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Clawpack is a library for solving nonlinear hyperbolic partial differential equations using high-resolution finite volume 

methods based on Riemann solvers and limiters. It supports Adaptive Mesh Refinement (AMR), which is essential in 

solving multi-scale problems. Recently, we added capabilities to accelerate the code by using the Graphics Process Unit 

(GPU). Routines that manage CPU and GPU AMR data and facilitate the execution of GPU kernels are added. 

Customized and CPU thread-safe memory managers are designed to manage GPU and CPU memory pools, which is 

essential in eliminating the overhead of memory allocation and de-allocation. A global reduction is conducted every time 

step for dynamically adjusting the time step based on Courant number restrictions. Some small GPU kernels are merged 

into bigger kernels, which greatly reduces kernel launching overhead. A speed-up between 2 and 3 for the total running 

time is observed in an acoustics benchmark problem.
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Introduction

Adaptive Mesh Refinement (AMR)

• Customized GPU and CPU Memory Allocators
• Allocating system CPU/GPU memories by calling CUDA runtime API directly has a very large overhead (can take 

up to 80% of the computational time).

• We wrote memory allocator that manages pre-allocated CPU and GPU memory pools.

• This type of overhead is almost completely removed.

Profiling results BEFORE using memory pool (All gaps between blocks in colors represent time spent 

on allocating GPU memory. The blocks represent time spent on actual computation on GPUs)

Allocate memory

use memory pool

Profiling results AFTER using memory pool (There is almost no gap between blocks)

Hyperbolic PDEs in form:

Cell approximation:

Wave propagation algorithm:

• Updating process:
When the fine grid patches catch up with the coarse grid patches in 

time then the solution in coarse grid cells covered by any fine grid 

cell will be over-written by the average solution in fine grid cells.

A 2D coarse grid patch and a nested fine grid patch. i and 

j are index for the coarse gird in x- and y-directions. m 

and b are index for the fine gird in x- and y-directions

• Conservation fix:
After the updating process, solution in coarse cells that are next 

to the coarse-fine grid patch interface must be modified to 

preserve global conservation of state variables. 

where C1, C2 and C3 are modification terms and are functions 

of waves and fluxes at the coarse-fine grid patch interface.

A flow chart of AMR algorithm including 1) advancing 

solution, 2) updating process 3) and conservation fix. 

Assume at least two levels of grid patches exist.

Time stepping with AMR grid patches.

Benchmark and Results
• PDEs solved:

A linearized 2D acoustic equation:

where

• Machines used:
1. A single NVIDIA Kepler K20x GPU with a 16-core AMD Opteron 6274 CPU running at 2.2 GHz as the host;

2. A single NVIDIA Pascal 100 GPU with a 20-core Intel E5-2698 CPU running at 2.2 GHz as the host (but only 16 

CPU threads are used for fair comparison with others);

3. A single 16-core AMD Opteron 6274 CPU running at 2.2 GHz;

4. A single 16-core Intel Xeon E-2650 CPU running at 2.0 GHz;
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Snapshots of the simulation at t = 0 (top) and t = 0.7 (bottom). (a) and (b) show pressure field with only level 1 AMR grid patches; (c) and (d) show 

u-velocity field with only level 2 AMR grid patches; (e) and (f) show v-velocity field with only level 3 AMR grid patches. Note that only grid patch 

edges, not grid cells, are showed.

Running Time (in second) of different sections of the code. From left to right: 1) Time on advancing solution and saving fluxes for later use in 

conservation fix; 2) Time on filling ghost cells; 3) Time on regridding; 4) Time on the updating process; 5) Time on all other overhead; 6) Total 

running time

Code Design and Implementations

• Pipeline for Hiding Data Transfer 

• Benchmark setup:
A total of 3 levels of AMR grids are used with refinement ratios of 2 between each two levels. 

The computational domain is square with 1000 by 1000 cells on the base level, leading to an effective 4000-by-4000-

cell resolution on the finest level

• Simulation results and performance:

• The Influence of AMR Parameters:
 Cutoff: specifies the minimum ratio of the number of flagged cells to all cells on a grid patch. A larger cutoff results 

in a larger collection of smaller grid patches on each level, chosen such that each grid patch does not contain too 

many unflagged cells. As a result, there are fewer cells in total.

 Regrid interval: specifies how frequent the regridding process is conducted. If regrid interval is a, usually an 

extra layer of a cells surrounding the original flagged cells will be flagged during the regridding process, such that 

the waves in the solution do not propagate beyond the refined region before the next regridding process. As a result, 

each grid patch is approximately a cells wider at each side and there are more cells in the entire domain. 

Total Number of Cells Advanced on All Levels During the 

Entire Simulation.

Average Number of Grid Patches on All Levels at Each Time 

Step.
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Running time for different choices of the two parameters:
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