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Abstract

Sediment plumes are typically easy to identify in satellite imagery and there is a great interest in being able to measure

suspended sediment concentrations (SSC) from space or airborne instruments. The standard approach to this problem to

date has been to try to determine the spectral signatures of different suspended particle mixtures, either empirically or

theoretically, and to thereby develop transfer functions that convert multi-band reflectances to SSC. Although this

approach has met with some success, there is not yet a robust and accurate algorithm to quantify SSC in plumes in the

nearshore environment under varying conditions. This paper describes a completely different and therefore complementary

approach to this problem that is based in the hydrodynamics of turbulent 2D jets and the manner in which sediment

concentration must decrease along the centerline of a plume. The only data requirement is a measurement or estimate of

initial sediment concentrations by grainsize at the river mouth. The end result is a transfer function derived from the

physics of plumes that allows pixels in remotely sensed images of plumes to be assigned absolute SSC values by particle size

in units of kg=m3. This paper therefore has the following key goals: (1) to review and extend known results for 2D

turbulent jets and sediment plumes, (2) to derive bounds for how SSC must decrease along the centerline of a plume and (3)

to show how these results can be used to assign SSC values in sediment plume images. Applications and efforts to validate

this approach will be presented in a companion paper.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Plumes of suspended particulates (sediment and
biological) are readily visible in spectral imagery of
the oceans and coastal zones. To even the casual
observer they result from river sediment discharges,
e front matter r 2008 Elsevier Ltd. All rights reserved
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wave and tidal erosion of the seabed or shorelines,
pelagic ‘‘blooms’’ and spawnings, aeolian dust
clouds and human activities. Because they are so
obvious, much effort has been put into obtaining
the particulate loads (concentrations) in absolute
terms such as kg=m3. For the most part these efforts
have employed the deterministic and statistical tools
of spectral analysis, which rests on the assumption
that different components will have an identifiable
spectral signature in reflectance. The premise of
.
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Nomenclature

a local constant, as needed
A an unknown function, as needed
b local constant, as needed
B an unknown function, as needed
b0 river mouth width
c local constant, as needed
ck local constant, as needed (integer k)
C depth-averaged suspended sediment con-

centration
C0 C at river mouth center
C1 Albertson experimental constant (not a

concentration)
Cd drag coefficient, see Appendix B
Ck C for the kth grainsize class
d depth, for buoyant plume or river mouth
D suspended sediment grainsize, mm
f density function or the Coriolis para-

meter, 2O sinðfÞ, s�1

F function in similarity solution, see Sec-
tion 3.6

G an unknown function, as needed
i; j; k integer indices, as needed
I inventory of suspended sediment
I0 I at river mouth center
Ik I for the kth grainsize class
J an unknown function, as needed
K turbulent eddy viscosity, a scalar field
Ki K in the inner zone
‘ Prandtl’s mixing length
L characteristic length scale
M total flux of x-momentum
p an exponent, see Eq. (4.37)
P mean pressure, a scalar field
r radius or radius of curvature
R reflectance, see Eq. (2.1)
s similarity variable, s y=x

s0 nonzero s-value such that vðx; s0Þ ¼ 0

u x-component of velocity field
u0 u at river mouth center
u1 cross-flow velocity, Appendix B
uc u on jet centerline, see Section 3.3
ui u in the inner zone
t time
T period, inertial circle motion
U characteristic velocity
v y-component of velocity field
v0 an initial value of v

vi v in the inner zone
w see Eq. (3.23)
x offshore distance, Cartesian coordinate
x0 x at the river mouth center
x1 x at center of inertial circle
xa dimensionless length of inner zone, a

multiple of b0

xm x at center of Coriolis spiral
y longshore distance, Cartesian coordinate
y0 y at the river mouth center
y1 y at center of inertial circle
ye y at edge of potential core
ym y at center of Coriolis spiral
a the ratio u0=u1

b integral of ½F 0ðsÞ�2 over all s

Z see Section 4.2
l sediment removal rate constant
la shorthand for l=

ffiffiffiffiffi
xa
p

m molecular viscosity
f latitude or parametric curve angle in

Section 3.7
r density of water or sea water
s plume spreading constant, such that s ¼

sy=x

t Reynolds-averaged shear stress,
tðx; yÞ ¼ ru0v0,

x distance along centerline of a deflected jet
O angular velocity of earth, s�1

z vorticity, vx � uy, a scalar field
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these methods—that distinct mixtures have distinct
spectral signatures—implies that they are sensitive
to the details of the mixture. Unfortunately, this
sensitivity also implies that results for one setting
are typically not very portable to other settings, so
extensive field calibrations are required for each
application. The method to be described in this
paper is much less dependent on the composition of
the particles in suspension; it instead depends on the
actual (not Stokes) settling velocity of particles and
therefore depends mainly on particle size and the
tendency to flocculate. It may therefore be more
suitable for applications such as the world-wide
monitoring of sediment plumes and computing the
global flux of sediment from the land to the ocean.

Remotely sensed images show a snapshot of
Nature’s solution to the fluid dynamical problem of
suspended sediment with a proper integration of all
the relevant physics, driving forces and boundary
conditions. The primary limitations to using satellite
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imagery for suspended sediment concentration
(SSC) studies are that: (1) they do not show the
full 3D solution but just the upper surface, (2) the
full time evolution is not available, just snapshots
separated in time and (3) the images show relative
SSC values (low vs. high) rather than absolute SSC
values in kg=m3. However, flow patterns over a
large nearshore region are primarily 2D as long as
the water depth is much less than the size of the
region. Because of this, a 2D image of conditions at
the ocean surface provides most of the flow
geometry of the problem. While numerical simula-
tions can, in principle, also provide the flow
geometry, there is a greater degree of uncertainty
that (1) all of the relevant processes (e.g. frictional
losses) have been well modeled, (2) the boundary
and initial conditions used to drive the model are
correct and (3) nothing important has been left out.
In many cases, the data required to set the boundary
and initial conditions for the model may simply be
unavailable. Another issue with numerical models is
that the time required to model the flow in a region
at the same spatial resolution and grid size as a
satellite image may be prohibitive.

The main idea of this paper is to couple knowl-
edge of the flow geometry provided by a satellite
image with the best-available knowledge regarding
the hydrodynamics of turbulent jets and sediment
plumes as a means of converting satellite images
Fig. 1. NOAA AVHRR satellite images of (a) TSS and (b) SST, overl

wind period in April 1994. Velocity scale is standardized and is show

concentrations range from 0mgL�1 (blue) to 100mgL�1 (orange; see

from 18 to 24 �C. A one-half degree latitude/longitude grid and a 100-m

and Research Foundation. From Journal of Coastal Research, b

Communications Group, a division of Allen Press, Inc.)
into maps of SSC. While instantaneous views of
turbulent jets and plumes often appear to be
somewhat chaotic, with filamentary structures and
vortices that appear and disappear over short
timescales, time-averaging (over minutes, hours or
even days for large plumes) produces images with a
much simpler structure. This kind of time averaging
can be applied to satellite images, but is also the key
idea behind the Reynolds averaging approach that
is widely used to model turbulent flows. Fig. 1
(Walker et al., 2005) shows an image created as the
average of several AVHRR images of the large
sediment plume in the vicinity of the Mississippi
River delta during a high-discharge event in May
1993. Despite the complexities introduced by multi-
ple distributaries and an irregular coastline, this
image bears a strong resemblance to known
similarity solutions for 2D turbulent jets, as will
be seen in later sections.

This paper introduces a novel technique for
deriving SSC from satellite images that employs
known and empirically verified solutions to the
Reynolds-averaged equations that govern turbulent
jets and plumes. The only information required to
apply this technique are (1) an image of relative
SSC values derived from remotely sensed reflectance
data and (2) measurements at a river mouth in the
image, including width, depth, velocity and initial
concentrations as a function of particle size.
ain with ADCP surface current vectors, for a Phase II northeast

n in top left corner of each image. Total suspended solid (TSS)

color wedges on imagery). Sea surface temperatures (SST) range

-depth contour are shown. (Copyright r2005 Coastal Education

y Walker et al., 2005. Reprinted by permission of Alliance
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The method also requires a knowledge of the
removal rate constant for each type of suspended
particle (related to the settling velocity), which in
the case of sediment particles are believed to be
relatively well constrained by measurements and
portable between settings. It will be seen that
because the particles are not passive scalars (like
salinity), the rate at which they are deposited and
therefore removed from the water column plays a
key role in the prediction of SSC. Note that
calibration and information regarding the satellite
sensor are not required.

This paper is organized as follows. Section 2
reviews some existing methods for deriving SSC
from reflectance data. Section 3 provides a fairly
detailed review of existing mathematical models for
2D turbulent jets and introduces some new results
that place existing solutions in the context of a more
general framework. Section 4 reviews a sediment
plume model that is based on 2D turbulent jet
models. A simplified and general form of the model
is presented as a parabolic partial differential
equation (PDE) with nonconstant coefficients, and
several special case solutions are discussed. Methods
for obtaining bounds and a closed-form approx-
imation to the centerline inventory (the vertically
integrated concentration) are then given, with
additional results given in Appendix A. A numerical
approach to solving the 2D plume equation is also
reviewed. In Section 5, it is shown how knowledge
of the centerline inventory can be used to assign
SSC values for every pixel in a satellite image.
Applications and validation of the method will be
presented in a companion paper. The key goal of
the current paper is to lay the mathematical
groundwork for the method. The focus here is on
analytic, closed-form solutions to the equations that
govern turbulent jets and sediment plumes. It will be
seen that a study of these solutions provides
considerable physical insight into different aspects
of the problem, such as the role played by the eddy
viscosity, which is used to parameterize the turbu-
lent shear stress.

2. Existing methods for deriving SSC from images

2.1. SSC from calibration curves

The most common and well-studied approach to
the problem of mapping SSC values from remotely
sensed imagery is to use field and laboratory
data from water–sediment mixtures to establish
empirical relationships between reflectance and
SSC. Polynomial and logarithmic fitting functions
or ‘‘calibration curves’’ are the most commonly
used. The use of individual bands for this purpose is
problematic because of atmospheric variability, and
so band ratio images were used early on (Amos and
Alfoldi, 1979) as relative SSC images since the
rationing provides some level of atmospheric
correction. Over the years, more sophisticated
image-processing techniques have been developed
to create the relative SSC images, including
principal component and eigenvector analysis (To-
pliss, 1984; Amos and Topliss, 1985; Topliss et al.,
1990). Like principal component analysis, spectral
mixture analysis utilizes all of the spectral bands
that are available for a given remote-sensing
instrument. Mertes et al. (1993) applied a linear
spectral mixing analysis to Landsat data using
endmembers that were derived from the laboratory
data of reflectance from water–sediment mixtures
reported by Witte et al. (1981). This technique has
been further explored by Mertes et al. (1998). These
methods, while powerful, still rely on field and/or
laboratory data for water–sediment mixtures that
are similar to those in the remotely sensed scene.
They are also based on the assumption of linear
spectral mixing.

2.2. SSC from radiative transfer models

Building on earlier theoretical work on simplified
radiative transfer models by Gordon et al. (1975)
(which appears to stem from earlier pioneering
work by Preisendorfer, 1961), Stumpf (1987);
Stumpf and Pennock (1989, 1991) proposed a
‘‘general optical equation’’ to relate reflectance to
SSC in turbid waters. This equation has the form

RðlÞ ¼
0:33a

bþ c=ns

¼
0:33ans

bns þ c
(2.1)

where R is reflectance, ns is SSC and a, b and c are
all constants that depend on the optical properties
of the mixture and the wavelength, l. The para-
meters a, b and c are generally not known; instead
Stumpf (1987) determines them from the best fit of
the above form to available AVHRR data.
Although good fits can be obtained, operational
use of this equation depends on the availability of
data for estimating the three unknown parameters
for each wavelength and component material of
interest. The result is that Eq. (1) provides a
theoretically justified alternative fitting function
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for creating calibration curves but still suffers from
the problem that the type of data required is
difficult to obtain and may be unavailable. Conse-
quently, this equation may be more useful if it is
combined with additional information from an
independent method such as the one described in
this paper.

2.3. SSC from numerical hydrodynamic models

Another powerful way to model SSC in a coastal
zone is to employ models that solve the governing
mass and momentum equations numerically. These
results can then be compared with satellite images as
a means of assigning absolute SSC values in the
images. However, while satellite images of sus-
pended sediment show us the actual surface flow
patterns with the sediment as a tracer, numerical
simulations only show approximate flow patterns
and therefore have a higher degree of associated
uncertainty. In a numerical model, there is always
uncertainty as to whether (1) all of the relevant
physical processes (e.g. frictional losses at the bed or
due to turbulence) have been well modeled, (2) the
boundary and initial conditions used to drive the
model are correct (e.g. wind, waves, tides and
bathymetry) and (3) nothing important has been left
out. In many cases, the data required to set the
boundary and initial conditions for the model may
be unavailable, of poor quality, available only at
points instead of spatially or at a coarse resolution.
Another issue with numerical models is that the
time required to model the flow in a region at the
same spatial resolution and grid size as a satellite
image may be prohibitive. The method for deriving
SSC presented in this paper has many of the
advantages of a hydrodynamic approach but with-
out the need to solve the equations numerically.

3. A mathematical model for 2D turbulent jets

3.1. Governing equations for 2D turbulent jets

The well-known Navier–Stokes equations model
the conservation of (x and y) momentum for viscous
fluid flows. As shown by Rajaratnam (1976) and
Abramovich (1963, pp. 52–56) a Reynolds stress
treatment of the Navier–Stokes equations as applied
to the problem of 2D, steady-state turbulent flow
results in the following equations of motion:

uux þ vuy ¼ ðty � PxÞ=r (3.1)
ux þ vy ¼ 0. (3.2)

The y-momentum equation becomes simply Py ¼ 0,
so P ¼ PðxÞ. Here, uðx; yÞ and vðx; yÞ are the mean
(time-averaged) x and y components of the 2D
velocity field, tðx; yÞ ¼ ru0v0 is the turbulent (Rey-
nolds) shear stress (assumed much larger than the
molecular shear stress), Pðx; yÞ is the mean pressure
field, r is the density of water and the subscripts all
represent partial derivatives with respect to x and y.
This common notation for partial derivatives will be
used throughout this paper. The x-axis is taken
along the centerline of the jet and the y-axis
perpendicular to it with the origin at the mouth of
the jet (the river mouth in our case). Eq. (3.2)
expresses conservation of mass for an incompres-
sible fluid. The terms on the left-hand side of (3.1)
are the ‘‘inertial’’ or advection terms and represent
the momentum carried by the flow from one region
to another. The first term on the right-hand side of
(3.1) represents the frictional losses. For a laminar
flow problem, the shear stress would be given by
Newton’s viscosity relation, t ¼ muy, where m is the
dynamic (molecular) viscosity, and these equations
would reduce to Prandtl’s well-known boundary-
layer equations (see Batchelor, 1988, pp. 302, 308,
343). For turbulent flow problems, the turbulent
(Reynolds-averaged) shear stress is typically para-
meterized by either Prandtl’s well-known mixing
length formulation or his eddy viscosity formula-
tion, namely

t ¼ rðluyÞ
2 (3.3)

or

t ¼ rKuy (3.4)

where l is the mixing length. Using Eq. (3.3) leads to
the Tollmien (1926) solution while Eq. (3.4) leads to
the Goertler (1942) solution (see Rajaratnam, 1976,
pp. 14–21; Abramovich, 1963, pp. 108–109) and to
the Albertson et al. (1950) solution (see Sections 3.4
and 3.5). In both formulations (which assume a
certain amount of statistical isotropy in the turbu-
lence), momentum losses are modeled as a ‘‘diffu-
sion of momentum’’ with a length scale that is
related to the size of the turbulent eddies rather than
the molecular length scale that is used in the case of
viscous, laminar flow. The scalar field Kðx; yÞ is
known as the eddy viscosity and plays the role of a
spatially varying diffusion coefficient in the result-
ing equations.
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Note that the pressure gradient term in (3.1) as
well as a term of the form ðKuxÞx are known to be
negligible for the case of a symmetric jet with a
centerline that follows the x-axis. While river
plumes can be modeled as turbulent jets, they are
typically deflected by the Coriolis force and may
also be affected by wind stresses, currents, Kelvin
waves and density effects. In the general case, it
would be necessary to retain both the x and y

momentum equations, with the pressure gradient
terms and additional terms for wind stress, etc. As
with the atmosphere, however, it seems likely that
the ocean will maintain an approximate geostrophic
balance, so that the Coriolis force and wind stress
are almost entirely balanced by pressure gradients
while the inertial terms are balanced mainly by the
friction terms. Note also that the Coriolis force is a
‘‘fictitious’’ force that would not be present in an
inertial reference frame and always acts at right
angles to velocity vectors. These observations will
be used in Section 3.7 to estimate how the centerline
of a river plume should be deflected by the Coriolis
force. Known results for how a jet is deflected by a
cross-flow are given in Appendix B.

Inserting (3.4) into Eq. (3.1), and assuming that
Px ¼ 0, we have

uux þ v uy ¼ ðKuyÞy. (3.5)

Implicit in this turbulent jet model is the assumption
that the jet is 2D (sometimes referred to as a ‘‘slot
jet’’) with a uniform thickness that is set by the
depth of water at the mouth of the river. It is
assumed that the flow is well mixed over this depth,
and that there is very little mixing below this depth
because the fresh water from the river is less dense
than the salt water of the ocean. This results in a
pycnocline that typically persists for a great distance
from the river mouth. In cases where the concentra-
tion of suspended sediment at the river mouth is
large enough to make the density comparable to the
density of seawater, the plume will plunge to the
seafloor. This second type of plume is called
hyperpycnal vs. hypopycnal.

3.2. Nondimensional form of the 2D turbulent

jet equations

We will be working with nondimensionalized
variables throughout this paper which leads to
simpler equations and allows us to solve a large set
of dynamically similar problems with a single
solution. Keep in mind, however, that these results
need to be ‘‘re-dimensionalized’’ when applied to a
particular plume. Variables in Eqs. (3.3)–(3.5) (and
most subsequent equations in this paper) have been
nondimensionalized as follows:

x ¼ x0=b0; y ¼ y0=b0; u ¼ u0=u0; v ¼ v0=u0,

I ¼ I 0=I0; K ¼ K 0=ðu0b0Þ; l ¼ l0b0=u0. (3.6)

Here, u0 is the velocity at the river mouth, b0 is the
river mouth width, I0 is the sediment inventory at
the river mouth, l is the sediment removal rate
constant and primes indicate the dimensional vari-
ables. Note that I0 and l will be discussed in Section
4. As a result of (3.6), the edges of the river mouth
are at y ¼ �1=2 and u ¼ 1 at the river mouth. An
alternate method to nondimensionalize the equa-
tions of motion is given by

x ¼ x0ðl=u0Þ; y ¼ y0=b0; u ¼ u0=u0; v ¼ v0=ðlb0Þ,

I ¼ I 0=I0; K ¼ K 0=ðl b2
0Þ; l ¼ l0b0=u0. (3.7)

It will be seen in Section 4 that method (3.6) leads to
Eq. (4.2), which can be solved numerically. Even
though (4.2) is nondimensional, it must be solved
again whenever a new value of l is encountered.
However, if (3.7) is used instead of (3.6), then
instead of (4.2) we get the equation obtained
from (4.2) by setting l ¼ 1. This would appear to
offer a major advantage since it would only be
necessary to solve that PDE once and then
rescale the result using the measured values that
appear in (3.7) to obtain a solution for any
parameter set, u0, b0, I0 and l. Unfortunately, the
author encountered numerical problems when try-
ing to solve the alternate version of (4.2) that remain
unresolved.

3.3. Velocity on the centerline

The following well-known line of reasoning can
be used to determine how the u-component of
velocity varies along the centerline of a turbulent jet.
(By symmetry, the v-component is simply zero.) By
adding the product of u and the continuity equation
(3.2) to the 2D jet momentum equation (3.5), it can
alternately be written in conservative form as

ðu2Þx þ ðuvÞy ¼ ðKuyÞy. (3.8)

Integrating each term in this equation from y ¼ �1

to 1, the terms with the y-derivatives drop out
(since uv and Kuy are both zero at the limits of y)
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and we find thatZ 1
y¼�1

ðu2Þx dy ¼

Z 1
y¼�1

u2 dy

� �
x

¼ 0. (3.9)

It follows thatZ 1
y¼�1

u2 dy ¼M (3.10)

where M is a constant which represents the total
flux of momentum across every line of constant x,
which is the total amount that exits the river mouth.
In fact, we know that M ¼ 1 since u and the river
width are nondimensional and both are equal to 1 at
the river mouth. Now empirical observations have
shown that cross-sections of u perpendicular to the
centerline always have a similar shape, such that the
u-component of velocity has the functional form

uðx; yÞ

ucðxÞ
¼ G

sy

x

� �
(3.11)

where ucðxÞ is the x-component of velocity on the
centerline and the function G is approximately
Gaussian. Inserting this into the integral and
changing the variable of integration from y to
s ¼ sy=x, we find that

xu2
cðxÞ

s

Z 1
s¼�1

G2ðsÞds ¼M. (3.12)

The similarity variable, s, is dimensionless and is
also equal to s tanðyÞ, where y 2 ð�p=2;p=2Þ is the
angle between the x-axis and the ray that points
from the origin to the point ðx; yÞ. The integral here
evaluates to a constant, b, and M ¼ 1, so solving for
ucðxÞ we find that

ucðxÞ ¼

ffiffiffiffiffiffi
s
bx

r
¼

ffiffiffiffiffi
xa

x

r
. (3.13)

This expression agrees well with experimental data
and can also be derived from dimensional analysis
by recognizing that u must be a function of M and
x. It can be seen that ucðxÞ diverges at the origin
(x ¼ 0), which is known as the pole of the turbulent
jet. However, the experimental work of Albertson
et al. (1950) shows that the similarity of u profiles
does not hold until a distance of more than five river
mouth widths (xa � 5:2) from the river mouth, and
that the centerline velocity is constant up to this
point. Note that the dimensional version of (3.13) is
u0ðx0Þ ¼ u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xa b0=x0

p
. The Albertson solution in

Section 3.5 provides an approximate solution in
the transitional inner zone.
3.4. Goertler’s solution for the 2D turbulent jet model

As mentioned previously, Tollmien (1926) deter-
mined a solution to the 2D turbulent jet model for
the case where Prandtl’s ‘‘old’’ mixing-length
method is used to parameterize the turbulence,
while Goertler (1942) found a solution for the case
where the ‘‘new’’ eddy viscosity method is used.
These two solutions are similar, however, in that
Tollmien assumed that the mixing length, l, was a
function only of x and Goertler made the same
assumption for the eddy viscosity, K . For more
details on Tollmien’s solution, which is given in
implicit form, see Rajaratnam (1976, pp. 14–21) or
Abramovich (1963, pp. 68–76). In this paper we will
restrict attention to the now widely used eddy
viscosity formulation. Goertler’s (dimensional) so-
lution for u, v and K is

uc ¼ u0c

ffiffiffiffiffi
b0

x

r
(3.14)

s ¼
sy

x
(3.15)

u ¼ uc sech
2
ðsÞ (3.16)

v ¼
uc

s
½s sech2ðsÞ � tanhðsÞ=2� (3.17)

K ¼
ucx

4s2
(3.18)

where uc is the centerline (and max) velocity as a
function of x, s is a generalized coordinate that is
constant along lines through the origin, c � 3:50
and s � 7:67. (The constants c and s were
determined from best fits to the experimental data
of Reichardt, 1951.) Note that K ¼ KðxÞ was
assumed. Figs. 2a–d show u, v, K and t for this
solution.

3.5. Albertson’s solution for the 2D turbulent

jet model

Albertson et al. (1950) took a somewhat different
approach which starts with the empirical observa-
tion that cross-sections of uðx; yÞ perpendicular to
the jet centerline are similar to one another and are
well fitted by a Gaussian curve. (Goertler’s solution
is not mentioned by Albertson et al., but is
mentioned in comments by reviewers at the end of
their paper.) A key aspect of their work was a
carefully designed experimental setup that allowed
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Fig. 2. Goertler’s 2D jet solution as images: (a) x-velocity, u, (b) absolute value of y-velocity, jvj, (c) eddy viscosity, K and (d) absolute

value of Reynolds shear stress, jtj. Note that K ¼ KðxÞ in Goertler’s jet solution. A white vertical line shows boundary between inner and

outer zones and white horizontal lines extend from the edges of river mouth. Here xa ¼ 5:75, s ¼ 7:67 and each image spans 70 river

widths. (See Fig. 4.)
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them to produce turbulent jets in air (both 2D and
3D) and measure velocities at significant distances
(nondimensional x up to 2000) from the mouth of
the jet. Their approach also attempted to address
the transitional region in the immediate vicinity of
the jet mouth by dividing the flow field into two
zones. With x and y nondimensionalized by the
mouth width, they found that the boundary
between the inner and outer zones occurred at
x ¼ xa, where

xa ¼
1ffiffiffi
p
p

C1
� 5:176 (3.19)

(mouth widths) and C1 � 0:109 is a constant that
they determined from their experimental results.
The transitional inner zone is called the ‘‘zone of
flow establishment’’, while the outer zone is called
the ‘‘zone of established flow’’. Results for each of
these zones are listed in the next two subsections.
For flow in fjords, Syvitski et al. (1998) identified a
third zone called the ‘‘zone of flow confinement’’
since the plume cannot spread beyond the width of
the fjord.

3.5.1. The zone of flow establishment

This inner zone (xoxa) is further subdivided into
two regions, a wedge-shaped ‘‘potential core’’
region where jyjoyeðxÞ and

yeðxÞ ¼ ½1� ðx=xaÞ�=2 (3.20)

and the region where y4yeðxÞ. Note that yeð0Þ ¼
1
2

and yeðxaÞ ¼ 0. Within the potential core, we have
u ¼ 1, v ¼ 0 and K ¼ 0. Outside of the potential
core where y4yeðxÞ, the following expressions
provide an approximate solution for the velocity
components:

uiðx; yÞ ¼ expð�w2Þ (3.21)

viðx; yÞ ¼
sgnðyÞ

s
we�w2

�

ffiffiffi
p
p

2
erfðwÞ þ

ffiffiffi
p
8

r
ð1� e�w2

Þ

� �
(3.22)

where

wðx; yÞ ¼
s
x

� �
½jyj � yeðxÞ� (3.23)

s ¼
1ffiffiffi
2
p

C1

¼ xa

ffiffiffi
p
2

r
(3.24)

and

erfðxÞ ¼
2ffiffiffi
p
p

Z x

t¼�1

expð�t2Þdt. (3.25)

The function erfðxÞ is the well-known error function.
Equivalent expressions are given by Syvitski et al.
(1998). Note that cross-sections of u in the inner
zone are equal to 1 for ypyeðxÞ and have a
Gaussian shape for y4yeðxÞ. However, since
wðx; yÞ has x in the denominator it plays a role
similar to the standard deviation of the Gaussian
curve, and as x goes to zero, uiðx; yÞ tends towards a
square pulse of unit width (see Fig. 3). A solution
for the outer zone where x4xa will be given in the
next section and we will find that the u expressions
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Fig. 3. Cross-sections through inner zone of Albertson’s 2D jet model. (a) x-velocity, u and (b) y-velocity, v.

S.D. Peckham / Computers & Geosciences 34 (2008) 1198–12221206
for the inner and outer zones match at the
boundary, so that uiðxa; yÞ ¼ uðxa; yÞ and has the
shape of a simple Gaussian curve. It is easily verified
thatZ 1

y¼�1

u2
i ðx; yÞdy ¼ 1 (3.26)

for all xpxa (using the fact that s=xa ¼
ffiffiffiffiffiffiffiffi
p=2

p
) so

that uiðx; yÞ satisfies the integral version of momen-
tum conservation discussed in Section 3.3. More-
over, uiðx; yÞ and viðx; yÞ satisfy the continuity
equation. We also have viðx; yeðxÞÞ ¼ 0 so vi is
continuous across the boundary between the poten-
tial core and the rest of the inner zone. However,
this approximate solution does not obey
viðxa; yÞ ¼ vðxa; yÞ, so that v is not continuous across
the boundary in this two-zone model. The disconti-
nuity is not severe, though, so that numerical results
for Iðx; yÞ are still smooth across the boundary (see
Section 4.4). Although not given in the cited
references, it is also possible to integrate the
momentum equation with ui and vi as given above
to find an expression for Ki for use in the inner zone
outside of the potential core. The result is

Kiðx; yÞ ¼
1

4xa

� �
jyj � yeðxÞ

w2

� �
f½
ffiffiffi
2
p

erfðwÞ � 1�

� ew2

½erfð
ffiffiffi
2
p

wÞ � gðxÞ�g. (3.27)

Note that if we take gðxÞ ¼ 1, then Kiðx; yeðxÞÞ ¼ 0,
so that if we have K ¼ 0 in the potential core (as
commonly assumed), then Ki is continuous across
the boundary between the core and the rest of the
inner zone. However, we then find that Kio0 for
some values of x, Kiðxa; yÞaKðxa; yÞ, and the shape
of the curve in the inner zone does not have the
smooth shape of the curve in the outer zone.
The basic reason for discontinuities between inner
and outer zones at x ¼ xa is that the solution in the
outer zone represents a similarity solution toward
which the solution evolves as x increases seaward.
However, the rate at which the similarity solution is
approached must depend on the initial shape of u at
x ¼ 0, which the Albertson solution takes to be a
square pulse of unit height. The extent to which the
solutions in the inner and outer zones match is also
partly determined by the chosen value of xa, which is
close to 5:2. The parameter s determines the spreading
angle of the plume in both the inner and outer zones
and is proportional to xa (see Eq. (3.13)).

3.5.2. The zone of established flow

In the outer zone (x4xa) of a symmetric,
turbulent jet, empirical (nondimensionalized) mea-
surements of uðx; yÞ can be fit very well by a
Gaussian profile (Albertson et al., 1950). As pointed
out by Reichardt (1951), a Gaussian profile is to be
expected if we view the lateral spread of x-
momentum as a diffusive process. Assuming a
profile of this form, and using our previous result
for ucðxÞ, uðx; yÞ can be expressed as

uc ¼

ffiffiffiffiffi
xa

x

r
(3.28)

s ¼
sy

x
(3.29)

s ¼
1ffiffiffi
2
p

C1

(3.30)

uðx; yÞ ¼ uc expð�s2Þ. (3.31)

A straightforward integration of the equation for
mass conservation for this choice of uðx; yÞ leads to
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an expression for the y-component of velocity
(Syvitski et al., 1998)

vðx; yÞ ¼
uc

s
s expð�s2Þ �

ffiffiffi
p
p

4
erfðsÞ

� �
. (3.32)

The velocity field defined by this uðx; yÞ and vðx; yÞ
was used by both Albertson et al. (1950) and
Syvitski et al. (1998) as a mathematical model for
flow in the zone of established flow. The eddy
viscosity, Kðx; yÞ, that solves the momentum equa-
tion with this choice of u and v was given
graphically by Albertson et al. (1950) and a fit to
Albertson’s curve was given by Syvitski et al. (1998).
It can be shown, however, that the left-hand side of
the momentum equation (for this u and v) can be
written as

uux þ v uy ¼ �
1

8xa

� �
½erf2ðsÞ�yy. (3.33)

Given this fact, the momentum equation becomes
easy to integrate and yields the following closed-
form expression for the (nondimensional) eddy
viscosity

Kðx; yÞ ¼

ffiffiffi
2
p

8s

ffiffiffiffiffi
x

xa

r
erfðsÞ

s

� �
. (3.34)

On the centerline (y ¼ 0 or s ¼ 0) L’Hôpital’s rule
can be used to show that

Kðx; 0Þ ¼
1

4s

ffiffiffiffiffiffiffiffi
2x

pxa

s
. (3.35)
Fig. 4. Albertson’s 2D jet solution as images: (a) x-velocity, u, (b) abso

value of Reynolds shear stress, jtj. A white vertical line shows boundary

from edges of river mouth. Here xa ¼ 5:13, s ¼ 6:43 and each image s
Since s � 6:5, we find that Kðxa; 0Þ � 0:03. Since
Kiðxa; 0Þ ¼ 0, this implies that there is a disconti-
nuity in K on the centerline at x ¼ xa. Plots of u, v,
K and t for this symmetric jet model are shown in
Figs. 4a–d. Cross-sections for v and K for different
values of x are shown in Fig. 5.

3.6. A more general 2D turbulent jet solution

Comparing the expressions for u and v in the
Goertler and Albertson (outer zone) solutions, we
see that they can both be written in the form

uðx; yÞ ¼ ucðxÞF
0ðsÞ (3.36)

vðx; yÞ ¼
ucðxÞ

s
sF 0ðsÞ �

F ðsÞ

2

� �
(3.37)

where sðx; yÞ ¼ s y=x and s is a constant. Requiring
ucðxaÞ ¼ 1 in Eq. (3.13) implies that s ¼ bxa, where
b ¼

R1
�1
½F 0ðsÞ�2 ds. For the Goertler solution we

have F 0ðsÞ ¼ sech2ðsÞ, b ¼ 4=3 and for the Albertson
solution we have F 0ðsÞ ¼ expð�s2Þ, b ¼

ffiffiffiffiffiffiffiffi
p=2

p
. It

turns out that ux þ vy ¼ 0 for any choice of the
function F ðsÞ. (But we require F 0ð0Þ ¼ 1 since u has
been nondimensionalized.) It can also be verified
that

uux þ vuy ¼
�xa

4s2

� �
½F 2ðsÞ�yy. (3.38)

The fact that F ðsÞ is not uniquely determined by the
boundary conditions is a result of introducing the
eddy viscosity, K , to parameterize the Reynolds
lute value of y-velocity, jvj, (c) eddy viscosity, K and (d) absolute

between inner and outer zones and white horizontal lines extend

pans 70 river widths.



ARTICLE IN PRESS

-10 -5 0 5 10
Longshore distance, y

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Lo
ng

sh
or

e 
ve

lo
ci

ty
, v

-10 -5 0 5 10
Longshore distance, y

0.00

0.02

0.04

0.06

0.08

E
dd

y 
vi

sc
os

ity
, K

Fig. 5. Cross-sections through outer zone of Albertson’s 2D jet model. (a) y-velocity, v and (b) eddy viscosity, K .
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shear stress in the turbulent flow field. In the
absence of turbulence, K would be replaced by a
material constant, namely the dynamic (molecular)
viscosity, m. The number of equations would then
equal the number of unknowns and we would not
have the freedom to specify uðx; yÞ. However, with u

and v expressed in terms of an arbitrary function,
F ðsÞ, the momentum equation (3.5) can be inte-
grated for K (via (3.38)) to get

Kðx; yÞ ¼ �
xucðxÞ

2s2

� �
F ðsÞF 0ðsÞ

F 00ðsÞ

� �
(3.39)

tðx; yÞ ¼ rKuy ¼ �
r
2s

� �
u2

cðxÞF ðsÞF
0ðsÞ. (3.40)

Note that if F ð0Þ ¼ 0, as it does in both the Goertler
and Albertson solutions, then the shear stress on the
centerline, tðx; 0Þ, is also equal to zero. The
vorticity, z ¼ vx � uy, can also be expressed in terms
of ucðxÞ and F ðsÞ and is given by

zðx; yÞ ¼
�ucðxÞ

sx
s2 þ s2
	 


F 00ðsÞ þ sF 0ðsÞ �
F ðsÞ

4

� �
.

(3.41)

For the plume centerline (y ¼ 0 or s ¼ 0), we have
F 0ð0Þ ¼ 1 (since the equations are nondimensional)
and F 00ð0Þ ¼ 0 (since the velocity is maximum at
s ¼ 0), and we can again use L’Hôpital’s rule to
show that

Kðx; 0Þ ¼ �
xucðxÞ

2s2

� �
lim
s!0
fF 000ðsÞg

� ��1
. (3.42)

Since ucðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
xa=x

p
, we always have Kðx; 0Þ ¼

ck

ffiffiffi
x
p

, where ck is a constant that depends on the
choice F ðsÞ. For the Goertler solution
we have

F ðsÞ ¼ tanhðsÞ (3.43)

F 0ðsÞ ¼ sech2ðsÞ (3.44)

F 00ðsÞ ¼ �2 sech2ðsÞ tanhðsÞ (3.45)

F 000ðsÞ ¼ 2½coshð2sÞ � 2� sech4ðsÞ (3.46)

so that the F term in (3.39) simplifies to �1
2
and we

have K ¼ KðxÞ. This appears to be the only solution
where K has no y-dependence. For the Albertson
solution we have

F ðsÞ ¼

ffiffiffi
p
p

2
erfðsÞ (3.47)

F 0ðsÞ ¼ expð�s2Þ (3.48)

F 00ðsÞ ¼ �2s expð�s2Þ (3.49)

F 000ðsÞ ¼ 2ð2s2 � 1Þ expð�s2Þ. (3.50)

Interestingly, even though F ðsÞ is an even function
(symmetric about the centerline) for the Goertler
and Albertson solutions, the mass and momentum
equations are satisfied for any F ðsÞ, even those that
are asymmetrical. In every case we will have
ucðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
xa=x

p
, since this was shown to follow

whenever u takes the form of Eq. (3.11).
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3.6.1. Oscillations in cross-sections of v

It can be seen from Eq. (3.37) that vðx; yÞ
generally has three roots, one at s ¼ 0 and two
more given by s ¼ �s0, where s0 is close to 1. It
follows that for any fixed value of x, the sign of v

will change three times over the full range of s. The
sign of v is positive (and toward the centerline) for
so� s0, negative (and away from the centerline) for
�s0oso0, positive (and away from the centerline)
for 0osos0, and negative (and toward the centerline)
for s4s0. The basic reason for this behavior is that the
plume must diverge from the centerline but also
entrains water as it enters the sea in order to satisfy
continuity. This behavior is clearly visible in Fig. 4b.
3.7. Coriolis deflection of a 2D turbulent jet

The Rossby number measures the relative im-
portance of the Coriolis effect and is given by

Ro ¼
U

Lf
(3.51)

where U is a characteristic velocity, L is a character-
istic length scale, f ¼ 2O sinðfÞ is the Coriolis
parameter, O is the angular velocity of the earth
(O ¼ 2p=86164 � 7:292� 10�5 rad=s), and f is the
latitude. (Note that the rotational period of the earth
is 4min less than 24h.) A Rossby number of 1
indicates that the Coriolis and inertial forces are of the
same order, and typical values for river plumes (e.g.
f � 10�4, U ¼ 1m=s, L ¼ 10 km) give Rossby num-
bers close to 1. However, there is some freedom in the
choice of L, which may be taken to be a measurement
from the plume itself or the width of the river mouth.

If we view the plume solutions given previously as
those corresponding to an inertial reference frame,
then it seems that we should be able to use our
knowledge of how the centerline velocity decreases
with distance from the mouth to determine how the
centerline will be deflected by the Coriolis force.
One approach is to try to extend the concept and
equations for inertial circles which are well known
in meteorology. For more information on the
Coriolis effect and inertial circles, see Stommel
and Moore (1989), Durran (1993), Persson (1998,
2005), Phillips (2000) and McIntyre (2000).

The idea is to assume that f is constant in the vicinity
of the river mouth at ðx0; y0Þ (the well-known f-plane
approximation) and then solve the pair of equations

du

dt
¼ fv (3.52)
dv

dt
¼ �fu (3.53)

to get

uðtÞ ¼ u0 cosðftÞ þ v0 sinðftÞ (3.54)

vðtÞ ¼ v0 cosðftÞ � u0 sinðftÞ (3.55)

xðtÞ ¼ x0 þ ðv0=f Þ½1� cosðftÞ� þ ðu0=f Þ sinðftÞ

(3.56)

yðtÞ ¼ y0 � ðu0=f Þ½1� cosðftÞ� þ ðv0=f Þ sinðftÞ.

(3.57)

Here, the x-axis points east and the y-axis points
north. The poles and the equator are special and
permit other solutions as discussed in the cited
references. If we define x1 ¼ x0 þ v0=f and
y1 ¼ y0 � u0=f , it is easily shown that
ðx� x1Þ

2
þ ðy� y1Þ

2
¼ ðu2

0 þ v20Þ=f 2, or that the tra-
jectory is that of a circle centered at ðx1; y1Þ with a

radius of r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
0 þ v20

q
=f and a period of T ¼ 2p=f .

At mid-latitudes, f � 10�4, so a fluid parcel with a
constant speed of 1m=s is predicted to travel in a circle
of radius of about 10km with a period of about 0:7
days. This analysis provides a good approximate
solution for objects that travel at constant velocity

(i.e. u2 þ v2 ¼ u2
0 þ v20) and do not get too far from the

origin (since f varies with latitude, f). It also properly
neglects the centrifugal force, since its horizontal
component is balanced by the horizontal component
of gravity on an oblate spheroid (like earth) and it
vertical component is incorporated into the definition
of the gravitational constant (Durran, 1993). It is
frequently said in meteorology that the effect of the
Coriolis force acting alone is to return a fluid parcel to
its starting point. In the case of river plumes, however,
once the trajectory has turned to point back toward
the shoreline it is constrained to follow the shoreline
and the Coriolis force will cause it to stay close,
creating a coastal current. As discussed by Fong and
Geyer (2002), an unsteady ‘‘bulge’’ is also sometimes
formed near the river mouth, although not as
pronounced in observations as in numerical simula-
tions.

As shown above, the inertial circle trajectories are
for fluid parcels that travel at a constant speed (as
measured by an observer on the rotating earth) in
the absence of pressure gradients and other forces.
From the results of Section 3.3, however, we know
that the velocity on the centerline of a plume is not
constant, but gradually decreases with distance
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from the mouth according to u ¼ dx=dt ¼ c=
ffiffiffi
x
p

,
where c ¼ u0

ffiffiffiffiffiffiffiffiffi
xab0

p
. Integrating, we find that

xðtÞ ¼
3ct

2

� �2=3

(3.58)

uðtÞ ¼ c2=3
3t

2

� ��1=3
. (3.59)

These two equations give the position and speed of
a fluid parcel that starts at x ¼ b0 xa when t ¼ ta.
Recall that xa � 5:2. Since the radius of an inertial
circle is proportional to the speed (as shown above),
we expect that as the parcel slows down the radius
of curvature of its trajectory should become smaller.

Fig. 6 from Hitchcock et al. (1997) shows eight
drifter trajectories measured at hourly intervals for
the peak annual discharge event for the Mississippi
River flood of May 1993. This event had a discharge
of over (30� 103 m3 s�1) which is more than twice
the 63-year mean for the month of May
(14� 103 m3 s�1) and about 50% larger than the
discharge of the great flood of August 1993
(20� 103 m3 s�1). This image provides a reasonable
test case for analyzing the Coriolis effect on river
plumes due to (1) the unusually large discharge
(about 30� 103 m3=s), (2) the offset of the main
Fig. 6. Eight drifter paths overlain on an image of sea surface

temperature for peak annual discharge event of May 1993 for

Mississippi River. Note that radius of curvature decreases along a

path. (Copyright r1997 Elsevier. From Hitchcock et al., 1997,

used with permission.)
mouth from the shoreline (by about 10 km), (3) the
curved shape of the coastline to the west of the main
mouth, (4) the light winds from the southeast (as
opposed to strong winds from the west during the
flood of August 1993) and (5) relatively weak tidal
currents (averaging 15 cm s�1) and tidal range
(averaging 30 cm; see Murray, 1972). The ‘‘main
mouth’’ referred to here is the largest of the three
passes in the bird’s foot delta, called Southwest
Pass. The latitude and longitude of the delta are
about 29 �N and 89:5 �W, respectively. It follows
that f ¼ 7� 10�5. Note that 1 � of longitude
spans a distance of about 111:1 cosðfÞkm, which
is about 97.2 km at a latitude of 29 �. The initial
radius of curvature of the deflected plume can
therefore be estimated from Fig. 6 to be about
35 km, while the radius of curvature at a flow
distance of 50 km is about 5 km. If we simply
assume based on the inertial circle and plume
centerline analysis (Section 3.3) that the radius of
curvature on the centerline is equal to

rðxÞ ¼
u

f
¼

u0

f

xa b0

x

� �1=2
(3.60)

where b0 is the river mouth width and x is distance
along the plume centerline, then these observations
allow us to predict that u0 ¼ 2:5m=s and b0 ¼

0:2 km for the May 1993 event. Note that the
Coriolis force cannot change the speed, but only the
direction of the velocity vector, so x is simply
distance along the plume centerline. The bottom
width of Southwest Pass is about 750 ft or 0.14 km
(Saucier, 1998). The fact that both of these values
are reasonable suggests that (3.60) may provide a
fairly good approximation and supports the center-
line velocity result from Section 3.3. Recall that the
radius of curvature is the inverse of the curvature,
or rðxÞ ¼ 1=f0ðxÞ, where fðxÞ is the angle that the
tangent to a parametric plane curve makes with a
fixed x-axis. Integrating f0ðxÞ ¼ 1=rðxÞ, with rðxÞ
given by (3.60) we find that

fðxÞ ¼
2

3c

� �
x3=2 þ f0 (3.61)

where c ¼ ðu0=f Þ
ffiffiffiffiffiffiffiffiffi
xab0

p
. The corresponding plane

curve can be given parametrically as

xðxÞ ¼ x0 þ

Z x

t¼0

cos½fðtÞ�dt (3.62)

yðxÞ ¼ y0 þ

Z x

t¼0

sin½fðtÞ�dt. (3.63)
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The integrals can be obtained in terms of the
incomplete gamma function using symbolic math
software and then plotted. The resulting spiral curve
is shown in Fig. 7. The parameter f0 gives the angle
that the initial velocity vector makes with the x-axis.
Note that all length scales in this curve are
proportional to c2=3, and that c depends on u0, f

and b0. For example, the center of the spiral occurs
at xm ¼ a1c

2=3 and ym ¼ a2c
2=3, where a1 and a2 are

constants that do not depend on c. With f0 ¼ p=2,
ym represents the offshore distance to the center of
the ‘‘bulge’’, which can be compared to the
numerical modeling results of Fong and Geyer
(2002) and others. The distance along the curve to
the point where the angle has turned through 90�

(fðxÞ � f0 ¼ p=2) is given by x1 ¼ ½3pc=4�2=3. It can
also be shown that

uðfÞ ¼ fc2=3½32ðf� f0Þ�
�1=3. (3.64)

This makes it easy to compute how much the speed
is reduced for a given change in flow direction. The
shape of the curve is very similar to the drifter
trajectories shown in Fig. 6. This result should not
be over-interpreted, however, since continuity issues
arise once the tangent vector becomes perpendicular
to the coastline and this may also change the
manner in which the speed along the centerline
changes with distance. In order to satisfy 2D mass
balance it appears necessary for there to be a
growing bulge, while 3D mass balance with down-
welling may permit a steady solution. For the plume
in Fig. 6, most of the suspended sediment is
deposited before the flow direction becomes
perpendicular to the shoreline. A more complete
analysis will be presented in a subsequent paper.

4. A mathematical model for 2D sediment plumes

with deposition

4.1. Governing equation for 2D sediment plumes with

deposition

The results of Section 3 are for a 2D turbulent jet
model that can be used to model the turbulent flow of
water near the mouth of a river. In this section we
show how this model can be extended to model the
flow of suspended sediment in the water, following
Syvitski et al. (1998). It is known that for typical SSCs,
the additional mass of the water–sediment mixture is
too small to significantly alter the flow of the water. In
this case the velocity field for the water–sediment
mixture will be the same as for the water alone, and
we can also use the same eddy viscosity, K . The total
amount of sediment in a given water column can then
be determined by integrating the SSC over the depth
of the 2D plume. This depth-integrated mass of
sediment per unit area, I, is called the inventory and is
related to the plume depth, d, and depth-averaged

concentration, C, by the formula

Iðx; yÞ ¼ dðx; yÞCðx; yÞ. (4.1)

The initial value of the inventory is given by
I0 ¼ d C0, where I0 ¼ Ið0; 0Þ, C0 ¼ Cð0; 0Þ and d is
the river depth. Here I and C may represent values for
a given grainsize or totals. For sufficiently small
concentrations (including typical values of interest),
conservation of mass for sediment can be written as

uIx þ vIy þ l I ¼ ðKIyÞy. (4.2)

Notice that this is an advection– diffusion equation with
a sink term and is very similar to the equation for the
x-component of momentum in the turbulent jet,
except now some of the u’s have been replaced with
I’s and there is an additional term to model the
deposition of sediment on the ocean floor. The
constant, l, has units of inverse time and is called
the removal rate constant. It is essentially the inverse of
the amount of time, on average, that a particle spends
within the plume before crossing the lower boundary.
It depends on the size, composition, settling velocity
and tendency to flocculate of the suspended material.
Due to turbulence, however, particle paths are not
straight down and it cannot be computed as the
quotient of the Stokes settling velocity and plume
depth. For a more complete discussion of these issues,
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see Syvitski et al. (1985) and Bursik (1995). Eq. (4.2)
holds for each component material, so that one could
add a subscript k to both I and l in the equation.

A table of empirically determined removal rate
constants for different materials and grain sizes was
given by Syvitski et al. (1998). These authors also
showed the importance of taking flocculation into
account. The four pairs of values in their table are:
½1:5; 2�, ½4:8; 2:7�, ½15:0; 4:7� and ½48:0; 12:3�, where
the first element of each pair is a grainsize in
microns, and the second element is the removal rate
constant in units of 1/day. Applying a linear
regression to these values results in the expression:

lðDÞ ¼ ð0:222DÞ þ 1:573 ðR2 ¼ 0:999Þ (4.3)

where D is grainsize in microns. Based on a physical
interpretation of l, it would seem that l should also
depend on d0 and u0, where d0 is the river depth at
the mouth. If so, then perhaps l can only be given as
a simple function of grainsize if it is first non-
dimensionalized as l ¼ l0 d0=u0. However, the data
collected by Syvitski et al. (1985) suggests that l
values may indeed be universal, or at least weakly
dependent on other parameters. This issue merits
further investigation in order to ensure that the new
method for computing SSC from satellite images
proposed in Section 5 is portable between settings.

4.1.1. Sediment inventory in the inner zone

Recall that for the Albertson solution there is a
wedge-shaped ‘‘potential core’’ where u ¼ u0, v ¼ 0
and K ¼ 0. In this region the nondimensional 2D
plume model simplifies to Ix þ l I ¼ 0, which can be
integrated immediately to get

Iðx; yÞ ¼ expð�lxÞ ðxpxaÞ. (4.4)

Notice that the (nondimensional) removal rate
constant for the material in question determines
the rate of exponential decay. Notice that the free
constant from the integration that determines Ið0; 0Þ
has been set to one since this is a solution to the
nondimensional equations.

4.1.2. Matching solutions at the zone boundary

The solutions for Iðx; yÞ in the inner and outer
zones must agree at x ¼ xa. It follows from the last
equation then that Iðxa; 0Þ ¼ exp �lxað Þ. Since the
2D plume model equation is linear, we are free to
multiply any solution by a constant in order to
satisfy this boundary condition. We also know that
if I1 and I2 are any two solutions then I1 þ I2 must
also be a solution. Any nondimensional outer zone
solution, Iðx; sÞ ¼ f ðx; sÞ, can be made to match the
inner zone solution on the centerline by multiplying
by c ¼ expð�lxaÞ=f ðxa; 0Þ.

4.2. Alternate form of the 2D plume model

In Section 3, the Goertler, Albertson and more
general turbulent jet solutions were each given in
terms of offshore distance, x, and a similarity variable,
s ¼ s y=x. The variable y did not appear anywhere
except through s, and u, v, K , t and z were all
separable, that is, each could be expressed as the
product of a function of x and a function of s. In view
of this, we expect that the 2D plume model given by
Eq. (4.2) will take a simpler form if we change the
independent variables from x and y to x and s. This is
a straightforward procedure that involves the chain
rule; for more information, see Zwillinger (1989,
p. 109). This change of variables is given by the
transformation Zðx; yÞ ¼ x, sðx; yÞ ¼ sy=x, which is
easily inverted to get xðZ; sÞ ¼ Z, yðZ; sÞ ¼ Zs=s. From
the chain rule then, we have

Is ¼ Ixxs þ Iyys ¼ Iy

Z
s

� �
(4.5)

IZ ¼ IxxZ þ Iy yZ ¼ Ix þ Iy
s

s

� �
. (4.6)

Solving for Ix and Iy, we have

Ix ¼ IZ �
s

Z

� �
Is (4.7)

Iy ¼
s
Z

� �
Is. (4.8)

Another application of the chain rule yields

Iyy ¼
s
Z

� �2

Iss. (4.9)

Inserting the last three expressions into (4.2) and
simplifying we find that

2Z F 0ðsÞ IZ þ
l I

ucðZÞ

� �
¼ F Is �

FF 0

F 00

� �
I s

� �
s

. (4.10)

However, using the product-rule to write

F 0
FIs

F 00

� �� �
s

¼ F Is þ F 0
FIs

F 00

� �
s

(4.11)

and recalling that Z ¼ x and ucðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
xa=x

p
,

Eq. (4.11) can be further simplified to

Ix ¼ �
la x1=2

F 0ðsÞ

� �
I �

1

2x

F ðsÞ

F 00ðsÞ

� �
I s

� �
s

. (4.12)
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Here, the shorthand la ¼ l=
ffiffiffiffiffi
xa
p

has been introduced
to simplify this and subsequent expressions. This new
PDE in independent variables x and s expresses the
fact that the inventory, I, decreases as we move
offshore due to both the vertical loss of sediment (as it
is deposited on the seafloor) and the lateral spread of
sediment between lines of constant s due to turbulent
diffusion and advection by v. Note that F ðsÞ will be a
known function once a particular 2D turbulent jet
solution has been selected (e.g. F ðsÞ ¼ tanhðsÞ for the
Goertler solution), so this equation is much simpler
than the original Eq. (4.2). This PDE is parabolic and
linear in the dependent variable, I, but has noncon-
stant coefficients. Were it not for the nonconstant
coefficients, solutions could be found by standard
methods such as separation of variables and Laplace
and Fourier transforms. One can think of the x-axis as
a time axis, such that any initial distribution of
sediment near the river mouth, Ið0; yÞ, can be expected
to ‘‘evolve’’ toward a smooth similarity solution, as is
typical of many parabolic PDEs. However, our goal
here is not to solve the general initial-value problem
but rather to find the solution for Iðx; sÞ that
corresponds to the outer zone similarity solutions
that we have for u, v and K .

Eq. (4.12) has no nontrivial solution of the
separable form I ¼ AðxÞBðsÞ or I ¼ exp½AðxÞBðsÞ�.
It also appears that there is no similarity variable
rðx; sÞ such that (4.12) can be reduced to an ODE of
the form AðrÞH 00ðrÞ þ BðrÞH 0ðrÞ þ CðrÞHðrÞ ¼ 0. It
Fig. 8. Approximations to Iðx; yÞ using u, v and K from Albertson’s 2D

u0 ¼ 1m=s, b0 ¼ 500m, l ¼ 6 1=day (medium silt) and nondimensional

4.6 (upper right). (c) Approximate solution from Case 2 (lower left). (d)

line shows boundary between inner and outer zones and white horizonta

and each image spans 70 river widths.
can also be shown that there are no functions Aðx; sÞ
and Bðx; sÞ such that changing the dependent
variable to J ¼ A I allows Eq. (4.12) to be written
in the simpler form Jss ¼ B Jx. Eq. (4.12) has a form
that is somewhat similar to the well-known Black–-
Scholes PDE (Black and Scholes, 1973) that arises
in the pricing of stock options.
4.3. Special case solutions to the 2D plume model

While a closed-form similarity solution to (4.12)
is so far unavailable, it is possible to obtain
solutions for several special cases that correspond
to dropping terms in (4.12). It is instructive to
examine these solutions as they provide clues in the
form of a general similarity solution.

Case 1. For the special case of l ¼ 0 there is no
vertical loss of sediment and Eq. (4.12) has the
solution

Iðx; sÞ ¼ cuðx; sÞ ¼ cucðxÞF
0ðsÞ, (4.13)

where c is an arbitrary constant. As noted pre-
viously, the equation for the sediment inventory
becomes identical to the momentum equation for
the 2D turbulent jet in this case, but has a different
initial value at x ¼ xa.

Case 2. If we drop the last term in Eq. (4.12)
altogether, which corresponds to dropping
both the v-term and K-term in Eq. (4.2), then the
jet model. (a) Numerical solution to surficial plume equation for

l ¼ 0:035 (upper left). (b) ‘‘Close approximation’’ given in Section

Approximate solution from Case 3 (lower right). A white vertical

l lines extend from edges of river mouth. Here xa ¼ 5:13, s ¼ 6:43
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solution is (Fig. 8c)

Iðx; sÞ ¼ c exp �
2

3

lax3=2

F 0ðsÞ

� �
. (4.14)

Case 3. If the l term in (4.12) did not contain
F 0ðsÞ in the denominator, then the solution would be
(Fig. 8d)

Iðx; sÞ ¼ c uðx; sÞ exp½�2
3
lax3=2� (4.15)

which reduces to Iðx; sÞ ¼ c uðx; sÞ as it should when
l ¼ 0.

Case 4. For the special case K ¼ 0, there is no
turbulent diffusion and the advective transport
terms exactly balance the sediment loss term. The
simplified form of the surficial plume model is then

Ix ¼
F ðsÞ

F 0ðsÞ

Is

2x
�

lax1=2I

F 0ðsÞ
. (4.16)

A solution for this case is given by

Iðx; sÞ ¼ fa1 ln½F ðsÞx
1=2� þ a2g exp½Lðx; sÞ� (4.17)

Lðx; sÞ ¼ 2lax3=2F 3ðsÞ a3 þ

Z s

t¼1

½F ðtÞ��4 dt

� �
.

(4.18)

Here a1, a2 and a3 are arbitrary integration
constants. If F ð0Þ ¼ 0, as it does for the Goertler
and Albertson solutions, then we must set a1 ¼ 0 so
that the solution doesn’t diverge on the centerline. It
can then be shown for this solution that

Iðx; 0Þ ¼ a2 exp½�
2
3 lax3=2�, (4.19)

as it must, since v ¼ 0, Is ¼ 0 and F 0ð0Þ ¼ 1 on the
centerline. For the Goertler case where
F ðsÞ ¼ tanhðsÞ, the s-dependent part of Lðx; sÞ can
be simplified to s tanh3ðsÞ � tanh2ðsÞ � 1

3
and equals

� 1
3
for s ¼ 0.

Case 5. If we expand the last term in (4.12), then
we get an I s term and an Iss term. If we change the
dependent variable to H via Iðx; sÞ ¼ Ia expðHðx; sÞÞ,
and define Gðx; sÞ ¼ Iss=I , the resulting first-order
equation can be solved for a general function, G,
to get

Hðx; sÞ ¼ � 2lx3=2

Z s

t¼1

AðtÞCðtÞLðt; sÞ3=2 dt

�

Z s

t¼1

BðtÞCðtÞG½xLðt; sÞ; t�dt

þ a1½JðsÞ �
1
2
lnðxÞ�. (4.20)

Here AðsÞ ¼ 1=F 0ðsÞ, BðsÞ ¼ F ðsÞ=F 00ðsÞ, CðsÞ ¼

1=B0ðsÞ, JðsÞ ¼
R s

t¼1 CðtÞdt, MðsÞ ¼ exp½2JðsÞ�,
Lðt; sÞ ¼MðtÞ=MðsÞ and a1 is an arbitrary constant.
Letting the first integral in (4.20) be PðsÞ, L’Hôpital’s
rule and the fact that CðsÞ ¼ J 0ðsÞ can be used to show
that Pð0Þ ¼ 1

3
and P0ð0Þ ¼ 0, for any F ðsÞ as long as

F 0ð0Þ ¼ 1. If the equation G ¼ Hss þH2
s could be

solved for G, then this would provide a solution to
(4.12). It is clear that G must depend on l, and c1 could
also in a particular solution. The case where G ¼ 0
provides a solution to the special case where (4.12) is
expanded and the I ss term is dropped.

4.4. A regular perturbation solution to the

2D plume model

The regular perturbation method is an analytical
method that can sometimes be used to find
approximate solutions to differential equations that
have a small parameter in one of the lower-order
terms (Zwillinger, 1989, p. 473). Notice that if la is
small, then (4.12) is of this form. Since IX0, we lose
no generality by searching for a solution of the form
I ¼ eH , where H ¼ Hðx; sÞ. Inserting this into (4.12)
and simplifying we find that H must satisfy the
equation

�2xHx ¼ 2lax3=2AðsÞ þ B0ðsÞHs þ BðsÞðHss þH2
s Þ.

(4.21)

Here, AðsÞ ¼ 1=F 0ðsÞ and BðsÞ ¼ F ðsÞ=F 00ðsÞ have
been used to simplify the notation. The idea of the
regular perturbation method is to assume that the
solution can be expanded in powers of la as

H ¼
X1
k¼0

lk
a Hkðx; sÞ. (4.22)

Eq. (4.22) is then inserted into (4.21) and it is
assumed that all resulting terms with the same
power of la must add to zero. This results in the
following sequence of PDEs

�2xðH0Þx ¼ B0ðH0Þs þ B½ðH0Þss þ ðH0Þ
2
s � (4.23)

�2xðH1Þx ¼ B0ðH1Þs þ B½ðH1Þss þ 2ðH0ÞsðH1Þs�

þ 2x3=2AðsÞ (4.24)

�2x ðH2Þx ¼ B0ðH2Þs þ B½ðH2Þss þ 2ðH0ÞsðH2Þs þ ðH1Þ
2
s �

(4.25)

�2xðHkÞx ¼ B0ðHkÞs þ B½ðHkÞss þ 2ðH0ÞsðHkÞs þ Rk�.

(4.26)

Here Rkðx; sÞ is a sum of terms of the form
cðHiÞs ðHjÞs, such that ði þ jÞ ¼ k. If i ¼ j ¼ k=2,
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then c ¼ 1, otherwise c ¼ 2. Therefore, lower-order
solutions must be found before the PDEs for higher-
order solutions can be completely specified. As long
as la is sufficiently small, we expect that higher-
order terms in (4.22) will provide ever-smaller
contributions to the approximate solution. Notice
that (4.23) corresponds to (4.12) with I ¼ eH and
la ¼ 0. As seen in Case 1 of the last section, its
solution is therefore H0 ¼ lnðc uÞ, or

H0ðx; sÞ ¼ ln½F 0ðsÞ� � 1
2
lnðxÞ þ c. (4.27)

It can be shown that Eq. (4.24) has the separable
solution

H1ðx; sÞ ¼ �
x3=2

F 0ðsÞ
, (4.28)

and this satisfies the boundary condition that Iðx; sÞ
goes to zero as s goes to infinity. It can also be
shown that if we seek separable solutions to (4.25)
and (4.26) of the form Hk ¼ x3k=2 GkðsÞ, then they
reduce to an ODE for GkðsÞ. Unfortunately,
solutions for GkðsÞ when k41 have not yet been
found. The final form of the perturbation solution is
then

Iðx; sÞ ¼
cF 0ðsÞffiffiffi

x
p exp �

lax3=2

F 0ðsÞ
þ
X1
k¼2

lk
ax3k=2GkðsÞ

" #
.

(4.29)

Based on the similarity between the first-order
solution and Case 3 (see Fig. 8d), it is expected
that the second-order solution may provide a good
approximate solution to (4.12) if G2ðsÞ can be found.

4.5. A numerical solution to the 2D plume model

Following the basic approach described by
Syvitski et al. (1998), the 2D plume model in the
form of Eq. (4.2) can be solved numerically. With
the plume centerline extending seaward along the x-
axis, and with a square-pulse initial profile at x ¼ 0
such that Ið0; yÞ ¼ 1 for y 2 ½�1=2; 1=2�, the solu-
tion is determined by iterating column by column
from left to right across the domain. The numerical
scheme is second-order accurate in y and first-order
accurate in x and uses a tridiagonal matrix solver
such as the one given by Press et al. (1990, p. 47).
Closed-form expressions for u, v and K are used,
from either the Albertson or Goertler 2D jet model.
The resulting solution for the case of (nondimen-
sional) l ¼ 0:035 is shown in Fig. 8a. All of the
subroutines used to numerically solve (4.2) and
create the images in this paper are available as
interactive data language (IDL) source code at
http://www.iamg.org/CGEditor.

One method for examining the integrity of the
numerical solution method is to compute residuals.
The idea is to numerically evaluate each term in the
surficial plume equation for the numerical solution
and then compute the difference between the left-
and right-hand sides of the equation for every grid
cell in the domain. For a perfect solution the result
would be zero for every grid cell. For our numerical
solution all of the residuals fall between �0:023 and
0:0061. For comparison, if we start with the
Albertson 2D jet solutions for u, v and K and
compute the residuals of the x-momentum equa-
tion, they all fall between �0:0029 and 0:0012.

4.6. An approximate solution to the 2D plume model

Although a closed-form solution to the surficial
plume model is not yet available, the following
expression for Iðx; sÞ provides a fairly close approx-
imation to the numerical solution for l ¼ 0:035:

Iðx; sÞ ¼ Ia e�ðm1sÞ2 xa

x

� �p

exp½�ð2=3Þblax3=2 eðm2sÞ2 �

(4.30)

where m1 ¼ 1:2, m2 ¼ 0:6, p ¼ 0:8 and b ¼ 0:9.
These four constants can be adjusted to give a
closer fit for other values of l. The constant Ia is
determined by matching the inner zone solution on
the centerline at x ¼ xa, and is given by

Ia ¼ expð�lxaÞ=Iðxa; 0Þ. (4.31)

This approximation may be accurate enough for
many applications, in which case a numerical
approach to the solving the 2D plume equation
would be unnecessary. See Fig. 8b. In fact, it turns
out that the residuals for this approximation fall
between �0:01836 and 2:695e� 7 and therefore
span a narrower range than the residuals of the
numerical solution discussed in Section 4.5.

4.7. Approximations to the centerline inventory

The method of assigning SSC values to pixels in
satellite images to be introduced in Section 5 requires
a knowledge of Iðx; 0Þ, the inventory on the centerline
of a 2D sediment plume. While an analytic solution to
the governing equations is not yet available, it is
possible to derive some results regarding the centerline
inventory, including upper bounds and a close

http://www.iamg.org/CGEditor
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approximation. Two such results are given here and
two more can be found in Appendix A.

4.7.1. Upper bounds for the centerline inventory

As shown in previous sections, the decrease in
sediment inventory along the centerline of a plume
is due to three different effects: (1) the vertical loss
due to settling, (2) advective transport away from
the centerline by the v-component of velocity and
(3) diffusive transport away from the centerline by
turbulence. In the alternate version of the plume
model, (4.12), the second two effects were combined
into a single term. Since there must be a greater
decrease in the centerline inventory with both effects
operating than with either effect acting alone, we
can use special-case solutions to provide upper
bounds to Iðx; 0Þ. The special-case solutions from
Cases 1 and 2 of Section 4.3 are

I1ðx; sÞ ¼ c1uðx; sÞ ¼ c1ucðxÞF
0ðsÞ (4.32)

I2ðx; sÞ ¼ c2 exp �
2

3

lax3=2

F 0ðsÞ

� �
(4.33)

where

c1 ¼ expð�lxaÞ (4.34)

c2 ¼ expð�lxaÞ exp
2

3

� �
lax3=2

� �
, (4.35)

as required so that Iðxa; 0Þ ¼ expð�lxaÞ. Since both
I1 and I2 provide upper bounds on the centerline,
we must have

Iðx; 0ÞpminfI1ðx; 0Þ; I2ðx; 0Þg. (4.36)

Fig. 9 shows the curves, I1ðx; 0Þ, I2ðx; 0Þ and
I1ðx; 0Þ I2ðx; 0Þ for the case of l ¼ 0:035. It is seen
that I1ðx; 0Þ provides a tighter upper bound for
xoxc and I2ðx; 0Þ provides a tighter bound for
x4xc, where xc � 17 river widths. The product of
I1 and I2 is an example of a function that is
lower than both I1 and I2 since both are always less
than 1.

4.7.2. A close approximation for the centerline

inventory

If the 2D plume model is solved numerically using
the Albertson 2D jet model for u, v and K as in
Section 4.5, the resulting centerline profile can then
be compared to various approximations. Doing so,
we find that

Iðx; 0Þ ¼ c2
xa

x

� �pðlÞ
exp �

2

3

� �
lax3=2

� �
, (4.37)
provides a very close approximation to the center-
line inventory, where pðlÞ is chosen to provide the
best fit and is typically between 0:75 and 1. If
pðlÞX 1

2
, then this approximation honors the upper

bounds of the last section. The constant, c2, is the
same as given in Eq. (4.35). Fig. 10 compares this
approximation to the numerical solution for the
case of (nondimensional) l ¼ 0:035.
4.8. Centerline inventory for a mixture of grainsizes

When SSC is measured in situ, it is generally the
total SSC that is reported (see Syvitski et al., 1985).
So it is of interest to know how results for individual
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grainsizes can be aggregated. Given the dimensional

inventory for each grainsize at the river mouth, we
can compute the (nondimensional) total centerline
inventory at all distances x from the mouth as
follows. In the case of a discrete mixture of n

grainsizes, we first compute the fraction that each
grainsize contributes to the total inventory at the
mouth as

f k ¼
IkPn

k¼1 Ik

(4.38)

and then we compute

I totðxÞ ¼
Xn

k¼1

f kI ½x; 0; lðDkÞ� (4.39)

where Dk is the grainsize of a particular component
material and Ið0; 0; lÞ ¼ 1 for all values of l. For the
case of a continuous mixture of grainsizes, we have

I totðxÞ ¼

Z 1
D¼0

f ðDÞI ½x; 0; lðDÞ�dD (4.40)

where now f ðDÞ is a function that integrates to one
that describes the initial distribution of inventories
as a function of grainsize, D, at the river mouth.
Here again, I is the nondimensional inventory so
that Ið0; 0; lÞ ¼ 1. As an example, suppose that the
initial mixture of inventories follows an exponential
distribution, f ðDÞ ¼ a expð�a DÞ, which implies that
the mean grainsize is ð1=aÞ. Recall from Eq. (4.3)
that the dimensional removal rate constant is seen to
vary linearly with grainsize as l0ðDÞ ¼ m Dþ b,
where m ¼ 0:222, b ¼ 1:573, D is measured in
microns and the units are 1/day. Before using it
here, it must first be made nondimensional by
multiplying by b0=ð86 400 u0Þ (see (3.6)). If we use
the close approximation for Iðx; 0Þ from Section 4.7,
but assume for simplicity that pðlÞ ¼ p is a constant,
the integral (4.40) can be computed to get

I totðxÞ ¼ Ia

xa

x

� �p

1þ
2mx3=2

3a
ffiffiffiffiffi
xa
p

� ��1
exp �

2

3

bx3=2ffiffiffiffiffi
xa
p

 !
.

(4.41)

Here again, Ia is a constant that is chosen such that
the inventory equals 1 at x ¼ xa. Based on the
results of Section 4.7, we expect that p 2 ð0:5; 1Þ.
This equation can be plotted as a function of x for
the empirical values of m and b and for different
values of a (see Fig. 11). Since typical grainsizes are
between about 1 and 100 mm, we expect that
a 2 ð0:01; 1Þ. Fig. 11 shows that if the mean grain
size at the mouth is small, then the exponential term
in (4.41) will dominate the middle term and the
centerline inventory will have more of an exponen-
tial falloff. If the mean grain size is large, however,
then the middle term will dominate the exponential
term and the centerline inventory for the mixture
will have more of a power-law falloff.
5. A new method for deriving SSC from a satellite

image

5.1. Centerline inventory as a transfer function

As discussed in Section 2, there are a variety of
different methods for collapsing the information
contained in multi-band satellite imagery to create
images that show relative SSC. Such an image can
be used to compare any two pixels and determine
which has a higher SSC value, but does not provide
a definite value in real units such as kg=m3. In order
to assign a real SSC value to each pixel in a satellite
image, we therefore need a transfer function that
maps every relative SSC value to its corresponding
real value. Making ‘‘ground truth’’ measurements
of SSC at various locations within an image is
clearly one way to develop a transfer function, but
this is costly and difficult and unlikely to be portable
from one setting to another. Analyzing different
sediment–water mixtures in a laboratory setting is
another way, and has produced promising results.
However, the results presented in previous sections
suggest that there is an entirely different way to
approach this problem.
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Expressions such as (4.37) or (4.41) allow us to
predict the inventory as a function of distance along
the centerline of a time-averaged sediment plume.
Since the depth of a buoyant 2D plume is approxi-
mately constant and equal to the river depth at the
mouth, Eq. (4.1) can be used to compute SSC from
inventory. Note that SSC varies continuously between
its highest and lowest possible values along the plume
centerline. It follows that if we develop a transfer
function for the pixels on the centerline, then that
transfer function will allow us to assign an SSC value
to every pixel in the image. That is, since every
inventory value in the image occurs somewhere along
the centerline, we can create a lookup table for
converting relative SSC values to absolute SSC values
from the theoretical (absolute) and observed (relative)
centerline values. The plume centerline does not need
to be a straight line, since it is expected based on
results for deflected plumes (see Section 3.7 and
Appendix B) that there will be little, if any, geometric
stretching along the centerline as a result of its
deflection. Note from (3.40) that the shear stress on
the centerline is zero, which is fundamental to the
integrity of the jet; stretching would seem to require a
nonzero shear stress on the centerline. The variable x

in the equations is simply replaced by distance
measured along the centerline of the largest jet in
the image. This idea is best illustrated by referring
back to Fig. 1, which shows a time-averaged AVHRR
Fig. 12. (a) A simulated plume, with a deflected centerline. (b) Resul

contour curves that lie on centerline. Red plus signs indicate points of
image of relative SSC values near the Mississippi
River delta. Notice that there is one main jet
(Southwest Pass) and several smaller jets, and that
the overall geometry is much more complex than the
geometry of a single symmetric jet.

Note that once we have determined the transfer
function by this method, it can be re-used to assign
SSC values in future satellite images of the same
region, assuming that the river discharges similar
materials in similar proportions during future
events of interest. However, there are several
reasons that the image used to derive the transfer
function should correspond to the largest possible
flood event. First, it is best if the discharge at the
river mouth remains approximately constant over
the period of time for which images will be
averaged, and discharge varies less rapidly during
a large event. (This also allows for more images,
since the return frequency of the satellite is likely
fixed.) Second, since radiation stresses due to
incoming waves were not included in the derivation
of the centerline results, the strength of the jet
should be as large as possible as compared to the
strength of the waves. (Note that it may be possible
to model the effect of the radiation stresses via
inclusion of the pressure gradient term in (3.1).)
Finally, the dynamic range of SSC values during a
flood event will be larger, resulting in a greater
signal to noise ratio.
ts of applying a curvature-based algorithm for finding pixels on

maximum curvature.
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5.2. Finding the pixels on the centerline of the plume

In order to apply the methodology of the last
section, a robust method is required for identifying
the image pixels that lie on the plume centerline.
Fig. 12 shows the results of a computer program
written by the author for this purpose. An image of
relative SSC values is first contoured, and then each
contour is traced to find the point on the curve
where the curvature is maximum and of the correct
sign. Linear interpolation between these points of
maximum curvature is then used to return contin-
uous coordinates of pixels that lie on the plume
centerline. These pixel coordinates and the distance
along the centerline from the mouth to each pixel
are used together with a closed-form expression for
Iðx; 0Þ to create a lookup table that converts relative
SSC values to actual SSC values. This lookup table
can then be applied to all image pixels to create a
map of actual SSC values. When this was done for
test images of simulated time-averaged plumes, it
was possible to reconstruct the original grid of SSC
values using this procedure.

6. Conclusions

The results presented here provide a mathema-
tical framework for the modeling and further study
of sediment plumes produced at river mouths.
Known similarity solutions for 2D turbulent jets
were discussed and shown to be special cases of a
more general jet model in which u, v, K , t and z can
all be given in closed-form in terms of a single
function, F ðsÞ, and its derivatives. In addition, an
approximate method for computing how the center-
line of a turbulent jet is deflected by the Coriolis
effect was presented. An alternate form of the
advection–diffusion–deposition equation that gov-
erns sediment plumes was also given in terms of
F ðsÞ, and several special-case solutions were pre-
sented. A similarity solution for the inventory,
Iðx; yÞ, was found numerically and compared to
several special-case solutions and bounds. A closed-
form approximation that provides a very close
match to the numerical solution for Iðx; yÞ was also
given. A variety of results for the centerline
inventory, Iðx; 0Þ, were given, including upper
bounds and a close approximation. Well-documen-
ted source code for numerically finding a similarity
solution to the 2D plume equation and for
generating all of the figures in this paper is available
at: http://www.iamg.org/CGEditor.
This paper introduces a new method for
estimating suspended sediment concentrations and
deposition rates from remotely sensed images that is
based on mathematical models for 2D turbulent jets
and sediment plumes. This method offers several
advantages over existing methods, including a
strong foundation in hydrodynamics, greater port-
ability, ease of implementation and the time
required to obtain a result. It also requires a
relatively small amount of input data that is
expected to be much easier to obtain (since it can
all be collected at the river mouth) than the
data required by other methods. Note that once
the transfer function has been determined for a
given river, it is expected that the same transfer
function can be used to derive SSC values
from satellite images that are subsequently
obtained for the same area with the same
sensor. However, while the results presented here
provide a complete theoretical framework and a
proof of concept, additional work is required
to validate the method in an operational setting
and to compare results to those obtained by
existing methods. It is likely that optimal
results will be obtained by using this method in
conjunction with existing spectral methods. For
example, an SSC image created by another method
could be used as the input image to the current
method as a check on whether the values from
the other method are reasonable from a hydro-
dynamic point of view. These issues will be explored
in future work.

Appendix A. Other results for the centerline

inventory

A.1. Use of integral equations

A line of reasoning similar to what was used in
Section 3.3 to obtain an expression for uðx; 0Þ
can be used to seek an expression for Iðx; 0Þ. We
first write the 2D plume model (4.2) in conservative
form by adding the product of I and the continuity
equation (3.2), which yields

ðuIÞx þ ðvIÞy þ lI ¼ ðKIyÞy. (A.1)

Integrating each term in this equation from y ¼ �1

to1, the y-derivative terms drop out (since I and Iy

decrease to zero as jyj ! 1) and we find thatZ 1
y¼�1

ðuIÞx dy ¼

Z 1
y¼�1

�lI dy. (A.2)

http://www.iamg.org/CGEditor
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Note that the total flux of sediment across a line of
constant x is given by

QðxÞ ¼

Z 1
y¼�1

uI dy

¼
xucðxÞ

s

Z 1
s¼�1

F 0ðsÞIðx; sÞds. (A.3)

The second expression for Q follows by changing
variables in the integral from y to s and using the
fact that u ¼ ucðxÞF

0ðsÞ. The derivative with respect
to x can be moved outside of the first integral in
(A.2). If we define

GðxÞ ¼

Z 1
s¼�1

Iðx; sÞds (A.4)

HðxÞ ¼

Z 1
s¼�1

F 0ðsÞIðx; sÞds (A.5)

then Eq. (A.2) can be written as

½x1=2HðxÞ�x ¼ �laxGðxÞ. (A.6)

Recall that we were able to solve (3.9)—an integral
equation similar to (A.2)—for ucðxÞ ¼ uðx; 0Þ by
assuming that u had the separable form
uðx; sÞ ¼ ucðxÞF

0ðsÞ. We can try to use the same
idea here by assuming that Iðx; sÞ ¼ AðxÞBðsÞ and
AðxÞ ¼ Iðx; 0Þ. This implies that GðxÞ ¼ c1AðxÞ and
HðxÞ ¼ c2AðxÞ. Eq. (A.6) is then easily solved for
AðxÞ to find that

Iðx; 0Þ ¼
c3ffiffiffi

x
p exp �

2c1

3c2
lax3=2

� �
(A.7)

where

c1 ¼

Z 1
s¼�1

BðsÞds (A.8)

c2 ¼

Z 1
s¼�1

F 0ðsÞBðsÞds. (A.9)

This expression for Iðx; 0Þ reduces to ucðxÞ in the
case where l ¼ 0, as it should. However, it can be
shown that the surficial plume model does not have
a solution of the form I ¼ AðxÞBðsÞ, so Eq. (A.7)
only provides a rough approximation to the center-
line inventory, Iðx; 0Þ. (See Fig. 8.) Recall that we
are working with nondimensional equations, so we
can assume without loss of generality that AðxaÞ ¼ 1
and Bð0Þ ¼ 1 and then solve for c3.
A.2. Assuming that Issðx; 0Þ is Known

If we insert s ¼ 0 into Eq. (4.12), recall that
F 0ð0Þ ¼ 1 and define

HðxÞ ¼ Iðx; 0Þ (A.10)

gðxÞ ¼ Issðx; 0Þ=Iðx; 0Þ (A.11)

c0 ¼ lim
s!1

F ðsÞ

F 00ðsÞ

� �
(A.12)

then we get the following ODE for the inventory on
the plume centerline

H 0ðxÞ ¼ �HðxÞ lax1=2 �
c0 gðxÞ

2x

� �
. (A.13)

The only trouble is that we don’t know gðxÞ.
However, Eq. (A.13) can be solved for a general
function gðxÞ to get

HðxÞ ¼ c1 exp �
2

3

� �
lax3=2 �

c0

2

� �Z x

t¼xa

gðtÞ

t
dt

� �
.

(A.14)

Here c1 is a constant that can be used to satisfy the
initial condition at the zone boundary. The constant
c0o0 and equals � 1

2
for both the Goertler and

Albertson solutions. An approximate form for gðxÞ

could be determined from a numerical solution and
then used in this equation to get an approximate
expression for the centerline inventory. Note that
gðxÞo0 because Iðx; 0Þ40 and Issðx; 0Þo0 repre-
sents the curvature at s ¼ 0 for a cross-section of I

that is perpendicular to the centerline. Our close
approximation result from Section 4.6 suggests that
gðxÞ � c2, where c2o0 is a constant that depends
on l.

Appendix B. A 2D turbulent jet in cross-flow

The results presented in this paper assume that
the river jet enters a quiescent ocean at right angles
to the coastline. However, some results are also
available for jets discharging at an angle into a
cross-flow of uniform velocity. In the current
context, this corresponds to the case where there is
a longshore current of velocity u1 and an arbitrary
ocean entrance angle. Let y0 2 ð�p=2; p=2Þ be the
ocean entrance angle as measured counter-clockwise
from the x-axis (the centerline of the nondeflected
jet). Recall that u0 and b0 are the velocity and width
at the river mouth and let a ¼ u0=u1 be the
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dimensionless ratio of velocities. Abramovich (1963)
(see also Rajaratnam, 1976, p. 205) derived a
nondimensional equation for the deflected center-
line of the 2D turbulent jet as a parabola

yc ¼ �xc½xcBðy0Þ=4� tanðy0Þ� (B.1)

where Bðy0Þ ¼ Cd=ð2b0 a2 cosðy0ÞÞ and Cd � 2:0.
The sign in (B.1) is given by the sign of u1. This is
the Abramovich result in terms of the coordinate
system used in this paper. Notice that unlike the
Coriolis effect, cross-flow cannot cause the center-
line of a plume to curve back toward the shore.
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