From flames to flux: how wildfires alter soil formation and sediment dynamics
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1. Introduction Model driver Parameterization

Wildfires occur across diverse terrestrial landscapes and are widely studied for their socio-economic consequences. It is well known
that geomorphic processes respond to fire (McGuire et al., 2024), as it can reduce vegetation and soil infiltration capacity, thus
increasing erosion by runoff and fluvial incision. Wildfire-induced erosion can change soil depth, possibly exposing less weathered
material and increasing soil production rates. Despite the knowledge on the effects of fire on hydrological and geomorphic processes,
studies examining how wildfire-induced changes in soil production rates influence catchment-wide sediment fluxes are still lacking.
Here, we propose to use the Landlab modeling framework to explore how wildfire regimes and soil production interact to control
sediment mobilization in a landscape. Our preliminary results show that over a centennial timescale, sediment flux peaks occur after
high magnitude fires. However, there is a decrease in sediment flux peaks over a millennial timescale, suggesting that erosion is
outpacing soil production.

» Import Python libraries and Landlab components . Parameterizing SpacelLargeScaleEroder,
» Creating raster grid and defining size, resolution, and boundary ExponentialWeatherer,

conditions DepthDependentDiffuser, Burner, and
» Adding random topography and noise ErodibilityStepper
» Evolving topography to steady state » Defining how much erodibility and
» Adding soil layer and defining bedrock elevation maximum SPR increase after a fire
« Components parameterization » Defining fire frequency and erodibility
» Run iterations, keeping track of fire occurrence and sediment decay time

fluxes for every catchment » Defining total runtime and timestep

o Export and visualize outputs

2. Methods

Inventory of wildfires in Calabria, Southern Italy (EFFIS)

Wildfire simulation

. Modification of available python modules to generate Topography
fires at random locations within a the grid (Burner and
ErodibilityStepper)

» Fires are generated based on a frequency-area

distribution dataset e
» Fire sizes are sampled from this distribution
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3. Preliminary results
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Tracking sediment yield over time (100 and 1000 years) 4. Conclusions
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