,fname7,
1 fname8,fname9,fnamel10,fnamell,fnamel2,fnamel3,

fnamel4,fnamel5,fnamein

data fnamel/’refdat.dat’/, fname2/’outdat.dat’/,
fname3/’subdat.dat’/, fname4/’wave.dat’/,
fname5/’owave.dat’/, fname6/’surface.dat’/,
fname7/’bottomu.dat’/,fname8/’angle.dat’/,
fname9/’ ’/,fnamel0/’refdifl.log’/,
fnamel1/’height.dat’/,fnamel2/’sxx.dat’/,
fnamel13/’sxy.dat’/,fnamel4/’syy.dat’/,
fnamel5/’depth.dat’/

s

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, dxr, dyr, dt,
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If

If

do 1 iwavs=1,nwavs(ifreq)

read(iun(5) ,*) amp(ifreq,iwavs), dir(ifreq,iwavs)
continue

endif

|iwave = 2|, read the parameters for each frequency.

if (iwave.eq.2)then

read(iun(5),*) edens(ifreq)
read(iun(5),*) nwavs(ifreq) ,nseed
endif

continue

endif

liinput = 2|, read in wave period and tidal offset.

if (iinput.eq.2)then

nfreqs=1

read(iun(5),*) freqin, tidein
endif

write(iun(6) ,nml=ingrid)
if (ispace.eq.1) write(iun(6) ,nml=inmd)
if (iinput .eq. 1) then

write(iun(6) ,nml=wavesila)

if (iwave .eq. 1) write (iun(6), nml = waveslb)
if (iwave .eq. 2) write (iun(6), nml = waveslc)

endif
if (iinput .eq. 2) write (iun(6), nml = waves2)

close(iun(8))

stop

end
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¢ Define device number |iun(5)| for reference grid input.
¢ This line must be set during program installation, prior to compilation.
¢ Also construct an |open| statement if needed.
call infile(fnamein)
iun(5)=5
iun(6)=6
open(unit=iun(5),file=fnamein,status=’o0ld’)
open(unit=iun(6),file=’indat.new’)
write(iun(6) ,nml=fnames)
¢ Read unit numbers from indat.dat. These are not used in indat.new.
read(iun(5),*) (iun(i),i=1,3)
¢ Read control data from unit |iun(5)].
read(iun(5),*) mr,nr
read(iun(5),*) iu, ntype, icur, ibc
read(iun(5),*) dxr, dyr, dt
read(iun(5),*) ispace, nd
if (ispace.eq.1) then
read(iun(5),*) (md(i),i=1,mr-1)
endif
read(iun(5),*) (iff(i),i=1,3)
read(iun(5),*) isp
read(iun(5),*) iinput,ioutput
if (iinput .eq. 1) then
¢ Read |iwave|, |nfregs].
read(iun(5),*) iwave, nfregs
if(iwave.eq.2) then
read(iun(5),*)thet0
endif
c For each frequency, enter the wave period and tidal offset.
do 3 ifreq=1,nfreqgs
read(iun(5),*) freqs(ifreq), tide(ifreq)
c¢ If |liwave = 1|, read the number of discrete components.
if(iwave.eq.1) then

read(iun(5),*) nwavs(ifreq)
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6.3 indat-convertv2i.f

c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*

indat-convertv25.f

This program reads an old (version 2.4 or earlier) indat.dat file
for ref/dif 1 and converts it to a new (version 2.5 or later) file
with the temporary file name indat.new. The new file should be
renamed to indat.dat.

James T. Kirby

Center for Applied Coastal Research
University of Delaware

Newark, DE 19716

(302) 831-2438, FAX (302) 831-1228, kirby@coastal.udel.edu

Last revision 12/22/94.

include ’param.h’

dimension md(ixr), dconv(2), iff(3), iun(8)
dimension freqs(ncomp), edens(ncomp), nwavs(ncomp)
dimension amp(ncomp,ncomp), dir(ncomp,ncomp), tide(ncomp)

character*255 fnamel,fname2,fname3,fname4,fname5,fname6,fname7,
1 fname8,fname9,fnamel0,fnamell,fnamel2,fnamel3,
1 fnamel4,fnamel5,fnamein

data fnamel /’refdat.dat’/, fname2 /’outdat.dat’/,
fname3/’subdat.dat’/,fname4/’wave.dat’/,
fname5/’owave.dat’/,fname6/’surface.dat’/,
fname7/’bottomu.dat’/,fname8/’angle.dat’/,
fname9/’ ’/,fnamel0/’refdifi.log’/,
fnamell/’height.dat’/,fnamel2/’sxx.dat’/,
fnamel3/’sxy.dat’/,fnamel4/’syy.dat’/,
fnamel5/’depth.dat’/

N e = N = =

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, dxr, dyr, dt,

ispace, nd, iff, isp, iinput, ioutput

/inmd/ md

/fnames/ fnamel,fname2,fname3,fname4,fname5,fnames,
fname7,fname8,fname9,fnamel10,fnamell,fnamel?2,
fnamel3,fnamel4,fnamel’b

/wavesla/ iwave, nfregs

/waves1b/ freqs, tide, nwavs, amp, dir

/waveslc/ thetO, freqs, tide, edens, nwavs, nseed

/waves2/ freqin, tidein

N el e e e
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stop
end
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109 format(’ input wave period and tide stage’)
read(*,*) freqs(ifreq), tide(ifreq)

if(iwave.eq.1) then

write(*,110)
110 format(’ input # of waves per frequency, nwavs’)
read(*,*) nwavs(ifreq)

do 111 iwavs=1,nwavs(ifreq)
write(*,*)’ input amplitude and direction’
read(*,*) amp(ifreq,iwavs), dir(ifreq,iwavs)

111 continue

else
o T it T e E E e e
c* iwave=2, iinput=1
T et et e e e e
write(*,112)

112 format(’input en. density and on next line, directional’,
1’ spreading factor’)
read(*,*) edens(ifreq)
read(*,*) nwavs(ifreq)
nseed=500

endif
113 continue

if (iwave .eq. 1) write(10, nml=waveslb)
if (iwave .eq. 2) write(10, nml=waveslc)

endif

if ( iinput .eq. 2) then

write(*,*)’ input wave period and tide stage’
read(*,*) freqin ,tidein

write(10, nml=waves2)
endif

close(10)
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104 format(’ input md(i) for i=1 to mr-1°)
read(*,*) (md(i),i=1,mr-1)
endif

105 write(*,106)

106 format(’ input if(1) turbulent, if(2) porous, if(3) laminar’)
write(*,%*) ’ standard choice: 1, 0, O’
read(*,*) iff(1), iff(2), iff(3)

write(*,*)’ input isp (subgrid features) :standard O’
read(*,*) isp

write(*,108)
108 format(’ input values of iinput, ioutput:’/
1’ iinput: 1 standard, i.e., not starting from previous run’/

1’ 2 if starting from previous run’/
1’ ioutput: 1 standard, not saving restart data’/
1’ 2 if saving restart data’)

read(*,*)iinput,ioutput
write(*,115)

115 format(’ input value of isurface:’/
1> isurface = 0: no surface picture generated’/
1> isurface = 1: surface picture generated’)
read(*,*) isurface
if (isurface.eq.0) fname6 = ’ °
write(10,nml=ingrid)

if (ispace.eq.1) write(10,nml=inmd)

if (iinput.eq.1) then

write(*,*)’ input iwave (1 discrete, 2 directional spread)’
read(*,*) iwave

write(*,*) ’ input nfreq (# of frequencies)’
read(*,*) nfregs

write(10, nml=wavesla)

if (iwave.eq.2) then

write(*,*)’ enter central direction thetO’
read(*,*) thetO

endif

do 113 ifreq=1,nfreqgs

write(*,109)
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call infile(fnamein)
open(unit=10,file=fnamein)

write(*,*)’ enter name for .dat file containing reference grid in’,
1’ single quotes’
read(*,*) fnamel

write(*,*)’ enter name for ouput data file’
read(*,*) fname2

write(10,nml=fnames)
¢ Enter control data.

write(*,*)’ enter grid dimensions mr, nr’
read(*,*) mr,nr

write(*,*)’ enter grid spacings dxr, dyr and depth tolerance dt’
read(*,*) dxr, dyr, dt

write(*,*)’ input iu: 1=mks, 2=english’
read(*,*) iu

write(*,*)’ input dispersion relationship; ntype: O=linear,’
write(*,x*)’ 1=composite, 2=stokes’
read(*,*)ntype

write(*,*)’ input lateral boundary condition; ibc: O=closed’
write(x,*)’ 1=open’
read(*,*) ibc

write(*,*)’ input ispace (O=program picks x spacing,’,
1’ 1=user chooses)’
read(*,*) ispace

write(*,*)’ input nd (# y divisions, 1 is minimum)’
read (*,*) nd

if(ispace.eq.0) go to 105

write(*,*)’ constant or variable x spacing?(0 for constant)’
read(*,*) iansi

if(iansl.eq.0) then
write(*,*) ’ input constant md’
read(*,*) mdc
do 103 iko=1,mr-1
md (iko)=mdc
103 continue
else
write(*,104)
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6.2 indat-createv2s.f

FoE ettt e e L e e e e
c* indat-createv25.f

c*

c* This program generates an indat.dat file by asking the operator a
c* series of questions. This file is intended to make life a little
c* easier - its function is just as easily carried out manually if you
c* are used to the form of the indat.dat file.

c*

C* James T. Kirby

C* Center for Applied Coastal Research

C* University of Delaware

Cc* Newark, DE 19716

c*

c* (302) 831-2438, FAX (302) 831-1228, kirby@coastal.udel.edu
c*

c* Last revision 12/22/94.

c*

program indatcreate
include ’param.h’

dimension md(ixr), dconv(2), iff(3)
dimension freqs(ncomp), edens(ncomp), nwavs(ncomp)
dimension amp(ncomp,ncomp), dir(ncomp,ncomp), tide(ncomp)

character*255 fnamel,fname2,fname3,fname4,fname5,fname6,fname7,
1 fname8,fname9,fnamel0,fnamell,fnamel2,fnamel3,
fnamel4,fnamel5,fnamein

data fnamel /’refdat.dat’/, fname2 /’outdat.dat’/,
fname3/’subdat.dat’/,fname4/’wave.dat’/,
fname5/’owave.dat’/,fname6/’surface.dat’/,
fname7/’bottomu.dat’/,fname8/’angle.dat’/,
fname9/’ ’/,fnamel0/’refdifi.log’/,
fnamell/’height.dat’/,fnamel2/’sxx.dat’/,
fnamel3/’sxy.dat’/,fnamel4/’syy.dat’/,
fnamel5/’depth.dat’/

N e =

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, dxr, dyr, dt,

ispace, nd, iff, isp, iinput, ioutput

/inmd/ md

/fnames/ fnamel,fname2,fname3,fname4,fname5,fnames,
fname7,fname8,fname9,fnamel10,fnamell,fnamel?2,
fnamel3,fnamel4,fnamel’b

/wavesla/ iwave, nfregs

/waves1b/ freqs, tide, nwavs, amp, dir

/waveslc/ thetO, freqs, tide, edens, nwavs, nseed

/waves2/ freqin, tidein

e
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6.1 infilel.f

cx infilel

c*

cx Provide code for defining the indat.dat file name for refdif 1 and
cx refdif s.

c*

c* James T. Kirby, October 10, 1994.

c*

subroutine infile(fnamein)
character*255 fnamein
fnamein=’indat.dat’

return
end
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6 Appendix B: Fortran Codes for Generating and Post-
Processing Data Files.

This appendix provides listings for the following programs:

o nfilel.f - code fragment linked to refdif? during compiling; used to specify indat.dat

file name.
o indal-createv?s.f - used to create the indat.dat file based solely on input from the user.

e indat-convertv25.f - used to convert old (Version 2.4 or earlier indat.dat—item indat-
convert.f - used to convert old (Version 2.4 or earlier indat.dat files to new (Version

2.5) indal.dat files.

o datgenv2s.f - used to create Version 2.5 indal.dat and refdat.dat files for specific ex-

amples.

o surface.f - used to convert the data in file surface.dat to a regularly spaced, ascii

formatted array representing an instantaneous picture of the water surface.

o refdifplot.m - sample Matlab program illustrating the reading and plotting of the
output data.

Note that the versions of the programs supplied with the program distribution may be

slightly updated relative to the codes listed here.
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18. COMMON STATEMENTS.
( common statements 18) =

common /refl / mr, nr, ispace, nd, md(izr), iu, dconv(2), iff (3), icur, ibc

common /ref2/ dr(izr,iyr), ur(izr,iyr), or(izr,iyr), iun(8), iinput, ioutpul

common [ref3/ duer, dyr, zr(izr), yr(iyr), z(iz), y(iy)

common [ref} [ isd(izr,iyr)

common [blockl [ d(iz,iy), u(iz,iy), v(iz,iy), m, n, dz, dy, ibr(iy)

common /conl/ q(iz,iy), p(iz,iy), sig(iz,iy), bottomu(iz,iy)

common /[con2/ k(izx,iy), kb(iz), w(iz,iy), dd(iz,iy), wb(2,iy)

common /nlin/ an, anl, ntype

common [wavl / iwave, nfregs, freqgs(ncomp), edens(ncomp ), nwavs(ncomp)

common /wav?/ amp(ncomp,ncomp), dir(ncomp ncomp), tide(ncomp), seed, thet0

common /[comp/ a(iz,iy), psibar, ifilt

common /names/ fnamel, fname2, fname3, fnamej, fnames, fname6, fname7,
fname8 , fname9, fnamell, fnamell, fnamel?2, fnamelsd, fnamely, fnameld,

fnamein

real k, kb

complex w, a, wb

character+255 fnamel, fname?2, fname3, fnames , fnamed , fnameé , fname7,
fname8 , fname9, fnamell, fnamell, fnamel?2, fnamelsd, fnamely, fnameld

fnamein

This code is used in sections 1, 2, 5,6, 7, 8, 9, and 12.
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k=kn
1: continue
t = 2.xpi [(sqrt(gxk+tanh (kxd)) + k*u)
write (10,100) ¢, j, k, u, d, f, ¢

iedw =1

return

100: format ( ’ wavenumber iter. failed, to converge on_ row’,:10, ’ ,column’,
2.10/,l_ll_|l_|l_ll_ll_lk=,7f15-87 ’uuuuuuu=’7f15-8/'uuuuuud='7f15-87 T Luowout=’,
f15'8/,l_|l_|l_|l_|l_|l_|t=,7f15'8) ,

end
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17. WVNUM.

Calculate wavenumber k& according to the form

(0 — ku)* = gktanh(kd)

where
d local water depth
s=0 absolute frequency
g gravitational acceleration constant
U xz-component of ambient current
eps = € tolerance for iteration convergence
1,7 indices in finite-difference grid
redw switch

=0, no convergence failures encountered
=1, at least one convergence failure
Solution is by Newton-Raphson iteration using Eckart’s approximation as a seed value.

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware

Newark, DE 19716
Coded by James T. Kirby, September,1984
subroutine wvnum(d,u,s,k,eps,icdwi,j)
include ’param.h’
common [ref2/ dr(izr,iyr), ur(izr,iyr), or(izr,iyr), wun(8), iinput, joutput
real k, kn
// Constants.

g = 9.806
pi = 3.1415927
k = sks/(g*sqrt(tanh (sksxd/g)))

// Newton-Raphson iteration.

do1ii =1,20
[ = sxs — 2uxsxkxu + kxkxuku — gxkxtanh (k*d)
fp = —2.xs%u + 2.xkxuxu — gxtanh(kxd) — gxk*d/(cosh(k*d)?)
kn =k —f/fp
if ((abs(kn — k)/kn) < eps) go to 2
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16. ACALC.
Calculate the normalization factor @ for the directional spectrum such that f_e’g‘m cos(0/2)™Pdf =

1, where, in code, 6,, = thmaz .

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware

Newark, DE 19716

Coded by Robert A. Dalrymple, January 1986.

subroutine acalc(thmaz ,nsp,a)

itn = 2%nsp
call bnum (itn,nsp,bn)

a= thmaw*bn/(?.im_l)

sum = 0.
do 10 ¢k =1, nsp
ki =ik —1

call bnum(itn,ki,bn)
10: sum = sum + bnxsin(float(nsp — ki )xthmaz ) /float(nsp — ki)
a=a+ sum/(?.im_Q)

return

end
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15. BNUM.

Compute the combination in!/(n!(n — in)!).

Center for Applied Coastal Research
Department of Civil Engineering

University of Delaware

Newark, DE 19716

Coded by Robert A. Dalrymple, January 1986.

subroutine bnum(in,n,bn)
rin = in
zt = fact(zin)
zb = fact(float(n))xfact(float(in — n))

bn = xt /zb
return
end
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14. FACT.

compute the factorial of xi

Center for Applied Coastal Research
Department of Civil Engineering

University of Delaware

Newark, DE 19716

Coded by Robert A. Dalrymple, January 1986

function fact(zi)

prod = 1.
if (zz > 1.) then
do 17 ii = 2,int(zt)
prod = prod «float(ii )
17: continue

endif
fact = prod
return

end
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13. RAND.
Generate a floating point pseudo random number between 0 and 1 by the multiplicative

congruential method. see knuth, d.e., 1969, p. 155.

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware

Newark, DE 19716

Coded by Robert A. Dalrymple, January 1986.

function rand(z)
iv = ifix(32767 4z)
irand = mod(4573xiz 4 6923, 32767)
rand = float(irand)/32767.
return

end
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// 1 iff (2) = 1, add porous bottom damping.
if (iff (2) = 1) w(i,g) = w(i,7) + (gxk(i, 7)xep [ (nux(cosh(kd)?)))*cmplx(1.,0.)
// I iff (3) = 1, add boundary layer damping.

w(i, ) = (i ) + 2.4k(i, j)sig i, ) esali
cosh(kd)?))*cmplx(1., —1.)/sinh(2.xkd)

—_—

1
(L +

1: continue
return

end
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12. DISS.
Subroutine calculates the dissipation at a single grid point based on values of the switch

1w at that point.

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware

Newark, DE 19716

Coded by James T. Kirby, October 1984.

subroutine diss

include ’param.h’

( common statements 18)

real nu, cp, kd
// Statement function.

sq(i §) = sart (nu(2.xsig i, )
// Constants.

nu = 1.3-107%
cp=4.5-1071
g = 9.80621

pt = 3.1415927

// Value of f here is value assuming 7 = (f/8)u?.
/] f=4fy; fu is the wave friction factor
f=0.01%4.0
dolj=1,n
doliz=1,m
w(z,7) = cmplx(0.,0.)
kd = (i, j)wd(i, )
// I iff (1) = 1, use turbulent boundary layer damping.

if (if (1) =1)
w(i,j) = 2. fxcabs(a(1, j))*sig (¢, 7)*k(Z, 7)/(sinh(2.xkd )*sinh (kd )*3.xpi )

116



2: continue
return

end
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11. CTRIDA.

Tridiagonal matrix solution by double sweep algorithm. Present subroutine adopted from

the subroutine described in:

Carnahan, Luther and Wilkes, Applied Numerical Methods, Wiley, 1969

The

original subroutine has been modified to handle complex array coeflicients and

solution values. Input and output are

a,b
d
v
i, [

,c¢ coefficients of row in tridiagonal matrix
right hand side vector of matrix equation
solution vector

beginning and end indices of positions in the dimensioned range of the column vector.

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware

Newark, DE 19716

Coded by James T. Kirby, September 1984.

subroutine ctrida(ii,l,a,b,c,d,v)

include ’param.h’

complex a(iy), b(iy), c(iy), d(iy), v(iy), beta(iy), gamma(iy)
// Compute intermediate vectors beta and gamma.

beta(ii) = b(ii)

gamma(ii) = d(i1)/beta(ii)

iipl = i + 1

do 1= apl,l
beta(i) = b(¢) — a(t)*c(i — 1)/ beta(i — 1)
gamma (i) = (d(i) — a(i)xgamma(i — 1))/ beta(t)

: continue

// Compute solution vector v.

v(l) = gamma(l)
last =1 — i
do 2 k =1,last
i=1—k
v(2) = gamma(i) — c(i)*v(i + 1)/ beta(i)
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This code is used in section 9.
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cp3 (i, j) = emplx(—(—deltal *dz )x(v(i + 1,7) + v(%,7))/(2.xdy ) + (—b1 )xu2 xbet (1,

JeCuli 4 1, ywo(i + 1,9) + ulis ol )/ (dyssiali+ 1, — 1)),

—(—deltal *u2 )x(u(i+ 1,7 — Dxv(i+ 1,7 — 1)+ u(é, 5 — D)*v(s, 5 — 1) + 2.xu(i + 1,
xv(i+1,7))/(2xdyx*sig(i+ 1,5 — 1)) — dex(—b1)xbet (i, 7)*(sig(i + 1, j)*v(e 4+ 1,
+ sig(t,7)*v(i, 7))/ (2.xdy*sig(i + 1,

J—1)))+ emplx(2.4(=b1)/(dy+dy+(k(i + 1,7) + k(4,7))) + (— b1 )*bet (1,

J)xde [(2.xdyxdy ), —(—deltap (i, j)xdz )/ (2.xdyxdy ) )x(pv(i + 1,7) + pv(i + 1,

j—1))/sig(t+ 1,7 — 1) — 4d.xcmplx(0., 1.)%(—b1 )*sig(z + 1, j)*v(i + 1,

)/ (dyxsig(i+ 1,5 = Dx(k(i + 1,5) + k(2. 7)) = dfiltxdamp (i, 7)
cl(i,7) = emplx(cg(i+1,7)+u(e+1,5)—dv(e, )*(sig(i+1, 7)+sig(7, 7)) /4.,0.)+cmplx(1.,

—drx(kb(7) — a0xk(i,7)))*(cg(7,7) + u(?, 7)) + 2.xemplx(0., 1.)xomeg*(—b1 )xbet(z,

Jyx(u(t+ 1,7) 4+ u(e, 7))/ sig(e, 7) + 4.xemplx(0., 1.)xomeg*(—b1 )*(3.x(u(i + 1,

7 = u(iy )/ do + (o + 1,4 1)+ 006+ 1) — o+ 1,5 — 1) = ofi,

J—1))/(4xdy))/(sig(i, 7)x(k(i + 1,7) + k(2,7))) + cmplx(2.xb1 /(dy*dy*(k(i + 1,

7))+ k(i,7))) — bl xbet(i, j)xde [(2.4dyxdy ), +deltap(t, j)*dz [(2.xdy*dy ) )+(pv (7,

J+ 1) 2oap (i) + po(i j — 1))/ sig(i ) — cmplx(1.,

0.)xomeg+delta2+(3.xu(t + 1, 7) + u(?,7))/(2.xsig (i, 7)) — cixomeg*(al — 1.)xk(z,

J)xu(e, 7)xdx [sig(i, j) + 2.xifiltxdamp (2, j) — ecmplx(1., 0.)xalphn*dz

7)
7)

c2(1,7) = cmplx(deltal xdr+(v(t + 1,7) 4+ v(4,7))/(2.4dy) + b1 *xu2xbet (i, 7)*(u(t + 1,
J)yxv(i+ 1,7) + ult, j)*v(i, 5))/(dy*sig(i, 5 + 1)), (—deltal xu2 )x(u(z + 1,
J+Dxv(e+ 1,5+ 1)+ u(d, j+ L)*v(i, 5+ 1) + 2.xu(s, j)*v(7, )/ (2.xdy *sig (%,
7+ 1)+ dx(=b1)xsig (s, j)xo(i, )/ (dy+(k(i + 1, 7) + k(3, 7))*sig (i,

J+ 1)) — dex(—b1)xbet (i, )*(sig(i + 1,7)xv(i 4+ 1,7) + sig(s, j)*v(d,

7))/ (2.xdyxsig(t,7+ 1)) + emplx(2.4(=b1)/(dyxdyx(k(¢ + 1, 5) + k(e,
7))+ bl *bet (i, j)xdx [(2.xdy*dy),(—deltap(i, j)xdz)/(2.xdy*dy))+(pv (4,
I+ 1)+ po(i,g))/sig(i,j + 1) — ifillxdamp(i, 5)

c3(1,7) = ecmplx((—deltal *dz )x(v(i + 1,7) + v(7,7))/(2.xdy ) — b1 *u2xbet (7,

Jyk(u(e+ 1, 7)xv(i+ 1, 5) + u(s, j)*v(7, 7)) /(dy+sig(i, j — 1)), (deltal xu?2 )x(u(i + 1,
J—Dxv(e4+ 1,5 — 1)+ u(i,j — D*v(e,j — 1) + 2.xu(i, )*v(i, )/ (2.+dy*sig (1,

7= 1) = dx(=b1)xsig (i, j)xo(i, )/ (dy+(k(i + 1, 7) + k(3, 7))*sig (i,
J—=1))+dex(—bl)xbet(z,7)*(sig(i+1, j)*xv(i+1,5)+ sig(e, 7)*v(i, 7))/ (2.4dy*sig(e,
J—1)))+emplx(=2.%b1 /(dy+dy*x(k(i+1, j)+k(i,7)))+ bl xbel (i, j)xdz [(2.4dy*dy ),
(—deltap (i, j)*dx)[(2.xdy+dy))x(pv(e, 7)+pv(e,7—1))/sig(¢, j—1)— ifiltxdamp (i, j)

J1(i, j) = tanh (k(i, j)+d(i, j))>
J2(i,5) = (k(i, j)*d(i, ) /sinh (k(i, j)+d(i, 5)))*
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10. FDCALC statement functions.
The following code provides the statement functions used in establishing the tridiagonal

matrix structure used in fdcalc.
(fdcalc statement functions 10) =
cg(1,7) = sart(p(¢, j)*q(%, 7))
po(i,5) = p(i,5) — o(i, 5)*v(i, j)
bet (i J) —4-*(k(i +1,5) = k(i,5))/(dex((k(i + 1,7) + (i, 4))*)) — 4#(k(i + 1,

3)*)x ) (p(i +1,) + p(i,5) = (u(i+ 1, 5)* + u(i, j)*)))

dv(i,5) = (cg(i+ 1,7) +u(i+ 1,5))/sig(i + 1, 7) = (g (4, 7) + uli; 7))/ sig (3,

J)— deltal xde+((v(i + 1,7+ 1)/sig(e+ 1,54+ 1)) + (v(e,7 + 1)/sig(4,

J+1) =i+ 1,5 = 1)/sig(i+ 1,5 = 1)) = (v(i,5 = 1)/sig(i, j — 1))/ (2.xdy)
,7) = 2xcixedamp*((cg(i + 1,7) + u(i 4+ 1,7)) + (cg(¢, 7) + u(s,

PN/ dyxdy(k(i+1,5)* + k(. §)*))

deltap(i,j) = al — b1xkb(7)/k(1,J)

damp (1, j

epl (i, ]
J)) -+ cmpbe(1.,0.(eg (i) + u(i, ) + doi, )s(sig(i + 1,.) + sig (i
7))/4.) + 2.x0megxemplx(0., 1.)%(—b1 )xbet (7, j)x(u(i + 1,7) + u(i, 7)) /sig(i + 1,
J) + 4xomegx(—0b1 )xemplx(0., 1.)*(3.x(u(z + 1,7) — u(i,7))/dz + (v(i+ 1,
JHD 4o, j+1)—v(i+1,5—1)—v(i,j—1))/(4dxdy))/(sig(i + 1, j)*(k(i + 1,
7))+ k(4,7))) + emplx(—2.x(=b1 ) /(dyxdy*(k(i + 1,7) + k(4,7))) + b1 xbet (1,
J)xdx [(2.xdy+dy), —deltap (7, j)xde [(2.xdyxdy ) )*(pv(i + 1,7 + 1) + 2.xpv(i + 1,
J)+pv(e+1,5—1))/sig(i+ 1,7) — emplx(1.,0.)xomeg«delta2 +(3.xu(i + 1,
)+
)+d

)= (cg(i+1,7)+u(t+1,7))*cmplx(1., dz*(kb(i + 1) — a0 k(i + 1,

7))+ u(i,5))/(2xsig(i + 1,75)) + cixomegx(al — 1.)xk(¢ + 1, j)*u(i + 1,
J)xdx [sig(i+ 1,7) + 2.xifiltxdamp (7, j) + ecmplx(1., 0.)xalphn*dz

cp2(i,j) = ecmplx((—deltal *dz )+(v(t+1,7)+v(4,7))/(2.xdy )+ b1 xu2*bet (¢, j)x(u(i+1,
J)yxv(i+ 1,7) + ule, j)*v(i, j))/(dy*sig(i + 1,5 + 1)), (—deltal *u?2 )x(u(i + 1,
J+Dxv(e+ 1,5+ 1)+ u(d,j+ D)*v(i, j+ 1) + 2xu(i + 1, 5)*v(e + 1,
7))/ (2xdyxsig(t+ 1,7+ 1))+ dex(—b1 )xbet (i, 7)*(sig(i + 1, j)+xv(i + 1, 5) + sig(e,
7)*v(2,7))/(2dy*sig(t 4+ 1,54+ 1))) + cmplx(2.4(—b1 ) /(dy*dy=(k(i + 1, 7) + k(q,
7))+ (=b1)xbet (i, j)xdx [(2.xdy+dy ), +deltap(, 7)xdx [(2.xdyxdy ) )*(pv(i + 1,
J+ 1) +pv(i+1,7))/sigli+ 1,7+ 1)+ 4.xemplx(0., 1.)x(—b1 )*sig(i + 1,
Jeoli + 1,9)/(dyrsigli + 1,5 + Da(k(i + 1,5) + k(i,7))) — ifiltdamp(i,
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write (12,203) (2.xcabs(a(m,j))/dconv(iu),j = 1,n, nd)
// Wave angles on angle.dat .
write (9,203) (thet(j),j =1,n,nd)
// Water depths on depth.dat.
write (16,203) (d(m, j)/dconv(iu),j = 1,n, nd)
// Bottom velocities on bottomu.dat.
if (fname7 # >’ ) then
do 16 j = 1,n,nd
bottomu(m, j) = bottomu(m, j)xcabs(a(m,j))
16: continue

write (17,203) (bottomu(m,j)/dconv(iu),j=1,n,nd)
endif

// Write out reference grid data on disk file iun(3).
write (iun(3), ) z(m)/dconv(iu), psibar
write (iun(3), *) (a(m,j)/dconv(iu),j = 1,n, nd)
// Roll back solution to first grid level.
do 201 j=1,n
a(l,7) =a(m,j)
201: continue

return

202: format (’x=", f10.2,’ ,uLureference phase psibar=", f20.4) ;

203: format (’,’,200(f10.4)) ;

204: format (’,’//’ uwarning: Ursell number =", f10.4,
’Lencountered at’, ’grid location’, 6,7, i6/ ’;should, be jusing Stokes-H\
edges model  (ntype=1) due to shallow’, ’water’) ;

205: format (’ grid row,ir=",i3,’,,,’, 43, ’ux-direction subdivisions’,’ used’) ;

end
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if (a(m,j +1) = (0.,0.)) then
aky?2 = 0.
else
aky? = aimag(clog(a(m,j+ 1)))
endif
if (a(m, j) = (0.,0.)) then
akyl = 0.
else
akyl = aimag(clog(a(m,j)))
endif
else
if (a(m, j) = (0.,0.)) then
aky?2 = 0.
else
aky? = aimag(clog(a(m, j)))
endif
if (a(m,j — 1) = (0.,0.)) then
akyl = 0.
else
akyl = aimag(clog(a(m,j — 1)))
endif
endif
if (abs(aky?2 — akyl) > pi) then
aky = sign((2.xpi — (abs(akyl) + abs(aky?2)))/dy, akyl)
else
aky = (aky?2 — akyl)/dy
endif
thet(j) = atan2(aky, (akz 4+ kb(m)))
thet(j) = 180.xthet(j)/pi

15: continue
// Print out abs(a) at grid reference points on unit 7un(4).

mml =m —1
write (10, 205) (ir + 1), mml
write (10,202) z(m)/dconv(iu), psibar

// Wave heights on height .dat.
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12: continue

// Calculate reference phase function for surface plotting.
psibar = psibar + (kb(ipl) + kb(7))xdz /2.
/] Store plotted surface if requested.
if (fname6 # >’ ) then
write (8, %) z(ip!)
write (8, ) ( real (a(ipl,j)*xcexp(cmplx(0., psibar))), 7 =1,n)
endif
// Start filter if breaking is occuring.
do13j5=1,n
i (ibr(j) = 1) ifill =1
13: continue

200: continue

// Calculate wave angles at reference grid rows. Note: angles are not well defined in a
directional, multicomponent sea, or where waves become short crested. This routine

was heavily modified by Raul Medina, University of Cantabria.

dolsj=1,n
if (a(m, j) = (0.,0.)) then
akz?2 = 0.
else

akz? = aimag(clog(a(m,j)))

endif

if (a(m —1,7) = (0.,0.)) then
akzl = 0.

else

akzl = aimag(clog(a(m — 1,7)))
endif
if (abs(akz2 — akz1) > pi) then
akz = sign((2.xpi — (abs(akz!) + abs(akz2)))/dx, akz1)
else
akzr = (akz2 — akzl)/dz
endif
if (j # n) then
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do7j5=1,n
iset =0
iresel = 0
if (((urs(g)/d(ipl,j)) > kap) A (ibr(j) =0)) iset =1

if (iset = 1) then

ibr(7) =1
isavel =1
end if

if (((urs(g)/d(ipl,j)) < gam) A (ibr(j) = 1)) iresel =1

if (ireset = 1) then

ibr(j) =0
isave?2 =1
end if

7: continue
th =2
// Redo initial calculation if breaking status changes.
if ((isavel = 1)|(isave2 = 1)) go to 2
8: continue
if(it=2) goto 9
it =2
go to 2
9: continue
// For Stokes model alone (ntype = 2), test to see whether Ursell parameter is too large.
if (ntype = 2) then
dollj=1,n
urs (j) = (cabs(alipt ,§))/d(ip1 , j))/(k(ip1 , )sd(ip1 , ))?)
if (urs(j) > 0.5) write (10,204) urs(j), ¢, j
11: continue
end if

// Roll back breaking dissipation coefficient at each row.

dol12j=1,n
wh(1,7) = wb(2,)
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ac(n) = —be(n)
endif

/] Calculate dissipation in rows where breaking occurs.
do3j=1n
if (ibr(7) = 1) wb(2,7) = cmplx(1.,0.)%x0.15xcg(ip!, j)*(1. — (gamx*d(ipl,
J)/(2+cabs(a(ii, j))))*)/d(ip1 , j)
if (ibr(j) = 0) wb(2,j) = cmplx(0.,0.)
: continue

/] Coefficients for forward row.
do4j=2,(n-1)
ac(j) = ep3(i,7)
be(7) = epl (,7) + (de /2. )%(w(i 4+ 1,5) + wb(2, 7)) + cmplx(0., anxanl)xsig(t + 1,
F)xk(i+ 1, 5)%k(i + 1, §)xdd (i + 1, j)*(cabs(a(ii, 5))* )*(dz /2.) + cmplx(0.,
anx(1. — anl))xsig(i + 1, j)*(de /2.)%((1. + f1 (i + 1, 7)xk(i + 1, §)*k(i + 1,
7)*(cabs(a(ii, 7))?)*dd (i + 1,7))*tanh(k(i + 1,5)xd(i + 1,5) + f2(i + 1,
J)*k(i+ 1, j)*cabs(a(ii, j)))/tanh(k(i 4+ 1, 5)*d(¢ + 1,7)) — 1.)
cc(j) = ep2(i, )
: continue
// Update solution one step.
call ctrida(1,n, ac, be, cc, rhs, sol)
dobj=1,n
a(ipl,j) = sol(j)
sol(j) = ecmplx(0.,0.)
: continue
if (it =2)|(th =2)) goto8
// Check for start or stop of breaking in each row.

do6j=1,n
urs(j) = 2.xcabs(a(ip!,j))

: continue

isavel = 0

isave? = 0
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100: continue

endif

// Solution for m grid blocks in reference block ir.

do 2007=1,(m—1)

ipl =1+ 1
=1
th =1

// r.h.s. of matrix equation.

rhs(1) = emplx(0.,0.)

rhs(j) = cl1(i,7)*a(i, j) + c2(i,7)*a(i, j+ 1) + ¢3(4, j)*a(i,j — 1) — dex(w(i,
J)+ wb(1,7))*a(s, j)/2. — dexemplx(0., 1.)xan*xanl*sig (i, 7)*k(1, 7)xk(1,
J)*xdd (7, 7)x(1. — float (ibr(5)))*(cabs(a(i, 7))%)*a(i, 5)/2. — dz*cmplx(0.,
1.)*(1. — float(ibr(j)))*xanx(1. — anl)*sig(s, j)*((1. + f1 (7, j)*k(3, j)*k(4,
J)*(cabs(a(i, )% )xdd(i,j))«tanh (k(z, j)*d(7, 5) + f2(i, 5)xk(i, j)*cabs(a(t,
7)))/tanh(k(, j)xd(i, 7)) = 1.)xa(7, 5)/2.
1: continue
rhs(n) = ecmplx(0.,0.)
// Return here for iterations.
2 if (it = 1) ii =1
if (it = 2) ii = ipl
// Establish boundary conditions.
if (ibc = 1) then ksth1 = real ((2.x(a(t,
2) —a(2,1))/((a(?,2) + a(i,1))*dy ) )xemplx(0., —1.)) ksth2 =
real ((2.4(a(i,n) — a(i,n — 1))/((a(i,n) + a(i,n — 1))*xdy))*cmplx(0., —1.))

be(1) = emplx(1., ksth1xdy/2.)

cc(1l) = —emplx(1., —ksth1 +dy /2.)

be(n) = —emplx(1., —ksth2xdy /2.)

ac(n) = cmplx(1., ksth2xdy /2.)
else
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subroutine fdcalc(ifreq,ir)
include *param.h’

( common statements 18)

real kap, ksthl, ksth?2
complex cl, ¢2, c3, cpl, cp2, cpd, ci, damp
complex ac(iy), be(iy), cc(iy), rhs(iy), sol(iy)

dimension thet(iy), urs(iy)
(fdcalc statement functions 10)
// Constants.
// 70 degree minimax coefficients.
// a0=0.994733 a1=-0.890065 b1=-0.451641

// Padé coefficients.

al = 1.0
al = —0.75
b1 = -0.25

// Additional constants.

u?2 =1.0
kap = 0.78
gam = 0.4

omeg = freqs(ifreq)
pi = 3.1415927
ci = cmplx(0.,1.)

cdamp = 0.00025

alphn = 0.
deltal = al — bl
delta2 =1+ 2.xal — 2.xb1

// Initialize breaking index if ir = 1.

if (ir = 1) then

ofilt =0
do 100 j=1,n
ibr(7)=0

wb(1,7) = ecmplx(0.,0.)
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9. FDCALC.

Perform the Crank-Nicolson finite-difference calculations on grid block ir. Method is the
implicit-implicit iteration used by Kirby and Dalrymple(1983).

Parameters for use in determining the minimax approximation are defined here.

60 degree minimax coefficients.

a0 = 0.998214
al = —0.854229
b1 = —0.383283

70 degree minimax coefficients.

a0 = 0.994733
el = —0.890065
bl = —0.451641

80 degree minimax coefficients.

a0 = 0.985273
el = —0.925464

bl = —0.550974
Padé coeflicients (refdifl-v2.3).
al =1
al = —0.75
bl = —-0.25

Small angle coefficients (Radder’s approximation).

al = 1.
al = -5
bl = 0.0

Coded by James T. Kirby, October 1984, January 1992, July 1992
Note to first users of Version 2.4: there is an unexplained and odd behavior in the minimax
model when waves around islands are computed. For this reason, the program distributed

here has the coefficients for the Padé model.
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sumk = sumk + k(t,7)
npts = npts + 1
endif
10: continue
if (npts = 0) then
kb(7) = k(i,1)
else
kb(t) = sumk [float(npts)
endif

11: continue
return

end
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8. CON.

Subroutine calculates constants for reference grid block ir.

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware

Newark, DE 19716
Coded by James T. Kirby, October 1984.
subroutine con(ifreq,ir)
include’param.h’
( common statements 18)
// Constants.

eps = 1.0-1079°
g = 9.80621
// Calculate constants.
doli=1,m
dolj=1,n
call wonum(d(7,7),u(t,7).freqs(ifreq),k(1,5),eps,icdw i,5)
sig(i. ) = freqs (ifreq) — K(i, j)vu(i. )
akd = k(i,7)*d(4,7)
q(i,7) = (1. + akd /(sinh(akd )+cosh(akd)))/2.
p(4,7) = q(i, 7)xg+tanh (akd)/k(z, j)
dd(i,7) = (cosh(4.xakd) + 8. — 2.+(tanh(akd)?))/(8.*(sinh(akd)*))
bottomu(t, j) = g*k(1,7)/(2xfreqs(ifreq)*cosh(akd))

1: continue
// Calculate the dissipation term w.
call diss

// Calculate the mean kb on each row.

dolli=1,m
npts =0
sumk = 0.
do10j5=1,n

if (d(4,7) > 0.05) then
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u(t,j) = u(s, j)*dconv(iu)
v(t,j) = v(4, j)*dconv(iu)

31: continue
end if
30: continue
// Add tidal offset to all rows and establish thin film.

do20:i=1,m
do20j5=1,n
d(t,7) = d(i, ) + tide(ifreq)
if (d(7,5) < 0.001) d(z,7) = 0.001

20: continue
// Interpolation complete, return to model.
return

100: format ( ’ model jtried to put more spaces than allowed;in’, ’grid block’, 23)
3

101: format (20f10.4 ) ;

end
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w(m, j) = ur(ir +1,((j — 1)/nd + 1))
v(m,j) = vr(ir +1,((j —1)/nd + 1))
16: continue
do 18 jj =2, nr
do 17 j=1,(nd — 1)
Jj = nd«(jj —2)+ (G +1)
d(m, jjj ) = (dr(ir + 1,7j) — dr(ir + 1,35 — 1))xy(jij )/ dyr + (yr(jj )+dr (ir + 1,
Jj=1)—yr(gj — Vxdr(ir +1,55))/dyr
w(m, jjj) = (ur(ir +1,75) — wr(ir + 1,37 — 1))xy(iii )/ dyr + (yr (jj )xur (ir + 1,
Jji=1)—yr(y — Vxur(ir +1,75))/dyr
o(m, fjj ) = (vr(ir + 1,55) — or(ir + 1, jj — 1))*y(iif )/ dyr + (yr(jj )*or (ir + 1,
Jji=1)—yr(y — Vxor(er +1,jj))/ dyr
17: continue

18: continue

// interpolate values in z-direction

do19:i=2m-1

do19j5=1,n
d(i,7) = (d(m, j) — d(1, j))*x(i)/der + (z(m)*d(1, j) — x(1)xd(m, j))/dzr
u(i, ) = (u(m, j) — u(1,7))xx(i)/ der + (z(m)*u(l, ) — z(1)*u(m, 7))/ der
v(t,7) = (v(m, j) — v(1, j))*x(i)/der + (x(m)*v(1,j) — z(1)*v(m, j))/der

19: continue
// Add in user specified grid subdivisions (read from unit iun(2)).
do30jr =1,nr—1
if (isd(ir,jr) = 1) then
Jjs = ndxjr + (1 — nd)
Jf=1Js+nd
read (iun(2),101) ((d(¢,7),j = Js,if ),t = 1,m)
if (icur = 1) then
read (1un(2),101) ((u(i,7),7 =js,if),i = 1,m)
read (1un(2),101) ((v(¢,7),7 = js,if ),t = 1,m)

endif
do3li=1m
do 31j = ys,jf

d(i,j) = d(1, j)*dconv(iu)
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15:

// Set number of & points and define & values.
if (ispace = 0) then
/] ispace = 0, program sets subdivisions.

do13j5=1,n
dref = d(1,7) + tide(ifreq)
if (dref < 0.001) dref = 0.001
call wonum(dref,u(1, j), fregs(ifreq),k(1, j), eps, icdw, 1, )

13: continue

npts =0
sumk = 0.
dol4j=1,n
if (d(1,7) > 0.05) then
sumk = sumk + k(1,7)
npts = npts + 1
endif

14: continue

kb(1) = sumk [float(npts)

alw = 2.xpi [kb(1)

anw = dzr [alw

np = ifix(5.xanw)

if(np<1) np=1

md (ir) = min((iz — 1), np)

if (np > (iz — 1)) write (10, 100) ir

endif
/] ispace = 1, user specified subdivision.

m = md(ir)+ 1
dx = dur [float(md(ir))
dolbi=1,m

z(1) = zr(ir) + float(i — 1)*dz

continue

// interpolate values on m row.

do 16 j = 1,n,nd
d(m,j) = dr(ir + 1,((j - 1)/nd + 1))
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7.

GRID.

Interpolate the depth and current grids for reference grid block ir.

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware

Newark, DE 19716

Coded by James T. Kirby, October 1984.

subroutine grid(ifreq,ir)
include’param.h’
( common statements 18)
// Constants.

pt = 3.1415927
eps = 1.0-1079

// Perform y-interpolation on reference grid.
// Interpolate first row.
do 10 j = 1,n,nd
d(1,5) = dr(ir, ((j — 1)/nd + 1))
w(1,7) = wr(ir, ((j — 1)/nd + 1))
o(1,5) = vr(ir, ((j — 1)/nd + 1))

10: continue

do 12 j5 =2, nr
dollj=1,(nd -1)

Jj = ndx(jj —2)+ (5 +1)

d(1, jjj) = (dr(ir,jj) — dr(ir,jj — 1))xy(ijj )/ dyr + (yr (jj )*dr (ir,
Jj=1) = yr(jj — Dxdr(ir,jj))/dyr

w(1,Jij) = (ur(ir, jj) — wrir, jj — 1))xy(ijj)/ dyr + (yr (jj )xur (ir,
Jji=1) = yr(jj — Vxur(ir, jj))/dyr

o(1,jjj) = (vr(ir, jj) — vr(ir, jj — 1)xy(iij)/ dyr + (yr (jj )*vr (ir,
3 =1) —yr(ij — Vxor(ir, jj))/ dyr

11: continue

12: continue
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endif
// Calculate constants for each grid block.
call con(ifreq,ir)
// Perform finite difference calculations.
call fdcalc(ifreq,ir)
// Grid block ir done, print output and go to next grid.
100: continue

if (ioutput = 2) then
write (33, %) (a(m,7),7 = 1,n)
endif

// Termination for the surface.dat file.
if (fname6 # >’ ) then

(1) = —100.
write (8, ) z(1)

endif

// Model complete for the ifreq frequency component, go to the next frequency

component.
200: continue
// Runs completed for all frequencies. Return to end of main program.
return

201: format (°x=", f10.2,’ ypsibar=", f20.4) ;
202: format (’’,200(f10.4)) ;

203: format (’1’,20z, 'model execution, frequency’,’ component’,i4//) ;

end
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6: continue

7: continue
endif
endif

/] If iinput = 2, read a from data file fname/ .

if (éinput = 2) then
open (11, file = fname/ )
read (11, %) (a(1,7),7 = 1,n)
close (11)

endif

// Store first row of wave heights on unit 12.
write (12,202) (2«cabs(a(1,7))/dconv(iu),7 = 1,n,nd)
// If fname6 not null, store surface on file fnameé .
z(1)=0

if (fname6 # *’) then

write (8, %) n

write (87*) y(])7] = 17”)

write (8, %) z(1)

write (8, %) ( real(a(1,7)),j=1,n)
endif

// Now execute model for the ifreq frequency over each of mr grid blocks. ir is the

controlling index value.
do 100 ir = 1,(mr — 1)
// Establish interpolated grid block for segment ir.
call grid(ifreq,ir)
// If ir = 1 write initial values on tun(3).
if (ir = 1) then

write (10,201) (1

)
n(3),x) (a(1,7)/dconv(iu),j = 1,n,nd)
16,202) (d(1,7)/dconv(iu),j = 1,n,nd)

[dconv(iu), psibar

write 1)/dconv(iu), psibar

L
write (iu  *

o~~~

write
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nsp = nwavs(ifreq)

thmaz = pi /4.

call acalc(thmaz ,nsp,al )
edens(ifreq) = sqrt(edens(ifreq)/al)
nn = 31

it=(nn—-1)/2+1

seed = rand(seed )
// Compute randomly distributed Af’s.

sum0 = 0.
do12:=1,nn
seed = rand(seed)
dthi(i) = seed
sum0 = sum0 + seed
12: continue
znorm = 2.xthmaz [ sum0
do 101z =1,nn
dthi(i) = dthi(t)*znorm
101: continue
thi0 = —thmaz
dod4i=1,nn
thi0 = thi0 + dthi(7)
thi(i) = thi0 — dthi(z)/2.
dth = dthi(z)
amp (ifreq,1) = edens(ifreq)*sqrt(dth)xsqrt(cos(thi(i) + dth [2.)** 5P +
cos(thi(i) — dth [2.)2*1SP)
4: continue
dobt=1,nn
ipl =14+ 1
seed = rand(seed)
dir(ifreq,ipl) = 2.xpixseed [100.

5: continue

do7j5=1n
a(1,j) = emplx(0.,0.)
do6:=1,nn

a(1,7) = a(l,7) + amp(ifreq, t)*cexp (cmplx(0.,
kb(1)#sin(thi(i) — thet0)*y(j) + dir(ifreq,i+ 1)))#2.
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if (ntype # 0) an = 1.
if (ntype # 2) anl = 0.
if (ntype = 2) anl = 1.
// Calculate the mean kb on the first row, for use in specifying initial conditions.
npts =0
sumk = 0.
do 10 jr = 1,nr
d(1,jr) = dr(1,jr) + tide(ifreq)
call wonum(d(1, jr), ur(1, jr), freqs(ifreq), k(1, jr), eps, icdw, 1, 1)
if (d(1,jr) > 0.05) then
sumk = sumk + k(1,jr)
npts = npts + 1
endif
10: continue
kb(1) = sumk [float(npts)
// Establish initial wave conditions for the ifreq frequency
if (éinput = 1) then
// Compute wave from data given in indat.dat.
if (iwave = 1) then
/] iwave = 1, discrete components specified.
do3j=1.n
a(1,j) = emplx(0.,0.)
do 2 iwavs = 1, nwavs(ifreq)
thet(j) = dir(ifreq, iwavs)+180./pi
a(1,7) = a(l,7) + amp(ifreq, iwavs)+cexp(cmplx(0., kb(1)*sin(dir (ifreq,
wavs ))xy(j)))

2: continue

3: continue
write (9,202) (thet(j),j = 1,n,nd)

else
/] iwave = 2, directional spreading model.

sp = float ( nwavs ( ifT€Q))
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6. MODEL.

This subroutine is the control level for the actual wave model. Data read in during inref
and tnwave is conditioned and passed to the wave model. This routine is executed once for
each frequency component specified in tnwave.

The wave model is split in three parts which are run sequentially for each reference grid

TOW.
grid subroutine performs the interpolation of depth and current values.

con calculate the constants needed by the finite difference scheme.
fdcalc  perform the finite difference calculations.

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware

Newark, DE 19716

Coded by James T. Kirby, November 1984.
Corrections made to specification of average k value on first row, April 5, 1993.

Corrections and additions for LRSS compatibility, July-November 1994.

subroutine model

include ’param.h’

( common statements 18)

dimension dthi(31), thi(31), thet(iy)
// Constants.

g = 9.80621

rho = 1000.

pi = 3.1415927
eps = 1.0-107%

// Execute model once for each frequency.

/] ifreq is the controlling index value.

do 200 ifreq = 1, nfregs
pstbar = 0.
write (10, 203) ifreq

// Specify initial nonlinear parameters for each run.

if (ntype = 0) an = 0.
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tide(1) = tidein

write (10, *) ’Liinput, =2, juser_ specifies a in wave.dat’

nfreqgs = 1

write (10, 102)
write (10, %) ’ wave period =", fregs(1), ’usec.’
write (10, %) ’tidal offset=’, lide(1)
freqs(1) = 2.xpi [ freqs(1)
tide (1) = tide(1)xdconv(iu)
endif

return

100: format (1544 ) ;
101: format (20f10.4 ) ;
102: format ( 12 ///20x,’ input section, wave data values’ ///) ;
: format (7 uiwave=1, discrete_ wave amps and directions’) ;
103: fi t(° 2 1,,,di P ddi ions’) ;
104: format ( wll/ ’uiwave=2,udirectionaluspreadingumodeluchosen’) ;
:Iorma L pthe model, 1s, ,to be run for i Liseparate
105: f t(w ’Lth delpi b for’, i3, sep ’,
’ufrequencyucomponents’) ;
106: format (’,’ /’ wave component,’, 2, ’, amplitude =", f8.4,’, direction=",f8.4) ;
107: format (’,’//’ ufrequency component,,’, i2//’ wave period=’,f8.4, ’sec.,\
utidal offset=’,f8.4) ;
108: format (’,,’ /’ total variance density =, 8.4, ’,uspreading factor, uuuuuu\

uun=’, 12, ;seed number =’,15) ;

end
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if (iwave = 2) then

thet0 = thet0*pi [180.
endif

/] For each frequency, enter the wave period and tidal offset.
do 3 ifreq = 1, nfregs
write (10, 107) ifreq, freqs(ifreq), tide (ifreq)
// Convert angles to radians.

fregs(ifreq) = 2.xpi [ freqs(ifreq)
tide (ifreq) = tide(ifreq)xdconv(iu)

// If iwave = 1, read the number of discrete components.
if (iwave = 1) then
do 1 iwavs = 1, nwavs(ifreq)
write (10, 106) iwavs, amp (ifreq,iwavs), dir (ifreq,iwavs)

dir(ifreq, iwavs) = dir(ifreq, iwavs )*pi /180.
amp (ifreq, iwavs) = amp (ifreq, iwavs )xdconv(iu )

1: continue
endif

/] If iwave = 2, read the parameters for each frequency.
if (iwave = 2) then

seed = float(nseed)/9999.
write (10, 108) edens(ifreq), nwavs(ifreq), nseed
dir(ifreq,1) = thet0
edens(ifreq) = edens(ifreq)*(dconv(iu)*)
endif

3: continue
endif

/] If iinput = 2, read in wave period and tidal offset.
if (iinput = 2) then

read (iun(5), nml = waves?2)

freqgs(1) = freqin
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namelist [wavesla [iwave , nfreqs [ waves1b [ freqs, tide , nwavs, amp,

dir [wavesic [thet0, freqs, tide , edens, nwavs, nseed | waves?2 [ freqin, tidein
pi = 3.1415927
/] Values of iinput, ioutput already entered in namelist statement in inref.

if ((éinput # 1) A (tinput # 2)) then
write (10, %) ’,invalid, value chosen for iinput, check,indat.dat’
stop

endif

if ((ioutput # 1) A (toutput # 2)) then
write (10, %) ’,invalid, ,value ,chosen, for ioutput, check indat.dat’
stop

endif

if (ioutput = 2) then
open (33, file = fname’ )
endif

if (éinput = 1) then

write (10, *) ’iinput, =1, program specifies initial row of a’
// Enter iwave, nfregs for iinput = 1.

read (iun(5), nml = wavesla)

write (10, 102)
// Enter data for case of éiinput = 1, iwave = 1.

if (iwave = 1) then

read (iun(5), nml = waves1b)

write (10, 103)
endif

// Enter data for case of iinput = 1, iwave = 2.
if (iwave = 2) then

read (iun(5), nml = waveslc)

write (10, 104)

endif
write (10, 105) nfregs
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5.

INWAVE.

Read in wave parameters.

Variable definitions:

nnput

routput

if eenput = 1:

wave

nfreqs
fregs
tide
if twave = 1
nwavs
amp

dir

if iwave = 2
edens
nsp=mn
nseed

if vinput = 2:

fregs
tide

determine method of specifying the first row of computational values

=1, input values from indat.dat according to value of twave

=2, input complex a values from file wave.dat

determine whether last row of complex amplitudes are stored in separate file owave.dat
=1, extra data not stored

=2, extra data stored in file owave.dat

input wave type

=1, input discrete wave amplitudes and directions

=2, read in dominant direction, total average energy density, and spreading factor
number of frequency components to be used (separate model run for each component)
wave frequency for each of nfregs runs

tidal offset for each of nfregs runs

number of discrete wave components at each of nfregs runs
initial amplitude of each component
direction of each discrete component in 4+ or - degrees from the z-direction

total amplitude variance density over all directions at each frequency
spreading factor in cos?*(#) directional distribution (stored in nwavs)
Seed value for random number generator. Integer value between 0 and 9999.

Wave frequency for one run.
Tidal offset for one run.

All data is entered using the namelist convention.

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware

Newark, DE 19716

Coded by James T. Kirby, Oct 1984, Sept 1989, Jan 1991, July 1994, November 1994.

subroutine inwave

include’param.h’

( common statements 18)
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108:ﬁornnat(’u’/’uispaceu=0uchosen,uprogramuwilluattemptuitsuownu’,
’referenceugridusubdivisions’);

109:ﬁDrnﬂat(’u’/’uispaceu=1uchosen,usubdivisionuspacingsuwillube’,’uinputuasudata’)
;

110: format (’,’ /’ untype =0, linear model’ ) ;

111:ﬁornnat(’u’/’untypeu=u1,ustokesumodelumatchedutouhedgesumodel’);

112: format (’,’ /’ untype =12,  stokes model’ ) ;

113:ﬁornnat(’uwarning:uinputuspecifiesuthatuuseruwillubeusupplying’,
’uspecifiedusubgridsu(isp=1),’/’uwhileuprogramuhasubeenut\
old to generate its own,subgrid’,
’spacings|,(ispace=0).’/’ jpossible incompatibility\
uinuanyuoruallusubgridublocks’);

114:ﬁornnat(’u’/’uphysicaluunituswitchuiu=’,i],’,uuinputuinumksuunits’);

115:ﬁornnat(’u’/’uphysicaluunituswitchuiu=’,i],’,uuinputuinuenglishuunits’);

116:ﬁornnat(’u’//’uuuswitchesuforudissipationuterms’//’u’,i],
’Luuturbulent boundary layer’/’’, il porous bottom’/’ .’ il,
’uuulaminaruboundaryulayer’);

120: format (//////20z,
’Refraction—DiffractionuModelufor’/20$,’WeaklyuNonlinearuSurfaceu\
Water Waves’///20x, ’REF/DIF 1, ,Version; 2.5’ ///20x,
’CenteruforuApplieduCoastaluResearch’/QOx,’DepartmentuofuCiviluEngin\
eering’ /20z, ’University of Delaware’/20xz, ’Newark, Delaware 19716’ ///10z,

’JamesuT.uKirbyuanduRobertuA.uDalrymple,uNovemberu1994’);

117: format ’u’/’uisp=0,unouuserudefinedusubgrids’);
118: format ’u’/’uisp=1,uuserudefinedusubgridsutoubeuread’);

119: format ’u’/’uy—directionusubdivisionuaccordingutound=’,i3);

201: format (’’/’icur=1, current values read, from data files’) ;

200: format (’,’/’yicur=0, no current,values read from, input files’) ;
202: format (’’/’uibc=0, closed (reflective) lateral boundaries’) ;

203: format (’’/’uibc=1, 0pen lateral boundaries’) ;

end
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100:

101:

102:

103:

104:

105:

106:
107:

if (isp = 1) then

write (10, 118)

open (unit = iun(2), file = fname3, status = ’o0ld’)
endif

if ((isp = 1) A (ispace = 0)) write (10, 113)
if (isp = 0) then

do 14 ir =1, mr
do 14 jr =1, nr
isd(ir,jr) =0

14: continue

else

dolswr=1,mr—1
read (iun(2),100) (isd(ir,jr),jr = 1, nr — 1)

15: continue
endif
// Input done, return to main program.
return

format (1544 ) ;

format (20£10.4 ) ;

format ( ’Ly-direction subdivision too fine.’ / ’ | maximum number of y grid\
ppoints will be exceeded.’ / ’Lexecution terminating. ’) ;

format ( |, x-directionsubdivision  too fine jon, grid, block’, 2z,
iS’/’uexecutionuterminating’) ;

format (’ depth’, 2z,
7.2, (m)at reference grid location’,2(2z,i3 )/’ differs, from the average\
pof its neighbors by’,’ more than’,2z, f7.2,’(m).’/ ’uexecutionucontinuing’)
;

format ( ’ jambient current at reference grid location’, 2(2$, i3),
’uisysupercritical with froude number =’ ,f7.4 / ’uexecutionucontinuing’) ;

format ( »0°///20x,’ inputsection, reference grid values’ ///) ;

format (’ reference grid dimensions  mr=",73/’ LLuuLLULLULLLLLLULLULLULLLL\
puunr=’, 23/// ’Lreference  ,grid, spacings  dxr=’,

f8-4 /’|_||_||_|1_||_||_||_|uuuuuuuuuuuuuuuuuuuudyr=’ 7f8-4) )

86



10:

11:

if (fr > 1.) write(10,105) 1, 7, fr
7: continue

endif

// Establish coordinates for reference grid.

do 8 ir =1, mr

zr(ir) = float(ir — 1)+dzr

: continue

do 9 jr =1,nr
yr(jr) = float(jr — 1)+dyr

: continue

// Establish y coordinates for interpolated grid.
n=ndx(nr—1)+1
dy = dyr [float(nd)
do10j=1,n

y(7) = float(j — 1)xdy
continue

// Write grid information on output unit iun(3).
write (iun(3), *) nr, mr

write (iun(3), *) (yr(jr)/dconv(iu),jr = 1, nr)

// Check friction values.

// iff (1) = 1, turbulent boundary layer damping everywhere

// iff (2) = 1, porous bottom damping everywhere

// iff (3) = 1, laminar boundary layer damping everywhere

dol1l1i=1,3
if ((eff (1) # 0) A (eff (¢) £ 1)) iff () =0

continue

write (10,116) (iff (7),2 = 1,3)

/] Specify whether or not user specified subgrids are to be read in during model operation.

// isp = 0, no subgrids specified

// isp = 1, subgrids to be read in later from unit iun(2)

if (isp = 0) write(10,117)
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read (iun(1),101) (dr(¢,7),7 = 1, nr)
2: continue
if (icur = 1) then
do3:=1,mr
read (iun(1),101) (ur(i,7),7 = 1, nr)
3: continue
do4:=1,mr
read (iun(1),101) (vr(i,j),j = 1, nr)
4: continue

endif

// convert depth and currents

dob5:i=1,mr
dobj=1,nr
dr(i,j) = dr(i, j)*dconv(iu)
5: continue
if (icur = 1) then
do b5 i=1,mr
do 55 5 =1,nr
ur(i,j) = ur (e, j)xdconv(iu)
vr(i,j) = vr(i, j)xdconv(iu)
55: continue
endif
// check for large depth changes and large currents in reference grid data.
do6i=2,mr—1
do6j=2,nr—-1
deheck = (dr(i+ 1,7) +dr(t —1,j)+ dr(i,j — 1)+ dr(i, 7+ 1))/4.
if (abs(dcheck — dr(i,j)) > dt) write (10,104) dr(¢,j), 7, j, dt
6: continue
if (icur = 1) then
do7:=1,mr
do7j5=1nr
if (dr(i,7) <0.0) goto 7
i = (uris ysur (i, §) + vr (i jyvor(i, 1))/ (gdr (i, )
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if (ibc = 1) write (10,203)

if (ispace = 0) write (10, 108)
if (ispace = 1) write (10, 109)

write (10,119) nd

if (ntype = 0) write (10, 110)
if (ntype = 1) write (10,111)
if (ntype = 2) write (10,112)

// Check input from unit sun(5).

if ((mr > dzr)|(nr > iyr)) then
write (10, *) ’dimensions  for reference_grid too large, stopping’
call exit(1)

end if

if ((lu Z1)A(iu #2)) iu=1
dt = dtxdconv(iu)
dzr = drr+dconv

)

(iu
dyr = dyrxdconv(iu)
if (dt =0.) dt =2.

if (nd > ifix(float(iy — 1)/float(nr — 1))) then
write (10, 102)
call exit(1)

endif

if (ispace = 1) then
test = 0.
doli:=1,mr —1
if (md(i) > (iz — 1)) then
write (10,103) ¢
test = 1.
endif
1: continue
if (test = 1.) call ezit(1)
endif

// read depth grid and velocities from unit iun(1)

do2:=1,mr
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Read remaining file names from namelist.

iun(l) =1

iun(2) =2

iun(3) =3

read (iun(5), nml = fnames)

open (unit = wun(1), file = fnamel , status = >o0ld’)
open (unit = iun(3), file = fname?2)

open (9, file = fname8)

open (10, file = fnamel0)

open (12, file = fnamell)

if (fnamel2 # >’ A fnamel3 # .’ A fnamel4 # *.,’) then
open (13, file = fnamel?2)
open (14, file = fnamel3)
open (15, file = fnamely)

endif

open (16, file = fnamel’5)
if (fname7 # °’) open (17, file = fname7)
if (fname6 # °’) open (8, file = fnameé6)
// print headers on output
write (10,120)
write (10, 106)
// Read control data from unit iun(5).
read (iun(5), nml = ingrid)
if (ispace = 1) read (iun(5), nml = inmd)
write (10, 107) mr, nr, der, dyr

iu = 1) write(10,114) iu
2) write (10, 115) iu

-,
s
Il

) write (10,201)

_.
-
d

(=l

(

(

(icur = 0) write (10,200)
( 1

(

be = 0) write (10,202)
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3. Specify name of namelist data file.

The LRSS implementation of Ref/Dif 1 imposes the restriction that no file names can be
specified within the program itself. This makes it necessary to read in at least one file name
as a command line argument. Two options are provided here by means of a subroutine

infile. The code for the subroutine is provided in either of the files

1. infilel.f - standard version. The program assumes the name indat.dat.

2. infile2.f - user specifies the file name using the igetarg command line syntax.

The user of refdif! must copy the desired file to infile. f before compiling the program.
The igetarg structure is supported on Sun Fortran and may be used at all times there. The

SGI version tested to date uses a subroutine library liblrss.a provided by SAIC.

call infile(fnamein)

iun(5) =5

open (unit = iun(5), file = fnamein, status = ’o0ld’)
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// Standard file name choices:

/] frnamel = refdat.dat, reference grid data file.

/] fname2 = outdat.dat, standard output data file.

/] frname3 = subdat.dat, user-specified subgrids.

/] fnamej = wave.dat, user-specified complex amplitude on row 1 (for itnput =2).
/] fnames = owave.dat, complex amplitude on last row (for ioutput = 2).

/] fnameb = surface.dat, instantaneous water surface at computational resolution.
/] frname7 = bottomu.dat, magnitude of bottom velocity at reference grid points.
/] fname8 = angle.dal, wave directions at reference grid points.

/] fname9 = not used yet.

/] fnamel0 = refdif! .log, run log for refdif! program.

/] fnamell = height.datl, wave heights at reference grid locations.

/] fnamel?2 = sxx.dat, Sxx components at reference grid locations.

/] fnamel3 = sxy.dat, Sxy components at reference grid locations.

/] fnamel} = syy.dat, Syy components at reference grid locations.

/] frnamel5 = depth.dat, tide-corrected depths at reference grid locations.

/] frnamein = indat.dat, input namelist file.

namelist [ingrid [ mr, nr, iu, ntype, icur, ibc, der, dyr, dt, ispace, nd, iff | isp, iinput,
ioutput [inmd [ md [fnames [fnamel , fname?2, fname3 , fname/ , fnames , fnameé ,
fname7, fname8, fname9, fnamell, fnamell, fnamel?, fnamel3, fnamel}

Sfnamelh
// Constants.

g = 9.80621
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mr,nr reference grid dimensions (max izr,iyr)

dzr, dyr grid spacing for reference grid
T physical unit descriptor ( 1=mks, 2=english)
default value is 1, mks units
dt depth tolerence value (to check for anomalous depth values)
1space switch to control grid subdivision.

=0, program attempts its own subdivisions
=1, user specifies subdivisions

nd y direction subdivision (ispace =0 or 1)
(must be .lt.iy/nr—1)

md(mr — 1)  direction subdivisions (if ispace = 1)
(must be le.iz — 1)
niype nonlinearity control parameter

=0, linear model
=1, Stokes matched to Hedges in shallow water
=2, Stokes throughout

icur switch to tell program if current data is to be used and read on input
=0, no input current data
=1, input current data to be read
program defaults to icur = 0

1be boundary condition switch
=0, use closed lateral boundaries
=1, use open lateral conditions
program defaults to tbc = 0

dr depths at reference grid points
> 0, submerged areas
< 0, elevation above surface datum

ur x velocities at reference grid points
(only entered if icur = 1)
vr y velocities at reference grid points

(only entered if icur = 1)
Data is entered in namelist format from the data file indat.dat.

Subroutine is called from refdif! and returns control to calling location, unless a fatal

error is encountered during input data checking.

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware
Newark, DE 19716
Coded by James T. Kirby, October 1984. Revised July 1994.
subroutine inref

include ’param.h’

( common statements 18)
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2. INREF.
Subroutine reads in and checks dimensions and values for large scale reference grid. Wave
parameters for the particular run are read in later by subroutine inwave.

The following unit (device) numbers are assumed:

e iun(1): input reference grid values of d, u, and v
e iun(2): Input user specified subgrid divisions from file normally named subdat.dat.
e iun(3): Output results at reference grid locations to disk file.

e 8: Output image of instantaneous water surface at computational grid resolution.
This is interpolated to a regular rectangular grid by the program surface2hdf.f and

stored in HDF file format. Usual name for file is surface.dat.
e 9: Qutput results for wave angles in file usually named angle.dat.
e 10: Log file refdif1 .log, containing basic information and error messages.
e 11: Input file wave.dat, user specifies complex amplitude on first row.
e 12: Output results for significant wave height in file usually named height.dat.
e 13: Output results for rad. stress Sxx in file usually named szz.dat.
e 14: Output results for rad. stress Sxy in file usually named szy.dal.
e 15: OQutput results for rad. stress Syy in file usually named syy.dat.
e 16: Output results for tide-corrected depth grid in depth.dat
e 17: Output results for tide-corrected water depths in file usually named depth.dat.

e iun(5): Unit for file containing namelist input data. Usually named indat.dat. This
filename is specified in the standard program version. In the LRSS version, an

arbitrary filename is entered on the command line.

Variable definitions.
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// outdat.
close (iun(3))
/] surface.
if (fname6 # ) close (8)
/] angle.
close (9)
/] refdift Jog.
close (10)
/] height.
close (12)
/] sax.
if (fnamel2 # ') close (13)
/] szy.
if (fname13 # ) close (14)
/] syy.
if (fnamel4 # °’) close(15)
/] depth.
close (16)
/] bottomu.
if (fname7 # °’) close(17)
/] owave.
if (ioutput = 2) close (33)
stop

end
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The documentation of present program is contained in:

Combined Refraction/Diffraction Model REF/DIF 1, Version 2.5, Documentalion and

User’s Manual

James T. Kirby and Robert A. Dalrymple

CACR Report No. 94 - 04 , Center for Applied Coastal Research
Department of Civil Engineering, University of Delaware, July 1994.

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware

Newark, DE 19716

Program developed by James T. Kirby and Robert A. Dalrymple.
Version 2.5, Last revision 12/21/94.

program refdif]
include ’param.h’

( common statements 18)

// Constants which provide for conversion between MKS and English units on input and

output.

deonv(1) = 1.
dconv(2) = 0.30488

// read control parameters and reference grid data
call inref

/] read control parameters and initializing wave data
call inwave

// Pass program control to subroutine model.

// For each frequency component specified in inwave, model executes the model

throughout the entire grid and then reinitializes the model for the next frequency.

call model

// All done. Close output data files if open and close statements are being used.
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1. Refraction-Diffraction Model REF/DIF 1, Version 2.5.
REF/DIF 1 calculates the forward scattered wave field in regions with slowly varying
depth and current, including the effects of refraction and diffraction. The program is based

on the parabolic equation method. Physical effects included in the present version include:

1. Parabolic approximation:
(a) Minimax approximation given by Kirby (1986b).
2. Wave nonlinearity: choice of

(a) Linear.
(b) Composite nonlinear: approximate model of Kirby and Dalrymple (1986b).
(c) Stokes nonlinear: model of Kirby and Dalrymple (1983a).

3. Wave breaking:

(a) Model of Dally, Dean and Dalrymple(1985).
4. Absorbing structures and shorelines:

(a) Thin film model surrounded by a natural surfzone ( Kirby and Dalrymple, 1986a).
5. Energy dissipation: any of

(a) Turbulent bottom friction damping.
(b) Porous bottom damping.

(c) Laminar boundary layer damping.
6. Lateral boundary conditions: either of

(a) Reflective condition.

(b) Open boundary condition ( Kirby, 1986c¢).
7. Input wave field: either of

(a) Model specification of monochromatic or directional wave field.

(b) Input of initial row of data from disk file.
8. Output wave field:

(a) Standard output.

(b) Optional storage of last full calculated row of complex amplitudes.
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5 Appendix A: fueb Documentation of the REF/DIF 1 Pro-
gram Listing

The following section contains a document which provides a heavily anotated program
listing for REF /DIF 1, which has been produced using the fweb documentation program
(Krommes, 1992). The use of fweb here is somewhat experimental. In theory, fweb provides
a programming environment which allows the programmer to specify the operation of a
block of code in full, typeset detail, after which the actual Fortran or C code is spelled out.
This procedure places a high premium on the use of a highly structured and modularized
programming technique. In practice, many longer modelling codes are being essentially
“retrofitted” for fweb, and thus the documentation does not go much beyond upgrading
the comment statements appearing in standard Fortran style. As REF/DIF 1 evolves,
the fweb documentation will become a more interwoven portion of the documentation and

user’s manual.
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Figure 21: Waves interacting with a rip current. Shoreline at right. Wave height contours.
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Figure 20: Waves interacting with a rip current. Shoreline at right. Surface displacement
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The input data file for the present case follows.

$fnames
--- same as previous example - - -

$end

$ingrid

mr = 100

nr = 100

iu = 1

ntype = 1

icur = 1

ibc = 0

dxr 5.000000

dyr 5.000000

dt = 10.00000

ispace = 0

nd = 1

iff = 0, 0, 0
isp
iinput = 1
ioutput = 1
$end

$wavesia

iwave = 1
nfreqs = 1
$end

$wavesid

freqs = 8.000000

tide = 0.0000000E+00

1}
(@]

nwavs = 1
amp = 0.5000000
dir = 0.0000000E+00

$end

The input data files may be constructed for this test case using the program dalgenv2s.f

3.3.2 Model Results

Results for this case are limited to plots of surface contours and wave height contours. These
plots were constructed using the information stored in the data files depth.dat, height.dat,
surface.dal. The plots are given in Figures 20 and 21. Note that the plots only cover the
region 51 < or < 100,26 < jr < 75, in order to show greater detail in the wave pattern over
the rip current. The plots show a shoaling, plane wave which approaches the beach with no
distortion until the wave begins to interact with the rip current. The rip causes a focussing
of waves and the formation of discontinuities in the wave crests, as in the photograph in

Figure 19.
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Pattern of orthogonals and wave crests for waves in presence of rip currents:

refraction approximation. (from Arthur, 1950)

Figure 18:



3.3 Waves Interacting with a Rip-Current

An example of waves which are normally incident on a planar beach and interact with a
steady rip current flowing offshore from the beach has been included here in order to show
the effects of wave-current interaction in the model. This example was first used by Arthur
(1950) to illustrate the effects of currents and depth changes acting together on results of
ray tracing schemes. However, it also provides an important example of the usefulness of the
combined refraction-diffraction scheme, since it represents a case where ray tracing breaks
down due to the crossing of wave rays.

The velocity field studied by Arthur is shown together with computed wave orthogonals
in Figure 18. Denoting a coordinate z’ pointed offshore (the opposite of the 2 we will be

using), the velocity distribution is given by

U= 0'02295w/e—(z'/76.2)2/2€—(y/7.62)2/2 (34)
V = —0.2188[2 — (2'/76.2)%]e~@'/76-2° 2erf(y / 76.22)sign(y) (35)

where the velocities are in m/sec. In terms of z’, the bottom topography is given by
h(z") = 0.022 (36)

Arthur ran his calculations for a wave period of T' = 8 seconds.

A photograph of the wave field created in a laboratory study of waves interacting with
an ebb tidal jet is shown in Figure 19. This photograph, taken from a paper by Hales
and Herbich (1972), is provided for guidance in interpreting the contour plot of surface

elevations provided below.

3.3.1 Setting Up the Model

We choose a grid spacing of dzr = 5m and dyr = 5m. We choose mr = 100 and nr =
100, giving an offshore and longshore extent of 495m. The most-shoreward grid row is
established hm from shore, giving a depth range of 10m to 0.1m. Arthur’s wave period is
retained, and we use an initial wave amplitude of 0.1m. The input conditions are a single,

normally incident wave, no user specified grid subdivision, and one frequency component.
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Figure 17: Results for waves propagating over a submerged shoal: wave height contours
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3.2.2 Model Results

The output files depth.dat, height.dat, surface.dat for this example have been used to con-
struct plots of instantaneous surface elevation and wave height. In this case, wave heights
have been non-dimensionalized using the incident wave height. The resulting plots are
shown in Figures 16 and 17. The plots show the effect of wave focussing over the shoal
area, and show that the prediction of the wave field beyond the shoal does not involve the
problem of caustic (or singularity) formation common to ray-tracing algorithms used to

model similar situations.
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Figure 16: Results for waves propagating over a submerged shoal: surface elevation contours.

Comparisons of the predictions of this model using both the Stokes wave nonlinearity
and the composite model of Kirby and Dalrymple (1986b) are given in Kirby and Dalrymple
(1986b); a comparison to laboratory data is also included and shows that the model is quite

accurate in predicting the wave field.

63



3.2.1 The Input Data Files

The input data file indat.dat for the present case follows.

$fnames

--- same as previous example - - -

$end

$ingrid

mr = 100

nr = 100

iu = 1

ntype = 1

icur = 0

ibc = 0

dxr 0.2500000

dyr 0.2500000

dt = 10.00000

ispace = 0

nd = 1

iff = 0, 0, 0
isp
iinput = 1
ioutput = 1
$end

$wavesia

iwave = 1
nfreqs = 1
$end

$wavesid

freqs = 1.000000

tide = 0.0000000E+00
nwavs = 1
amp = 2.3200000E-02
dir = 0.0000000E+00
$end

1}
(@]

The supplied program datgenv2.f may be used to generate the depth grid refdat.dat.
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Figure 15: Bottom contours and computational domain for the experiment of Berkhoff et
al (1982). Experimental data on transects 1-8.
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3.2 Wave Focussing by a Submerged Shoal

In this example, we study the propagation of an initially plane wave over a submerged shoal

resting on a plane beach. This example has been chosen for several reasons:

1. A carefully controlled set of waves measurements has been made in the laboratory for

this case (see Berkhoff et al (1982); Kirby (1986a) ).

2. The wave pattern represents the case of ray crossing in the refraction method, and
thus the computed results indicate present method’s utility in situations where ray

tracing breaks down.

3. The example gives a thorough test of the accuracy of the large angle and composite

nonlinearity formulations.

The topography to be studied is shown in Figure 15. Details of the calculation of the
topography may be found in Kirby (1986a).

For the case of an incident plane wave, we have performed a run of the model using
input data corresponding to the experiment of Berkhoff et al (1982). The run was done

using the full model with the Stokes-Hedges composite nonlinearity.
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3.1.3 Model Results

The output for the artificial island run is presented in two forms. First, Table 1 provides

values of wave heights at the measurement locations indicated in Figure 12.

ir | jr | Height (ft)
3 |1 28
431 1 17.3
63| 1 14.4
83| 1 16.9
23 | 21 23.5
43 | 21 19.1
63 | 21 20.9
83 | 21 18.6
43 | 41 32.1
63 | 41 29.7
83 | 41 23.5

Table 1: Calculated wave heights at measurement locations.

In addition to this, we have constructed contour plots of instantaneous surface elevation
and wave height; these are shown in Figures 13 and 14, respectively. Contour elevations for

wave height are in increments of 5 ft.
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3.1.2 The Input Data Files

One run of the model was performed using the specified input conditions. The input data

file indat.dat for the run follows. The reference grid data was stored in file refdat.dat.

$fnames

fnamel = ‘’refdat.dat ’
fname2 = ’outdat.dat ’
fname3 = ’subdat.dat ’
fname4 = ‘’wave.dat ’
fname5 = ’owave.dat °’
fname6 = ’surface.dat ’
fname7 = ’bottomu.dat ’
fname8 = ’angle.dat ’
fname9 = > °?

fnamel0 = ’refdifl.log ’
fnamell = ’height.dat ’
fnamel2 = ’sxx.dat ’
fnamel3 = ’sxy.dat ’
fnamel4 = ’syy.dat ’
fnamel5 = ’depth.dat ’
$end

$ingrid

mr = 100

nr = 100

iu = 2
ntype = 1
icur = 0

ibc = 0

dxr = 20.00000

dyr = 20.00000

dt = 10.00000

ispace = 0
nd = 1

iff = 0, 0, 0
isp = 0
iinput = 1
ioutput = 1
$end

$wavesla

iwave = 1
nfreqs = 1
$end

$wavesid

freqs = 10.00000

tide = 0.0000000E+00
nwavs = 1
amp = 14.00000

dir 0.0000000E+00
$end
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Figure 11: Representation of the island geometry in the program.

in the input data as a right circular cone with a peak height of 153.33 f{ and a base radius of
400 ft. The model will truncate the island in order to create a “thin film” over the exposed
portions (see Figure 11).

Next, the reference grid spacing was chosen. Since the physical region to be modelled is
small, we picked a reference grid with fine enough resolution so that no subdivision of the
reference grid will be required. Using a wave period of 10 seconds and a depth of 60 ft, we
use the dispersion relationship

47

7T = gktanh kh (33)

to calculate kh = .97, giving a wave length of L = 389ft. L is just slightly less than
ry = 400 f¢. The grid spacings dzr and dyr = 20 ft were chosen for the reference grid, giving
approximately 20 points per wavelength away from the island. We use 100 x 100 storage
locations for the reference grid, indicating a model of approximately 5ry by 5rp in « and y.
We sited the island center at z = 460 ft and y = 10f{, where z and y are measured from
the computational grid corner. The island and measurement points are shown in relation

to the grid in Figure 12.
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Figure 10: Locations for wave height measurements

The wave conditions to be studied are given by:
o Wave height: H = 28 f1

o Wave period: T = 10sec.

e No currents

The model was run with a depth of 60 f{ away from the island and a tidal offset of 0.0 ft.
The required set of wave predictions consisted of wave height at 12 locations as indicated
in Figure 10. The spacing between the points are in units of the base radius r, = 400 ft.
Note that, since the model does not calculate reflected waves, the predicted wave heights at
points 1 and 2 will be identical. Therefore, computations may be started arbitrarily close
to the leading edge of the island base, in the absence of any current field distorted by the

island’s presence.

3.1.1 Setting up the Model

First, the island topography was established. Note that the region of the island above the

water line is not treated explicitly in the computations. We therefore represented the island
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3.1 Waves Around an Artificial Island

The first example involves the calculation of the wave field around an artificial, surface
piercing island of the type used in offshore operations. The island is circular with a base
radius of 400 f¢ and a crest elevation of 80 f¢ above the flat seabed. The island radius at the
crest is 160 f1, leading to a side slope of 1 : 3. The water depth around the island is taken
to be 60ft. The island geometry is shown in Figure 9.
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Figure 9: Artificial island geometry
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3 EXAMPLE CALCULATIONS

This chapter presents calculations performed using the combined refraction-diffraction model
REF/DIF 1. The problems studied here were chosen as representative tests of various fea-
tures of the model. Further examples illustrating the use of the computational schemes upon
which the program is based may be found in the technical report by Kirby (1983).

Each section of this chapter describes in full the model’s application to a specific problem.
Following a description of the problem and an indication of the type of results desired, the
input data files for the program are displayed and explained. These data files are then used
to run the program REF /DIF 1 with no job-specific modifications to the program involved.
Program output is then presented in such a way as to adequately indicate the results,
although, in application, individual users may wish to alter the nature of the presentation
of output data.

The output for the various examples has been presented using some plotting programs
which are external to the main body of the supplied program REF/DIF 1. These special-
ized programs have been included in order to provide some guidance in reading the data
files generated by the main program. However, plotting routines are likely to vary from
one computer system to another. The extra programs are therefore likely to be extensively
machine-specific to the systems on which the computations were performed.

Section 3.1 presents calculations of waves around an artificial, surface piercing island.
This example makes particular use of the breaking wave, thin film, and shallow water
dispersion relation capabilities of the model.

Section 3.2 provides calculations for waves propagating over a submerged, elliptic shoal
resting on a plane beach. This example has been studied experimentally and provides a
means for checking the accuracy of the model calculations. It also provides an example of
the type of results provided by a combined refraction-diffraction model in a situation where
ray tracing predicts a strong convergence of wave rays, with resulting singularities in the
prediction of wave height.

Section 3.3 provides example calculations for the case of waves shoaling on a plane beach
and interacting with a rip current. This example illustrates the wave-current interaction

feature of the model.
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Since it is not usually known a priori how many steps will be taken in the z direction,
this file is ended by writing in a negative value of . This file is processed by the program
surface.f to give data on a regularly spaced grid.

An anotated listing of the REF/DIF 1 program code is given in Appendix A. Various
preprocessing and postprocessing programs are also listed in Appendix B (for normal usage)

and Appendix C (for LRSS usage).
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2.9.2 Stored Output

The program stores a set of data files with a resolution of the reference grid points. Each of

these files is written using a common format statement and may be read using the format:

do i=1,mr
read(unit,100) (variable(i,j),j=1,nr)

end do

100 format(200(£10.4))

The available files are:
height.dal: wave height.
depth.dat: water depth with tide correction included.
angle.dal: wave angle in degrees.
szz.dat, sry.dat, syy.dat: radiation stresses (not available yet).

bottomu.dat: magnitude of bottom velocity (if requested).

It should be noted that the wave directions given on output are meaningless if multiple
direction components are being used, and, for single component runs, become meaningless
if the waves become short crested or the crests become significantly curved.

Finally, a file surface.dat is generated if isurface is set to one. This file provides the same
type of information that was put in outdal.datl in older versions of the program, with the

exception that the present version stores data for every computational point in the domain.
1. n

2. y(j), j=1,n
Then, for each z-position in the computational grid, the program stores the following

information.
3. z,
4. ae'(ij), j=1, n
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Action: Program performs fixup and continues. Model resolution and accuracy may

be poor, and a finer reference grid or increased value of iz in the parameter statements

should be used.

Error occurs in: grid

. While using the Stokes wave form of the model, ntype=2 the model may encounter
large values of the Ursell number, indicating that the water is too shallow for that
model to be appropriate. The cutoff point recognized by the programis (A/h)/(kh)? =
0.5.

Message: Warning: Ursell number = “u” encountered at grid location “i,j” should be
using Stokes-Hedges model (ntype = 1) due to shallow water

Action: The program should be re-run with the composite nonlinear model.

Error occurs in: fdcalc

. The Newton-Raphson iteration for wavenumber k£ may not converge in the specified
number of steps. This may occur for waves on strong opposing currents.

Message: WAVENUMBER FAILED TO CONVERGE ON ROW “I”, COLUMN “J”
K = last iterated value of wavenumber

D = depth

T = period calculated from last iterated value of k

U = x-direction velocity

F = value of objective function (should be =0 for convergence)

Action: Program continues with last iterated value of k. Computed results are of

questionable accuracy.

Error occurs in: wvnum

Log of Calculations

For each frequency component, the program starts a new page of output and indicates

the number of the component in the input stack. The model then prints the x position, the

value of the reference phase function and the number of z direction subdivisions used for

each reference grid row.
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4. A depth value occurs in the reference grid which differs from the average of its neigh-
bors by more than the tolerance value dt specified on input. This is basically a data

checking feature. Printed values are in meters.

Message: Depth “dr” (m) at reference grid location “ir, jr” differs from the average

of its neighbors by more than “dt” (m). Execution continuing.
Action: Nomne by program. Data in file refdat.dat should be corrected if wrong.

Error occurs in: inref

5. An ambient current value occurs which implies that the flow would be supercritical at
the given location. This serves as both a check for anomalously large current values,

and an indicator of possible subsequent computational problems.

Message: ambient current at reference grid location “ir,jr” is supercritical with froude

number = “froude number”, execution continuing
Action: Nomne by program. Data in file refdal.dat should be corrected if wrong.

Error occurs in: inref

6. If the user specifies that predetermined subgrids are to be read in, while at the same
time telling the program to performs its own subdivisions, the computed dimensions
of the subgrid may be different than those of the subgrid included in the input. Runs
requiring user-specified subgrids should choose the ispace=1 option. If an incompatible
set of dimensions occurs, the program will either garble the input array or run out of

data.

Message: Warning: input specifies that user will be supplying specified subgrids
(isp=1), while program has been told to generate its own subgrid spacings (ispace=0).

possible incompatibility in any or all subgrid blocks.
Action: None by program. Should restart unit with correct ispace,isp values.
Error occurs in: inref

7. While calculating its own subdivision spacings, the model may try to put more di-
vision in a reference grid block than is allowed by by dimension iz. If this occurs,
the program uses the maximum number of subdivisions allowed (iz-1), but prints a
message indicating that the reference grid spacing is too large with respect to the

waves being calculated. This problem may be circumvented by increasing the size of

wx in parameler statements.

Message: model tried to put more spaces than allowed in grid block “ir”
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input section, wave data values

iwave=1, discrete wave amps and directions

the model is to be run for 1 separate frequency components

frequency component 1
wave period= 8.0000sec., tidal offset= 0.0000

wave component 1, amplitude = 0.5000, direction= 0.0000

Figure 8: Sample title page 2
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Refraction-Diffraction Model for
Weakly Nonlinear Surface Water Waves

REF/DIF 1, Version 2.5
Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware
Newark, Delaware 19716
James T. Kirby and Robert A. Dalrymple, November 1994

input section, reference grid values

reference grid dimensions mr=100
nr=100

reference grid spacings dxr= 5.0000
dyr= 5.0000

physical unit switch iu=1, input in mks units
icur=1, current values read from data files
ibc=0, closed (reflective) lateral boundaries
ispace =0 chosen, program will attempt its own reference grid subdivisions
y-direction subdivision according to nd= 1
ntype = 1, stokes model matched to hedges model
switches for dissipation terms
0  turbulent boundary layer
0  porous bottom

0 laminar boundary layer

isp=0, no user defined subgrids
iinput = 1, program specifies initial row of a

Figure 7: Sample title page 1
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At the start of each run, a set of two title pages are printed. Page 1 identifies the
program and then prints out messages identifying the parameters which set up the model
run, as read in by subroutine inref. A sample title page 1 is shown in Figure 7.

Title page 2 gives the input wave conditions which were read in by inwave. A sample
title page 2 is given in Figure 8.

Dimensional quantities are printed on the title page in the units used for input. Title

page 1 gives an indication whether quantities are in MKS or English units.

Run-time Error Messages

REF /DIF 1 performs some data checking and checking of calculations during a run.
This checking may result in warnings or terminal errors which are beyond calculation errors
which would lead to standard FORTRAN error messages. A list of possible errors and the

resulting messages follow.

1. Reference grid dimensions were specified as being too large on input. mr > izr and/or

nr > yr.
Message: dimensions for reference grid too large; stopping.
Action: Program stops.
Error occurs in: inref
2. User specifies a y-direction subdivision nd which will cause the number of y grid points
n to exceed the maximum 2y.

Message: y-direction subdivision too fine. maximum number of y grid points will be

exceeded. Execution terminating.
Action: Program stops.
Error occurs in: inref
3. User specifies an a-direction subdivision on one of the grid blocks ir which exceeds

the maximum amount (iz-1). As a result, the dimension of the subdivided grid will

be too large.
Message: x-direction subdivision too fine on grid block “ir”, execution terminating.
Action: program stops

Error occurs in: inref
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do 1 ir=1,mr-1

write(unit,#) (isd(ir,jr),jr=1,nr-1)
continue

# format (15I4)

[

Now, a group of arrays of d, v and v must be entered into the data file, with one group
corresponding to each value of 1 in isd. The program accesses the data file by z-row (ir)
and then by y-column (jr). For the above example, the subgrid array groups should thus
be stored in the order of the coordinate pairs (4,3), (4,4), (5,3), (5,4). The dimensions of
each subgrid are given by m=md(ir)+1 and ns=nd+1. The borders of adjacent subgrids
share the same common boundary points.

Each group of subgrid data should be written using a format similar to:

write(unit,#) ((d(i,j),j=1,ns),i=1,m)
(then, if icur=1)

write(unit,#) ((u(i,j),j=1,ns),i=1,m)
write(unit,#) ((v(i,j),j=1,ns),i=1,m)

# format (20£10.4)

using the appropriate value of m for the grid block in question. Data may be in MKS or
English units, depending on the value of ju in the input data file. The integer array isd is

read by inref, and the individual subgrids are read by grid.

2.9 Program Output

This section discusses output of two forms: output sent to alog file, and array output stored
in disk files.

2.9.1 Output log file

Log file output consists of three types: title and header information which is printed in order
to identify the run and the operating perameters, runtime error messages (either warnings
or terminal error messages), and information about calculations on each grid row. The

default name for the file is refdif1.log.

Header Information
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2.8 Program Input: Reference Grid and Subgrid Data

This section describes two files which provide arrays of data on the various grids.

Reference Grid Data File

This file (named refdat.dat) is accessed as logical device number un(1). Its contents
consist of the arrays of depth dr, z-velocity ur, and y-velocity vr at the reference grid
points. This file is accessed only once per model run, and its entire contents are read in by
subroutine inref. If tcur = 0, only the depth data dr need to be specified.

Data for this file should be written in the following format:

do 1 ir=1, mr
write(unit,#) (dr(ir, jr), jr=1, nr)
1 continue

(then, if icur=1)

do 2 ir=1, mr
write(unit,#) (ur(ir, jr), jr=1, nr)
2 continue

do 3 ir=1, mr

write(unit,#) (vr(ir, jr), jr=1, nr)
continue

# format (20£10.4)

w

The data may be in either MKS or English units; set the units switch iu in the iun(5)
data file indat.dat accordingly.

Subgrid Data File

This file (named subdat.dat) is accessed as logical device number un(2). If no user-
defined subgrids are to be read in, this file may be omitted. The file consists of two parts;
an integer array of 1’s and 0’s indicating which reference grid cells are to be defined by the
user, and then a sequence of groups of arrays of d, u and v, one group for each subgrid.

The integer array isd is dimensioned (mr-1) by (nr-1), with one point for each spacing
in the reference grid. The array contains a 0 if that cell is not to be user-defined, and a
one if it is. For example, the (mr,nr)=(7,6) reference grid shown in Figure 6 has four cells
which are to be read in as user-defined subgrids.

The array isd should be written in the data file first, using the format:
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e nwavs(ncomp):

Directional spreading factor (the factor n in cos®"(6/2).

o nseed:

The seed value for the random number generator (between 0 and 9999).

For #input=2, the remainder of the data file is:

waves? namelist group

e freqin, tidein:

Wave period and tidal offset for the single frequency component.

Examples of indat.dat data files are given in the example problem section. Several things
must be kept in mind while constructing a namelist - oriented data file. namelist does not
allow a part of an array to be read or written. It is therefore imperative that the number
of values being entered into any dimensioned variable in a namelist group be equal to the
dimension of that variable in REF /DIF 1. It is thus highly recommended that any program
being used to construct the indal.dat file should use the param.h file to specify parameters.
In any event, the user should consult the datgenv2s.for indat-convertv2s.f programs to get
a feel for how the file is constructed. The file may also be easily constructed by hand.

In constructing the indat.dat in the provided programs, we have followed the most
restrictive convention that was found, which is that the items in a namelist group must be
read in in the order in which they are specified in the namelist statement. This restriction
is imposed by the Silicon Graphics Fortran compiler. Most compilers will allow an arbitary

ordering of variables within each namelist group.
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If sinpui=1, the rest of indat.dat is as follows:

wavesla namelist group

® LWavE:
iwave is switch for wave field type. iwave=1, discrete wave components. iwave=2,

directional spreading model.

e nfregs:
nfreqs is the number of frequency components to be run. Maximum is value of ncomp

in param.h.

The remainder of the file depends on the choice of iwave.
For iwave=1:

waves1b namelist group

fregs(ncomp):

Wave period for each frequency component. ncomp values must be given.

e lide(ncomp):

Tidal offset for each frequency component. ncomp values must be given.

e nwavs(ncomp):

Number of wave components for each frequency. ncomp values must be given.

e amp(ncomp,ncomp):

Amplitude (not height) for each component wave.

e dir(ncomp,ncomp):

Direction in degrees relative to & axis for each wave component.

For i1wave=2:

waveslc namelist group

o thell:

The central direction for the model spectrum.

e freqs(ncomp), tide(ncomp):

As above.

o edens(ncomp):

Variance density (m? or ft?) for each frequency component.
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block). The array md must be dimensioned according to the value of izr in the main

program, regardless of how many values actually are being used.
fnames namelist group

o fnamel: refdal.dat, reference grid data file.

o fname2: outdat.dat, old standard output data file. (This file will be dropped in some

intermediate Version 2.5 revisions.)
o fnamed: subdat.dat, user-specified subgrids.
e fnamej: wave.dat, user-specified complex amplitude on row 1 (for itnput = 2).
o fname5: owave.dat, complex amplitude on last row (for ioutput = 2).

o fnameb: surface.dal, complex amplitude data for constructing an image of the instan-
taneous water surface at the computational resolution. If REF/DIF 1 is given a null

string as the input for this file name, no file is generated.

o fname7: boltomu.dat, magnitude of bottom velocity at reference grid points. If
REF/DIF 1 is given a null string as the input for this file name, no file is gener-
ated.

o fname8: angle.dat, wave directions 6 in degrees at reference grid points. This file is

always generated.
o fnamel: not used at present, supply dummy name.
o fnamel0: refdifl.log, run log for refdif! program.

o fnamell: heighl.dal, wave heights at reference grid locations. This file is always

generated.

o fnamel?: szx.dal, S, components at reference grid locations. If REF/DIF 1is given

a null string as the input for this file name, no file is generated.

e fnamel3: szy.dal, S;, components at reference grid locations. If REF/DIF' 1is given

a null string as the input for this file name, no file is generated.

e fnamely: syy.dat, Sy, components at reference grid locations. If REF/DIF' 1is given

a null string as the input for this file name, no file is generated.

o fnamels: = —depth.dat—, tide-corrected depths at reference grid locations. This file

is always generated.
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inmd

aries.

tbc defaults to a value of zero if an input error is detected.

dzr, dyr :
Reference grid z-spacing and y-spacing, which are assumed to be uniform over the

entire reference grid.

dt:

Depth tolerance value.

ispace, nd:
ispace is switch controlling subdivisions; ispace=0, program attempts its own z sub-

divisions. ispace=1, user specifies x subdivisions.

nd:

nd is the number of y-direction subdivisions (needed in either case).

(1), if(2), if(3):
Dissipation switches; iff(1)=1;turn on turbulent boundary layer; iff(2)=1; turn on
porous bottom damping; iff(3)=1; turn on laminar boundary layers. No damping if

all values are zero.

1Sp:
Switch for user-specified sub-grid specifications. isp=0, no subgrids to be read; isp=1,

subgrids will be read.

unput:

sinpul specifies whether the program or the user will generate the first row of complex
amplitude A values. If iinpui=1, the program constructs A based on the input con-
ditions specified as follows. If iinput=2, the user must specify A in an external data

file wave.dat. This option is not available in LRSS

toutput:
toutpul specifies whether the last computed row of complex amplitudes A are to be
stored in file owave.dat. A value of ioutput=1 skips this option. ioutput=2 turns the

option on.

namelist group

md(izr):

If ispace=1, the z-direction subdivisions are inserted here (one for each reference grid
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2.7 Program Input: Model Control and Wave Data

This section discusses the structure of the input data file indat.dat, which is read in through
logical device number 7un(5). This file contains all the information needed to control the
operations of the program, and all of the input wave data. Reference grid values of depth
dr and currents ur and vr are treated in the following section.

Data is read from tun(5) in both the inref and inwave subroutines. The data is arranged
in several lists and put in the indal.dat file using the namelist convention. The various

namelist groups are defined according to the following prototype namelist statement.

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, dxr, dyr, dt,

ispace, nd, iff, isp, iinput, ioutput

/inmd/ md

/fnames/ fnamel,fname2,fname3,fname4,fname5,fnames,
fname7,fname8,fname9,fnamel10,fnamell,fnamel?2,
fnamel3,fnamel4,fnamelb

/wavesla/ iwave, nfregs

/waves1b/ freqs, tide, nwavs, amp, dir

/waveslc/ thetO, freqs, tide, edens, nwavs, nseed

/waves2/ freqin, tidein

N s = N e

The definition of each input variable follows.

ingrid namelist group

e mr, nr:

Reference grid dimensions. Maximum values are izr, iyr respectively.

wu is switch for physical units; ju=1, MKS; iu=2, English. Program defaults to iu=1

if an error is made on input.

o nlype:
nlype is switch for nonlinearity; nlype=0, linear model; nlype=1, composite model;

nlype=2, Stokes wave model.

e icur:
scur is switch for input current data. icur=0, no currents input; ¢cur=1, currents
input.

icur defaults to a value of zero if an input error is detected.

e ibc:

tbc is the boundary condition switch. ibc=0, closed boundaries; tbc=1, open bound-
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e Running tests with complex initial conditions (as in waves through a breakwater gap,

etc).
e Testing a directional distribution model which is different from the model chosen here.

e Specifying a nearly planar wave field which has height and angle variations along the

y direction.

To serve as an example, consider the case where you wish to specify a wave field having
varying height 2a(y) and direction #(y) along an offshore boundary having nonuniform depth
h(y). Assuming that the local wavenumber k(y) has been determined from the dispersion

relation

2
% = (gk tanh kh)'/? (29)

where T is the wave period, then the complex amplitude A can be specified by
Aly) = a(y)e™) (30)
where the phase function ¥(y) is given by
v() = [ k) sind(u)dy (31)
The discrete values A(j) are then simply given by
A(j) = Aly;);i=1,--+n (32)

Note that this option is not available to users of REF/DIF | in the LRSS

system.
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The use of user-defined subgrids implies that the user will be choosing the grid spacing
of the subgrids. Since grid spacings must be uniform across a grid block, the user should
choose the option, ispace=1 and specify the values of md in the input file, indat.dat. Then,
the program will look for a data array of the correct, pre-specified dimension when it reads
the subgrid data from the file, subdat.dat (unit number iun(2)).

Several aspects of the subgrid data should be noted. Data for depth d and current
velocities u and v need to be specified at each of the subgrid points. These data are input
in the same units, and with the same datum for depth as the data for the reference grid.
Also, note that the subgrid includes the points on its boundaries; for example, the single
subgrid shown in Figure 6 has a dimension of 6 by 6.

The data values on the outer borders of the subgrids should be setup to match with the
linearly interpolated values in the region external to the user-defined subgrid. If the data
do not vary linearly along the subgrid boundaries, there may be some mismatch between
the subgrid boundaries and the external region. An exception to this rule occurs when two
subgrids adjoin each other. Then, care should be taken that the data along the common
boundary match. These common boundary point data are duplicated in the input data,
since each subgrid data set includes the boundaries.

Instructions and formats for creating the subgrid data file subdat.dat are included in

section 2.8.

2.6 User Specification of Complex Amplitude on First Grid Row

This section discusses the option of inputing the values of complex amplitude A for the
first grid row from an external data file. This option is invoked by setting the data value
iinput=2 in line 8 of indat.dat. (See the following section). In the event that the option is
chosen, the data should be stored in a file wave.dat. The format for writing data to the file

should be similar to:

complex a(iy)

write(*,*)(a(j),j=1,n)

The data will be read in by the model subroutine. The data is read in after grid
subdivision in the y direction, and hence n rather than nr data values need to appear in
the file wave.dat. An insufficent number of data points will simply trigger an “end of file”
type of error during the read process.

The user may have any number of reasons for wanting to compute A externally to the

program. Several possibilities are:
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Figure 6: User-defined subgrids
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Figure 5: Interpolation of depth data
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y-direction. Grid spacing in the z-direction is arbitrary, so md’s may differ arbitrarily for
each grid block.
The user must specify the single value of nd in the input data. Two choices may be

made regarding md’s, however.

1. The user may let the program calculate md. The program proceeds by calculating
an average wavenumber along the reference grid row, and uses this to estimate the
wavelength in the grid block. The program then chooses a subdivision so that at
least 5 grid points per wavelength will occur in the grid block. The program checks
to see that this desired number of subdivisions does not exceed the maximum. If it
does, the program reduces the number to the maximum and prints a warning message
indicating that the grid block can not be subdivided finely enough. Computed results
in this case must be regarded as being suspect. The number of subdivisions used is
indicated on the output. The user chooses this option by setting the switch ispace=0

on input.

2. The user may specify each value of md(ir) from ir=1 to (mr-1). This is done by
setting the switch ispace=1 on input, and the values of md are then read in from
the input data file. Note that this choice is necessary if the user-defined subgrids
discussed below are to be used, since the user will be inputting subgrids with pre-
specified spacings. As it is presently written, the program will only print a warning
if it encounters subgrids with ispace=0 chosen; extensive garbling of input data may

result.

After the subdivided grid block is established, the program uses this grid as the actual
computation grid. New values of depth d and ambient current u and v are calculated at the
extra grid points by fitting a twisted surface to the reference grid using linear interpolation.

An example of the resulting bottom topography for a single grid cell is shown in Figure 5.

2.5.2 User-specified Subgrids

In some applications, an important topographic feature may be present at a subgrid scale
within the reference grid. Examples include artificial islands, shoals, borrow pits, etc., which
are superimposed on an otherwise slowly-varying topography which is represented by the
sort of grid resolution appropriate to tidal models. An illustration of such a feature is shown
in Figure 6, where a poorly resolved feature occupies portions of four reference grid cells.
For cases such as this, the program includes the option for the user to input user-defined,
subdivided grid cells in order to specify these features at the level of the computational

grid.

32



Reference Grid

JR=NR

——

<

JR=1

IR=1 “—E IR=MR
F—=x Grid Row Currently Being

Used For Calculations

ND=2 | 2

1[2]3]4(5

MD(IR)=5

Figure 4: Sample grid subdivision
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to just over 200 wavelengths. This range can be extended by increasing izr and/or iz in
the parameter statements. The width of the model domain should be chosen such that
interference from the boundaries does not affect the study area. If the reflective boundary
conditions are used, the extent of boundary influence is usually obvious, particularly when

viewing 2-dimensional plots of the amplitude envelope |A(z,y)].

2.5.1 Grid Subdivision

The only major feature of REF /DIF 1 which is not described in Chapter 1 is the ability to
subdivide the given reference grid into a more finely subdivided computational grid. This
would usually be done in cases where the reference grid spacing is too large to be used
directly for calculations. In this case, the user may specify how the reference grid is to be
subdivided, or the user may tell the program to attempt its own subdivisions.

The maximum reference grid dimensions have been set fairly arbitrarily and may be
changed by modifying the parameter statements at the beginning of each routine in the
program. The grid is large enough to comply with typical grids for various tidal computa-
tional models, which may be used to specify the ambient currents, and get small enough so
that data values do not occupy too much internal storage. It is anticipated that the spacings
dzr and dyr, if based on such a model, may be too large for an accurate integration of the
parabolic model to be performed. Consequently, the model has been arranged so that the
reference grid block between any two adjacent reference grid rows may be subdivided down
to a finer mesh in order to provide sufficient resolution in the computational scheme. This
subdivision process is performed internally in the program (with an exceptional feature to
be described below), and may be controlled by the user or the program.

Remember that the computational scheme proceeds by marching in the z-direction,
and, therefore, the only reference grid information required at any particular step is the
data on row ir, where computation starts, and on row ir+1, where computation ends. The
fine, subdivided mesh is set up on the intervening grid block. An example of a particular
subdivision of a grid block is shown in Figure 4. Here, the choices of z-direction subdivision
md(ir)=5 and nd=2 are illustrated, with md and nd being the number of spaces each
reference grid cell is divided into, rather than the number of extra points being inserted.

Several restrictions are placed on the choice of nd and md’s. First, the maximum di-
mensions of the subdivided grid cell is given by the parameters iz and ¢y. This implies that
any md can be at most (iz-1) and nd can be at most (iy-1)/(nr-1). The maximum number
of added spaces may be increased by increasing iz and iy in the parameter statements.
Further, the y-subdivision specified by nd is applied uniformly along each grid row for the

full extent to the reference grid. No provision is made for variable grid spacing in the
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2.4 Special Installation Instructions

Several features of the program REF/DIF 1 may require some modification or customizing
during program installation on various systems. REF /DIF 1 is written using the features
of FORTRAN 77. No use is made of vectorized solution techniques, so the program should
be useable on a wide range of systems with little or no modification.

If the program is to be used on machines with no upward limit placed on the size of the
compiled, executable code, only one variable has to be checked during the initial installation
of the program. This is the logical device number for the controlling input date file. This

number may vary from system to system. It appears in the program as:

iun(5): logical device number for controlling input data file. (initialized near the top of

subroutine inref).

The supplied version of REF/DIF 1 has this value set to iun(5)=5. All output is
directed to data files with pre-chosen unit numbers.

Many systems require that access to disk files be initialized and terminated by the use
of open and close statements in the program code. Since the parameter list of the open
statement varies from system to system, the user should take care that the open statements
are compatible with the system software being used. The open statements appear near the

top of refdifl and inref. The corresponding close statements appear near the end of refdif1.

2.5 Computational Grids and Grid Interpolation

The reference grid terminology is defined in Figure 3. The grid consists of a mesh of points
with dimensions mr x nrin z and y. The values of mr and nr must be less than or equal to
the parameters txr and iyr whose values are set in the parameter statement in param.h.
Reference grid data of depth dr and ambient current components ur and vr are defined at
the grid points. The program assumes that the z,y coordinate system is established with
the origin at grid point (zrjr)=(1,1). In this manual, we make the distinction between the

> 4r, which is the row of points jr = 1, nr at location ¢r, and “grid block”

terms “grid row’
ir, which is the physical space between grid rows ir and ir+1.

The reference points are separated by spacings dar and dyr which are uniform in the x
and y directions. The spacings dzr and dyr may have arbitrary, independent values.

Values of dr, ur and vr constitute the “reference grid data”. Section 2.8 describes the
required input data file for these quantities.

The computational grid for any particular application should be chosen with care. Since

REF/DIF 1 tries to use at least 5 points per wavelength, the length of the computational

domain in the propagation direction is restricted (with the given parameter statements)
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10.

11.

12.

13.

14.

15.

found in Kirby (1986a) and Kirby and Dalrymple (1986b). The sequence of steps in

fdcalc is as follows:

(a) An implicit step is performed to update complex amplitude A along an entire

grid row.
(b) The model checks for the start or stop of breaking on the updated row.

(c) If the status of breaking changes, the model recomputes the breaking wave dis-

sipation coefficient.

(d) Then, if nonlinearity is being used or breaking status at any point along the row
has changed, the model computes a new estimate of A on the updated row based

on values obtained during the previous iteration.

This series of operations is performed for each row in the subdivided ir grid block,
until the end of the grid defined in grid is reached. Control is then returned to model,

which passes on to the next (ir41) reference grid block.

. ctrida: Utility routine which is called by fdcalc to perform the double sweep elimination

to solve the implicit set of equations.

. diss: Called by con. diss calculates frictional dissipation coeflicients based on values

of the switches read in by inref.

wvnum : Called by model, grid and con. wvnum performs a Newton-Raphson solution

of the linear wave-current dispersion relation to obtain values of the wavenumber k.

rand: Called by model. This function is a simple random number generator used to

initialize the random wave phases if the directional spreading model is being used.

acalc: Called by model. acalc normalizes the directional spectrum energy density over

a 90° sector.
bnum: Called by acalc. bnum computes the Bernoulli number n!/k!(n — k)!
fact: Called by bnum. fact computes the factorial n! of an integer n.

infile: Called by inref. infile provides information needed to define the namelist
input file. For the standard version of the program, the required code is obtained by
including the file infilel.f, and the file name is automatically set to indat.dat. For the
LRSS version of the code, where all file names have to be freely definable, the required
code is obtained by including infile2.f, which establishes the code needed to read the

file name from the command line. This latter option requires the library liblrss.a.
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reference grid values of depth dr, z-direction velocity ur and y-direction velocity vr
from logical device number iun(1). Some data checking is performed. If data is read
in in English units, inref converts it to MKS units using the dconv factor. Output
files are initialized. A description of the data files may be found in sections 2.6-2.8 of

this manual. At the end of the subroutine, control is returned to refdif1.

. tnwave : Called by refdif1. inwave reads in data specifying the initial wave field along
the first row of reference grid points. Data is read from logical device number un(5).
Conversion to MKS units is performed for data read in in English units. Control is

returned to refdif1.

. model : Called from refdifl. model controls execution of the computational part of
the program. For each frequency component specified in the input, model performs

the following series of operations:

(a) Initialize program by calculating the incident wave field on the first grid row.
(b) Then, for each grid block in the reference grid:

e Call grid to perform the grid interpolation specified in the input data.
e Call con to calculate constants on the interpolated grid.

e Call fdcalc to perform the numerical integration of the parabolic equation

over the interpolated subgrid.

The model execution is then complete. Control is returned to refdifI.

. grid : Called by model. grid performs the required interpolation over a single grid
block of the reference grid as specified in the input data.The interpolation is performed
as described in section 2.3. grid checks to see whether a user-specified subgrid feature
should be read in, and reads it in from logical unit number iun(2) if needed. The
interpolated depth grid is then corrected for tidal offset, and checked for surface-
piercing features. These features are modified using the ”thin-film” approach; see

Kirby and Dalrymple (1986a). Control is returned to model.

. con: Called by model. con calculates various constants for the reference grid created

by grid. Control is returned to model.

. fdcalc : Called from model. fdcalc performs the integration of the governing parabolic
equation over the grid defined in grid. The coeflicients of the finite difference form
of the parabolic equation are developed according to the Crank-Nicolson method.

A complete description of the equations and the treatment of nonlinearities may be
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Figure 2: REF/DIF 1: model subroutine level
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2.2 Overview of Operating Manual

This section provides a description of the program structure (section 2.3), followed by some
notes on problems which are likely to be encountered during the installation and use of the
program on different computer systems (section 2.4). Section 2.5 presents the two levels
of grid information used by the program. Section 2.6 describes the option of reading in
the first row of complex amplitude values A from an additional external data file wave.dat
(This option is not available to users of REF/DIF 1 in the LRSS system). The input
data file structure is then discussed. The program reads data in two essentially separate
groups. The first group of data establishes the size of the model grid and gives the wave
conditions to be studied; this group is discussed in section 2.7. The second group of data
gives the reference grid data values and defines any user-specified subgrids; this is discussed
in section 2.8. The structure of the program output is discussed in section 2.9.

A listing of the program is included in Appendix A. Appendix B provides listings of the
pre- and postprocessing programs provided with all versions of REF/DIF 1. Appendix C
provides listings of additional pre-and postprocessing programs which are specific to LRSS.

Finally, Appendix D provides listings for some sample plotting programs.

2.3 Program Outline and Flow Chart

The model REF /DIF 1 is organized in one main program refdif! and fourteen subroutines.
The program does not contain calls to any external package, and should be free standing on
any system. The LRSS version of the program requires access to several linking libraries,
including libdf.a, the HDF library provided by NCSA, and the libraries libezhdf.a and [i-
blrss.a, provided by SAIC for the LRSS system. The program should be a legal code for
any compiler which accepts the full FORTRAN 77 standard language. A possible exception
would be the appearance of namelist statements, which are not part of the FORTRAN 77
standard but which are provided by all compilers we have checked.

REF /DIF 1 is structured in two levels; a main level, which reads in and checks input
data and then starts the operation of the wave model level, and the model level itself, which
performs the actual finite difference calculations. The flow charts for the two levels are

given in Figures 1 and 2. A short description of each routine in the model follows.

1. refdif’: Main program controls the calls to inref and inwave to read in data, and to
model, which performs the actual calculations. No calculations are performed by this

routine.

2. inref : Called by refdifl. inref reads in data controlling reference grid dimensions

and the grid interpolation scheme from logical device number iun(5), and reads in the
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resolution. The program surface.f (or, in the LRSS version, rf2hdf.f) interpolates this data
onto a regularly spaced rectangular grid and stores the surface image. These files are de-
scribed in section 2.9. Finally, the user may store an estimate of the magnitude of the

bottom velocity in a file bottomu.dat.
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file. Since long term users are likely to have their own versions of old indat.dat files, we
have also provided a new program indat-convertv2).f which converts old indat.dat files to
new indat.new files (which should then be renamed). A quick test of the integrity of this
new data file convention could be made by using the old dalgen to generate an indat.dat,
converting it to indat.new, and then comparing it to the file indat.dat generated by the new

datgenv25. The two resulting files should be identical.

Use of param.h file to dimension arrays.

Changing dimensions in REF/DIF 1 in the past has involved a careful search through
a number of subroutines to get all parameter statements revised properly. This has not
been a pleasant process. In addition, the specification of several array variables in namelist
makes it necessary that the dimension of the array in the program generating the data be
the same as the dimension in the program reading the data.

For this reason, we have isolated the parameter statement in a file param.h, which is
then used to dimension all of the programs. This file may be edited in isolation, after which
all programs which are to be used (pre- and post-processing as well as REF /DIF 1) should
be recompiled. (For UNIX users, this updating is automated by the included Makefile).

Stored output data files.

Prior to version 2.5, output was directed to two files. outat.dat was used primarily to
store the complex amplitude data, which could later be used to construct either a wave
height field or an image of the instantaneous surface. Data was stored at the reference grid
spacing. In instances where a large amount of internal subdividing was being done, this
procedure was inadequate for the construction of a picture of the surface, since the surface
undulations are not resolved at the reference grid spacing.

The remainder of output data in older versions was directed either to the screen or to
a file rundat.dat. This included header information and error log as well as z location,
reference phase, height and wave angle at each reference grid point. It has been difficult
to use this information conveniently, since the appearance of a warning or error message in
the output could disturb the file format.

As a result, the output from REF/DIF 1 has been almost completely restructured
in Version 2.5. Values of wave height, wave angle, water depth and (in the near future)
radiation stress components are stored in separate files at the reference grid resolution. The

complex amplitude data needed to construct a surface image is stored at the computational
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2.1.5 Changes Appearing in Version 2.4

Version 2.4 incorporates two revisions to the basic model scheme. The first revision is an
extension to the model equations to handle the Minimax approximation of Kirby (1986b)
as well as the Padé large angle approximation (Booij, 1981; Kirby, 1986a). This algorithm
is not used yet in the released version of the program.

The second revision is the replacement of the add-on noise filtering algorithm with an
algorithm that functions as an imbedded part of the model equation and finite-difference
approximation, as described by Kirby (1993). Additionally, several inconsistencies appear-
ing in input error checking have been corrected. A more robust algorithm for computing

wave angles (due to Medina (1991) ) has been added.

2.1.6 Changes Appearing in Version 2.5

A substantial number of changes appear in Version 2.5. These changes represent a combi-
nation of data format changes and enhanced post-processing, with the addition of several
new computed output variables. Since the use of Matlab is becoming more widespread, we
have included a .m script which we are presently using to present computed results.

Many of the changes in version 2.5 were made in order to include the model in the
Littoral Remote Sensing System (LRSS) developed for the U. S. Navy. In cases where the
changes in data formats were consistent with the vast majority of available Fortran 77 com-
pilers (as in the use of namelist formats), the changes were made directly in REF/DIF
1. In cases where the standard required the use of a non-typical format (as in the use of
the machine-independent binary HDF formats for large arrays), then the data transfer to
and from LRSS is handled using a pre- and post-processing layer. The intent is that the
normal user of REF /DIF 1 should not need access to any tools beyond the usual Fortran
compiler. We caution that namelist is not a standard Fortran 77 feature; however, we have

not found any compilers yet which do not provide this feature.

Revision to indat.dat file structure.

The most readily apparent change to the long-term user of REF/DIF 1 is the change
to the use of namelist to structure the indal.dat data file. The structure of the file and the
meaning of each input variable are described in section 2.7, and the file for each example is
given in Chapter 3.

The program datgen.f supplied with older versions of the program has been updated

and renamed to datgenv2).f. The new version produces the namelist formatted indal.dat
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in the reference Kirby(1986¢). It is recommended that initial runs for a particular site be
done with the default reflective conditions in order to see the magnitude of the boundary
effects and then to use the open conditions for final runs. The open boundary condition is
invoked by choosing a value of ¢bc=1 in the input data.

icur - No Currents Parameter

A new parameter icur is included in the input data, and determines whether or not
the program is to read in current values from the input data files. This change provides
the option of not having to include zero current values on input whenno currents are being

considered.

2.1.2 Changes Appearing in Version 2.1

Version 2.1 represents a minor modification. The change consists of a revision of the input
file format structures for the file indat.dat. The formats for this file have been replaced
by free format read statements, so that the user can enter data separated by comments
without regard to the column structure. Note that data entered in the previously defined

formats will still be read properly, so existing indat.dat files will still work properly.

2.1.3 Changes Appearing in Version 2.2

Version 2.2 includes a revised version of a dissipation filter which is used to damp out noise
after the onset of breaking in the numerical computations. This filter has been found to be
much more suitable in applications to field situations than was the original filter.

In addition, Version 2.2 also provides the capability to input the first row of complex
amplitude A from a new external data file wave.dat. The procedures for specifying wave.dal

are described in section 2.4 of the manual.

2.1.4 Changes Appearing in Version 2.3

Version 2.3 provides a provision to save the last subdivided row of complex valued ampli-
tudes computed on the last model grid row in file owave.dat. This option is potentially
useful if the user wants to perform a run in several segments. owave.dal could then be used
to store the intermediate calculation required to initialize a subsequent model run. The
provision for using this option is described in section 2.5. Use of this option does not affect

any internal model calculations.
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computed complex amplitude A in the lateral (y) direction. Kirby (1986a) has shown that
these components have propagation velocities which can become large in an unbounded
fashion; as a result, they can propagate across the grid, filling the computational domain
with high-wavenumber noise.

Previous versions of REF /DIF 1 have attempted to control the high frequency noise
generated by the breking process using smoothing filters, which are applied to the computed
complex amplitude in between each computational row. In the present version of REF/DIF
1, this procedure is being replaced by a new algorithm which has recently been developed by
Kirby (1993). Reference should be made to that document for a description of the algorithm.
The damping is built into the computational algorithm and is turned on automatically if

breaking has started anywhere in the computational domain.

2 USER’S MANUAL

This chapter provides the operating manual for the program REF/DIF 1. Chapter 3
provides sample documentation and calculations for example problems. A separate Fortran
program datgenv2).fis provided which generates the input data files for these as well as a
number of additional examples. In addition, the programs indat-create.f (which assists the
user in constructing the indat.dat file( and indat-convert.f (which converts old free-format

indat.dat files to new namelist format indat.dat files) are provided.

2.1 REF/DIF 1 Revision History.
2.1.1 Changes Appearing in Version 2.0

Several changes have been made to the program released as Version 1.0 of REF/DIF 1.
These changes are outlined here for convenience.

Directional spectra application

The routine used to specify a directional spectrum as the initial condition for the wave
calculations has been extensively revised and tested. The present model is based on a
Mitsuyasu-type spreading factor and apportions wave directions and energy density in
randomly-sized directional bins. In addition, the original random number generator sup-
plied with Version 1.0 was found to not be sufficiently random, and a new version is supplied
with Version 2.0.

ibc - Open Boundary Condition Parameter

Version 2.0 contains an option to use open lateral boundary conditions, which are de-
signed to be reasonably transparent both to entering and exiting waves, if the topography

near the boundary is reasonably uniform. The theory for these conditions are contained
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here. This wave is then propagated over the bathymetry by the model. The various initial
conditions were discussed in the section, Wave Climate.

As in the solution of any differential equation in a domain, the lateral boundary condi-
tions are important. There are several ways to treat the boundaries; however, none of the
presently existing boundary conditions result in the total transmission of scattered waves.
Therefore, for the REF/DIF 1 model, a totally reflecting condition is generally used for
each side (j = 1 and n). This requires that the specification of the model grid be done with
care, as the reflection of the incident wave from the lateral boundaries can propagate into
the region of interest rapidly and result in erroneous results.

In general, the width of the model should be such that no reflection occurs until far
downwave of the region of interest. As a precaution, a graphical representation of the com-
puted wave field should be examined to determine where the reflection from the boundaries
is important. By using the switch, ibc, partially transmitting boundaries can be used (Kirby,
1986¢). In general, this boundary condition will result in less reflection in the model do-
main; however, since some reflection will occur, it is recommended that runs be carried out
with the reflecting boundary conditions in order to assess the regions potentially affected

by reflection from the model boundaries.

1.5.3 Subgrids

In order to reduce the amount of data input and yet provide the user the ability to prescribe
the fine scale bathymetry in areas of interest, REF/DIF 1 utilizes a coarse scale user-
specified reference grid and a fine scale subgrid, which can have many times the resolution of
the reference grid. The principal purpose of the subgrid is to provide enough computational
points to the numerical model to preserve accuracy. The user specifies the number of subgrid
divisions in the y direction with the parameter nd. If nd=1, then the subgrid spacing in the
y direction is the same as the reference grid. If nd=2, then the model uses twice as many
computational points in the y direction as there are in the reference grid. In the propagation
direction, z, the model will automatically determine the subgrid spacing if ispace has been
set to unity. Otherwise, the user provides the subgrid spacing using the input, mr, which
permits variable spacing in the z direction. For subgrids, the input flag, isp, must be set to

one and an array, isd, must be specified.

1.5.4 Damping

When the large angle parabolic approximation is used as a basis for the computation of wave
fields around islands, the presence of wave breaking, and resulting sharp lateral variations

in wave height, leads to the generation of high-wavenumber spectral components in the
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values of A(%,j) which satisfy Eq.(6) for all ¢ between 1 and m and for all j between 1
and n. The procedure involves expressing all the derivatives in the (z,y) directions in
terms of the complex amplitude at various grid points. For example, the forward difference

representation of
0A A — Aij
Jx Az

If a forward difference is used for the x direction and a central difference representation

at location 1,7 (27)

centered at ¢ is used for the second derivatives in the lateral direction for all the derivatives
in Eq. (6), then an explicit finite difference equation results for A;;; ;. This equation
can be solved directly for all the A;44;,7 = 1,2,3...n, for a given 1, provided appropriate
lateral boundary conditions are prescribed. This explicit representation is not as accurate
as an implicit scheme and therefore an implicit Crank-Nicolson procedure is used for the

amplitude calculations. For a given i row, the Crank-Nicolson scheme can be written
aAipipt1 +bAip1 ;A jo1 = dA;j +edj + fALT -1 (28)

where the coefficients a,b,c,d, e, f involve variable, complex and nonlinear terms. The
amplitudes on the left hand side of this equation are unknown, while the terms on the
right hand side are known, from either the previous calculation or from the initial boundary
condition on j = 1 and n. This equation is solved for all the A;4; ;,7 = 2n — 1 and 7 fixed,
at once by a tridiagonal matrix solution procedure (Carnahan, Luther and Wilkes (1969)),
adapted for complex-valued coefficients. Due to the nonlinearity of the finite difference
equation, nonlinear terms are approximated on a first pass by using the A;; values. Once
the A;4q ; terms are computed, the equation is solved again for A;y; ; using now the just-
calculated values in the nonlinear terms. This two-pass iterative method insures that the
nonlinearities in the model are treated accurately (Kirby and Dalrymple, 1983a). The
solution proceeds by moving one grid row in the z direction (incrementing ¢ by one) and,
using the two-pass implicit-implicit technique, determining the complex amplitude A4;44 ;
for all the values of j on this row. Marching in the wave direction these calculations are
repeated until all the A;; are known for all ¢ and j. While it appears that the Crank-
Nicolson procedure could be time consuming, given that there is a matrix inversion for each
grid row, the coeflicient matrix size is only 3 by n and the matrix inversion procedure is,
in fact, very fast. The procedure is economical on storage as only the values for the rows ¢

and ¢ + 1 are necessary at each calculation.

1.5.2 Initial and Lateral Boundary Conditions

The initial condition is vital for the parabolic model. The furthest seaward grid row,

corresponding to ¢ = 1, is taken as constant depth and the incident wave(s) is prescribed
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1.4.3 Directional spectrum

Often, a cos?™ @ directional spread is used with a given frequency component. This can be
done with REF/DIF 1 by specifying iwave equal to 2 and nwavs to the value of n. The

total energy at frequency, o, is

27 6 — 00
E(o)= ; E, cos®™( 5

) (26)

In order to avoid the problem of waves propagating at large angles to the propagation
direction, fg, the directional distribution of energy is automatically truncated to include
only those directions which contain more than 10% of the total energy.

To prescribe the initial conditions for the model, the directional distribution is dis-
cretized into 31 components, each with an amplitude characteristic of the waves in that
particular directional band. These discrete waves are then assigned random phases and
summed as in Eq. (21).

Note that this directional spectrum is for a given frequency, and not for a continuous
distribution of frequencies as in a true directional spectrum. At the present time, the
REF/DIF 1 model can only calculate waves at a single frequency per calculation. The
model will compute numerous frequencies per computer run (set nfregs greater than one);
however, they are not superimposable, as the wave-wave interactions between different
frequencies are not included. Using the linear mode (niype=0) and superimposing the
results will provide a linear approximation to a directional spectrum.

The problem of computing the shoreward evolution of a directional spectrum of re-
fracting, diffracting and breaking waves has recently been addressed in a new model called
REF/DIF S. This model is essentially an enhancement to REF/DIF 1 which allows for
the simultaneous computation of many wave components on a large vectorizing computer.
Since the amount of computer power required to run REF/DIF S in full spectral mode
is enormous, the single component model REF/DIF 1 will continue to be supported and

developed as well.

1.5 Numerical Development
1.5.1 Crank-Nicolson Technique

The parabolic model is conveniently solved in finite difference form. In order to accomplish
this, the study area bathymetry must be input as a grid with the (z,y) directions, divided
into rectangles of Az and Ay sizes. The complex amplitude A(z,y) will then be sought
at each grid and therefore we can keep track of A by denoting its location, not by (z,y),
but by (¢,7) where ¢ = (¢ — 1)Az and y = (j — 1)Ay. Now we have to determine the
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Large surface piercing islands and causeways which would have surf zones are handled by
the ‘thin film’ technique of Dalrymple, Kirby and Mann (1984b) and Kirby and Dalrymple
(1986a). This procedure permits the easy computation of wave heights around arbitrarily
shaped islands by replacing islands with shoals of extremely shallow depth (1 cm). The wave
breaking routine reduces the wave heights over the shoal to less than one half centimeter,
which results in a wave which carries negligible energy and therefore no longer affects any
physical processes. Thus, the REF/DIF 1 model does not distinguish between islands and
deeper water computationally. However, the model output clearly shows the influence of
the islands, as will be shown in section 3. Examples of wave breaking and the combined
refraction/diffraction model appear in Kirby and Dalrymple (1986a) and Dalrymple et al.
(1984b).

1.4 Wave Climate
1.4.1 Monochromatic waves

While the REF /DIF 1 model is typically used with monochromatic wave trains propagat-
ing in one given direction, there is no intrinsic restriction to this case. As an example, for
a given frequency, the wave direction is determined by the initial wave height distribution
provided by the user on the offshore grid row, corresponding to z = 0. As this row is parallel

to the y axis, the wave is generally prescribed as
A(0,y) = Age™ (24)

where Ag is the given wave amplitude and £ is the wave number in the y direction. The £ is
related to the wave number k by the relationship, £ = ksin 8, where 8 is the angle made by
the wave to the z axis. This case is obtained by using the data switches, iwave and nwavs

set to one.

1.4.2 Discrete directional waves

For several waves with different directions at a given frequency, the following relationship

could be used for the initial wave condition:

nwavs

A0,y) = D Apettny (25)
n=1

The REF/DIF 1 model is equipped to calculate the wave field produced by this boundary
condition for a large number of user-supplied A,s and 6,s (up to 50). This mode is accessed

by iwave=1 and nwavs set to the number of discrete waves to be used.
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1.3.3 Turbulent bottom boundary layer

In the field, the likely wave conditions are such that the bottom boundary layer is turbulent.
In this case, an alternative specification of the energy dissipation must be provided. Utilizing
a Darcy-Weisbach friction factor, f, the dissipation term can be shown to be

B 20kf|Al(1 —1) (21)
~ 3msinh 2kh sinh kh

See Dean and Dalrymple (1984). In order to implement this damping term, the value of
f = 0.01 was assumed. In REF/DIF 1, if the input data switch iff(1)=1, then turbulent

damping is computed at all locations.

1.3.4 Porous sand

Most sea bottoms are porous and the waves induce a flow into the bed. This results in wave
damping due to the Darcy flow in the sand. For beds characterized by a given coeflicient

of permeability, Cp, the damping can be shown to be

gkCp(1 — 1)

w="—""
cosh? kh

2

The coefficient of permeability, C,, has the units of (m?) and is of order 4.5 x 107" m?.

(22)

Liu and Dalrymple (1984) show, for very permeable sands, that the damping is inversely
related to ), and a different w term must be used. However, this case is not likely to occur

in nature. Porous bottom damping is computed in REF/DIF 1 when iff(2) = 1.

1.3.5 Wave breaking

For wave breaking, the model is more complicated. Dally et al. (1985) showed that the rate
of loss of wave energy flux is dependent on the excess of energy flux over a stable value.
This model has been tested for laboratory data for a number of different bottom slopes
and predicts the wave height in the surf zone extremely well. Kirby and Dalrymple (1986a)

show that the dissipation due to wave breaking is given as

KC, (1 (h/HY)

. (23)

where K and « are empirical constants, determined by Dally et al. to be equal to 0.017 and
0.4 respectively. Here, the wave height, H = 2| A|. By using this dissipation model and a
breaking index relation (H > 0.78h) to determine the onset of breaking, the REF /DIF 1

model is able to represent waves both outside and inside of a surf zone. The wave breaking

algorithm is always active in the model.
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and (3), a Stokes model. Of these options, the second will cover a broader range of

water depths and wave heights than the others.

3. The wave direction is confined to a sector £70° to the principal assumed wave di-
rection, due to the use of the minimax wide angle parabolic approximation of Kirby

(1986h).

1.3 Energy Dissipation
1.3.1 General form

Energy dissipation in the model occurs in a number of ways depending on the situation
being modelled. An energy loss term, due to Booij (1981) and expanded by Dalrymple
et al. (1984a), permits the model to treat bottom frictional losses due to rough, porous
or viscous bottoms, surface films, and wave breaking. The linear form of the mild slope

equation with dissipation is
0A 1 9%°A
Jz  k Oy?

where the dissipation factor, w, is given by a number of different forms depending on the

+ wA (18)

nature of the energy dissipation. The factor w is the energy dissipation divided by the

energy and has the units of time™!.

1.3.2 Laminar surface and bottom boundary layers

At the water surface and at the bottom, boundary layers occur due to the action of viscosity.
For a contaminated surface, resulting from surface films (natural or otherwise), a significant
amount of damping occurs, which is dependent on the value of the fluid viscosity. From
Phillips (1966), the surface film damping is

w— oky\/(v/20)(1 —1) (19)

tanh kh

where v is the kinematic viscosity. The term under the square root sign is related to the
thickness of the boundary layer, which is generally small. At the bottom, the boundary

layer damping is
_ 20k\/(v/20)(1 —1)
v sinh 2kh (20)

By setting the input switch, iff(3)=1 in the REF/DIF 1 model, surface and bottom

damping are computed at all locations in the model.
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where the absolute frequency, w, is related to the intrinsic frequency, o, by
w=o0+kU (15)
where the assumption that the wave is primarily travelling in the z direction has been used.

1.2 Assumptions

The REF/DIF 1 model, in parabolic form, has a number of assumptions inherent in it

and it is necessary to discuss these directly. These assumptions are:

1. Mild bottom slope. The mathematical derivation of the model equations assumes that
the variations in the bottom occur over distances which are long in comparison to a
wave length. For the linear model, Booij (1983) performed a comparison between an
accurate numerical model and the mild slope model for waves shoaling on a beach.
He found that for bottom slopes up to 1:3 the mild slope model was accurate and
for steeper slopes it still predicted the trends of wave height changes and reflection

coeflicients correctly.

2. Weak nonlinearity. Strictly, the model is based on a Stokes perturbation expansion
and is therefore restricted to applications where Stokes waves are valid. A measure of

the nonlinearity is the Ursell parameter which is given as

U=HL*/K® (16)

When this parameter exceeds 40, then the Stokes solution is no longer valid. In order
to provide a model which is valid in much shallower water, a heuristic dispersion
relationship developed by Hedges (1976) is provided as an option in the model. This

relationship between the frequency and the water depth is

o? = gktanh (kh(1 +|A|/R)) (17)

In shallow water, this equation matches that of a solitary wave, while in deep water it
asymptotically approaches the linear wave result, neglecting real amplitude dispersive
effects. For this reason, a model with a dispersion relationship which is a smooth
patch between the Hedges form (valid in shallow water) and the Stokes relationship
(valid in deep water) is used. This hybrid model is described in Kirby and Dalrymple
(1986b). There are, as a result of the different dispersion relationships possible, three
options in REF/DIF 1: (1), a linear model, (2), a Stokes-to-Hedges nonlinear model,

11



where

kz* (k’(p - (]2))1‘

Pt o) @)
Al = a1 — bl (8)
AQ =1 + 2(11 — 2b1 (9)
k
A/ = a; — blE (10)

and w is a dissipation factor discussed in the next section. The coefficients ag,a; and
by depend on the aperture width chosen to specify the minimax approximation; see Kirby

(1986). The combination

ag = 1
a; = —-0.5
b = 0 (11)

recovers Radder’s approximation, while the choices

ag = 1
a; = —0.75
by = —0.25 (12)

recover the approximation of Booij (1981). The values of ag, @1 and b; used for the Minimax
approximation depends on the range of angles to be considered; Kirby (1986b) found that
the values for a maximum angular range of 70° gave reasonable results over the range of

angles typically used. The corresponding coeflicient values for this choice are

ap = 0.994733
a; = —0.890065
by = —0.451641 (13)

Equation (6) is the model equation used in REF/DIF 1. At present, the model still utilizes
the Padé approximation form based on the coefficients in (12); testing is underway to extend
the model to the minimax model with coefficients (13).

In the previous two equations, the dispersion relationship relating the angular frequency
of the wave, the depth and the wave number is changed to reflect the Doppler shift due to

currents. The new form of eq. (2) is

(w— kU)* = gk tanh kh (14)

10



excellent. Comparisons between linear and nonlinear parabolic models clearly showed the

importance of the nonlinear dispersion terms in the governing equations.

1.1.4 Wave-current interaction models

Booij (1981), using a Lagrangian approach, developed a version of the mild slope equation
including the influence of current. This model is a weak current model in that the currents
are assumed to be small and any products of currents are neglected as small. Kirby (1984)
presented the corrected form of this mild slope model. A nonlinear correction and the
ability to handle strong currents were added by Kirby and Dalrymple (1983b) and results

for waves interacting with a current jet were obtained. Their equation is

(C,+ )AL+ VA, + i(k—k)(Cg—l—U)A_|_%{<Cg(;l-U)$+ (K) }A

o
1 9 k? 9
- 5 (=vH4,) —oDlAPA=0 (5)
where p = CC, and k = reference wave number, taken as the average wave number along
the y axis, and U is the mean current velocity in the & coordinate direction and V is in the
y direction. The nonlinear term includes D, which is
(cosh 4kh 4+ 8 — 2 tanh? kh)
8sinh® kh

Kirby (1986a) rederived the above equation for a wide angle parabolic approximation,

D=

which allows the study of waves with larger angles of wave incidence with respect to the z
axis. This more accurate equation was used as the basis for earlier versions of REF/DIF
1. The equation has been extended to include the more accurate minimax approximation
(Kirby, 1986b) for the present version of REF/DIF 1. The revised governing equation is
given by

(C,y + U)Ay — 20V A, + ik — aok)(C, + U)A + {% (Cg + 0 ) Ao (K) }A
z Y

g

+oin l(ﬁ— V3 <§)y] T { [UV <§)y] " [UV <§)z] }
+ Z-U;QD|A|2A+ FAT _Tbl { l(p_w) <§)y] e (UV <§)y) }
-y {inU (é)z L 20V (é)y —2UV (é)zy + [(p— V?) <§)y] }

— V), + 3D (?) - dafur (é) + 50 ()]

+ ikwU(ag—1) (é) =0 (6)

g




1.1.2 Diffraction models

In contrast to the mild slope model which is valid for varying bathymetry, researchers in
the area of wave diffraction were developing models for constant bottom applications. For
example, Mei and Tuck (1980) developed a simple parabolic equation for wave diffraction
and applied it to the diffraction of waves by a slender island. Their equation is
0A i 0%A
B T oL AE (3)
dzx 2k 0y?
where A is a complex amplitude related to the water surface displacement by

n= Aei (kz—ot) (4)

Yue and Mei (1980), using a multiple scales approach, developed a nonlinear form of this
equation, which accurately predicts the propagation of a third order Stokes wave. A striking
result of their numerical experiments was the development of Mach stem reflection due to
the reflection of obliquely incident waves from a breakwater. This phenomenon is uniquely
a nonlinear effect and not predictable from a linear refraction theory.

The parabolic model described below combines the essential features of the two ap-
proaches described above. The variable depth features of the mild-slope equation (along
with extensions to include effects of wave-current interaction) are retained, but the model

is developed in parabolic form and in terms of a complex amplitude A.

1.1.3 Nonlinear combined refraction/diffraction models

Kirby (1983), using a Lagrangian approach, and Kirby and Dalrymple (1983a), with a
multiple scales technique, developed the predecessor to the REF/DIF 1 model, which
bridged the gap between the nonlinear diffraction models and the linear mild slope equation.
This model can be written in several forms depending on the application. The hyperbolic
form, for time dependent applications, and the elliptic form, for steady state problems,
require the use of boundary conditions on all sides of the model domain. This is a difficult
requirement, as the reflected wave at a boundary is not generally known a priori. These
models, however, have the advantage that there is no restriction on the wave direction.

A detailed comparison of results of the weakly-nonlinear model of Kirby and Dalrym-
ple(1983a) to laboratory data was shown by Kirby and Dalrymple (1984). The laboratory
test, conducted at the Delft Hydraulics Laboratory by Berkhoff, Booij and Radder (1982),
consisted of determining the wave amplitude over a shoal on a sloping bottom. While re-
sults predicted by ray tracing techniques were shown by Berkhoff, Booij and Radder to be

very poor, the agreement between the weakly-nonlinear model and the laboratory data was



Berkhoff’s equation is known as the mild slope equation. It is written in terms of the

surface displacement, n(z,y). The equation, in terms of horizontal gradient operator, is

C
Vi (CCVin) + 0% = 0 (1)
Here,
C = 4/(g/k)tanhkh, the wave celerity,
Cy, = C{1+2kh/sinh2kh}/2, the group velocity,

where the local water depth is h(z,y) and ¢ is the acceleration of gravity. The local wave
number, k(z,y), is related to the angular frequency of the waves, o, and the water depth h

by the linear dispersion relationship,

o? = gktanhkh (2)

The model equation (1) is an approximation; however, it is quite good even for mod-
erately large local bottom slopes (see Booij, 1983). In both deep and shallow water, it is
exact. Numerous authors have applied the mild slope model to various examples, primarily
using finite element techniques. See, for example, Jonsson and Skovgaard (1979), Bettess
and Zienkiewicz (1977), and Houston (1981).

For the linear mild slope equation, Radder (1979) developed a parabolic model, which
had several advantages over the elliptic form presented by Berkhoff. First, the boundary
condition at the downwave end of the model area is no longer necessary and, secondly, very
efficient solution techniques are available for the finite difference form of the model. Radder
used a splitting matrix approach, which involves separating the wave field into a forward
propagating wave and a backward propagating wave, and then neglecting the backward
scattered wave (which is justified in most applications as only the forward propagating wave
is used for design). Radder’s approximation for derivatives transverse to the wave direction
results in a restriction on his parabolic model: the waves must propagate within 45° of the
assumed wave direction. Booij (1981) also developed a splitting of the elliptic equation,
but his procedure included more terms in the approximation to the lateral derivative and
therefore his procedure enables the parabolic model to handle waves propagating within
60° of the assumed direction. Booij’s procedure has been used in previous versions of the
REF/DIF 1 model (up through version 2.3).

More recently, Kirby (1986b) has developed an extension to the Booij approximation
based on a Minimax principle, which further extends the range of validity of the model
equations. The wave-current version of the resulting model is included here for the first

time, and represents one of the chief enhancements in Version 2.4.



not modelled and are neglected. This means, in general, wave reflection phenomena are not
reproduced correctly.

Combined refraction/diffraction models are uniquely suited for the calculation of wave
heights and wave direction in areas where one or both of these effects are present. Examples
include the determination of wave heights in a bay given the offshore wave heights, periods
and directions, and determination of the amount of wave energy penetrating an island
chain, or calculation of the sheltering and hence the disturbance of the littoral processes by
an island situated near a shoreline. They are not intended to replace diffraction theories
currently in use for wave force calculations.

The weakly nonlinear combined refraction and diffraction model described here, denoted
REF/DIF 1, is based on a Stokes expansion of the water wave problem and includes the
third order correction to the wave phase speed. The wave height is known to second order
(Liu and Tsay (1984)). It should be noted that it is not a complete third order theory, as
all the third order terms are not retained. Known ambient currents, which effect the height
and direction of wave propagation, are input for the model and enable it to predict waves
where currents may be strong.

The application of the theoretical model to practical situations involves the use of a
parabolic approximation, which restricts the model to cases where the wave propagation
direction is within £60° of the assumed wave direction, and the use of finite difference
techniques for the wave amplitude, which results in tridiagonal matrices, which are compu-
tationally very fast to invert.

The REF/DIF 1 model is described in detail in this manual, which also documents
the application of the model to actual examples and provides explicit descriptions of the

input and output.

1.1 Wave Models
1.1.1 Mild slope equation

The problem of water waves propagating over irregular bathymetry in arbitrary directions is
a three-dimensional problem and involves complicated nonlinear boundary condition. Very
few solutions to the three dimensional problem exist and those that do are only for flat
bottoms. In one horizontal dimension, sophisticated models by Chu and Mei (1970) and
Djordjevic and Redekopp (1978) predict the behavior of Stokes waves over slowly varying
bathymetry. In order to simplify the problem in three dimensions, Berkhoff (1972), noted
that the important properties of linear progressive water waves could be predicted by a
weighted vertically integrated model. (The vertical integration reduces the problem to only

the two horizontal dimensions, z and y.)



1 THEORETICAL BACKGROUND

The propagation of water waves over irregular bottom bathymetry and around islands
involves many processes — shoaling, refraction, energy dissipation and diffraction. Until
recently, only very approximate models existed to predict the wave behavior due to these
effects. This manual describes the weakly nonlinear combined refraction and diffraction
model initialy developed by Kirby and Dalrymple (1983a), which incorporates all of the
effects mentioned above.

The practical analysis of the refraction of water waves has generally been carried out
in the past using ray tracing techniques. This technique does not include wave diffraction,
and therefore it is inaccurate whenever diffraction effects are important. Often due to
complexities in the bottom topography, wave tracing diagrams have many intersecting wave
rays which leads to difficulties in interpretation, as the theory predicts infinite wave heights
at these locations. Recently, finite difference refraction models have been developed which
have the advantage of providing wave heights and directions on a model grid rather than
on irregularly spaced rays (see, for example, Dalrymple (1988, 1991) ).

The diffraction of water waves around simple structures such as an offshore breakwater
has been obtained analytically for a constant water depth, Sommerfeld (1896). Diagrams
of the wave heights in the vicinity of such a structure have been presented by the Corps
of Engineers (1973, also Wiegel, 1962). For a cylindrical structure, MacCamy and Fuchs
(1954) presented the constant depth solution. These solutions give not only the wave height
transmitted past the structure, but also the scattered, or reflected, wave radiating away
from the structure. Generalized versions of these diffraction problems, using numerical
techniques and the Green’s function method, have yielded very powerful procedures for
wave force calculation for cases where the drag force is much smaller than the inertia force.

In order to incorporate diffractive effects, the general practice has been to suspend
refraction in areas where diffraction is dominant and only permit diffraction there, using
Sommerfeld’s analytic solution for a flat bottom. Far from the diffraction area, refraction
is resumed. This ad-hoc technique clearly is inaccurate, but does permit the inclusion of
diffraction in an approximate way.

Combined refraction/diffraction models include both effects explicitly, thus permitting
the modelling of waves in regions where the bathymetry is irregular and where diffraction
is important. Regions where wave rays cross due to local focussing or where caustics are
caused by other means are treated correctly by the models and no infinite wave heights are
predicted. The models, developed in parabolic form, do not predict the waves which are

scattered upwave; that is, waves which are reflected directly back the way they came are
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