
Advantages of Using the Common

Component Architecture (CCA)

for the CSDMS Project

Dr. Scott Peckham

Chief Software Architect for CSDMS

February 4, 2008

 csdms.colorado.edu

CSDMS Cyber Working

Group Meeting, Univ. of

Colorado at Boulder

Functional Specs for the CSDMS

Support for multiple operating systems

 (especially Linux, Mac OS X and Windows)

Support for parallel (multi-proc.) computation (via MPI standard)

Language interoperability (e.g. CCA is language neutral) to support

code contributions written in C & Fortran as well as more

modern object-oriented languages (e.g. Java, C++, Python)

Support for both legacy (non-protocol) code and more structured

code submissions (procedural and object-oriented)

Should be able to interoperate with other coupling frameworks

Support for both structured and unstructured grids

Platform-independent GUIs where useful (e.g. via wxPython)

Large collection of open-source tools

Layered = A vertical stack of grids that may represent:

 (1) different domains (e.g atm-ocean, atm-surf-subsurf, sat-unsat),

 (2) subdivision of a domain (e.g stratified flow, stratigraphy),

 (3) different processes (e.g. precip, snowmelt, infil, seepage, ET)

 A good example is a distributed hydrologic model.

Nested = Usually a high-resolution (and maybe 3D) model that is
embedded within (and may be driven by) a lower-resolution
model. (e.g. regional winds/waves driving coastal currents, or a
3D channel flow model within a landscape model)

Boundary-coupled = Model coupling across a natural (possibly
moving) boundary, such as a coastline. Usually fluxes must be
shared across the boundary.

Types of Model Coupling

Advantages of Component vs. Subroutine Programming

Can be written in different languages and still communicate.

Can be replaced, added to or deleted from an app. at run-time via dynamic linking.

Can easily be moved to a remote location (different address space) without
recompiling other parts of the application (via RMI/RPC support).

Can have multiple different interfaces and can have state.

Can be customized with configuration parameters when application is built.

Provide a clear specification of inputs needed from other components in the system.

Have potential to encapsulate parallelism better.

Allows for multicasting calls that do not need return values (i.e. sending data to
multiple components simultaneously).

CBSE = Component-Based Software Engineering

Component technology is basically “plug and play” technology (think of “plugins”)

With components, clean separation of functionality is mandatory vs. optional.

Facilitates code re-use and rapid comparison of different methods, etc.

Facilitates efficient cooperation between groups, each doing what they do best.

Promotes economy of scale through development of community standards.

Component Technology

ESMF (Earth System Modeling Framework)

 www.esmf.ucar.edu, maplcode.org/maplwiki

PRISM (Program for Integrated Earth System Modeling)

 www.prism.enes.org (uses OASIS4)

OpenMI (Open Modeling Interface)

 www.openmi.org

CCA (Common Component Architecture)

 www.cca-forum.org,

 www.llnl.gov/CASC/components/babel.html

Others: GoldSim (www.goldsim.com) commercial

 FMS (www.gfdl.noaa.gov/~fms) GFDL

Non-scientific ones include CORBA, .NET, COM, JavaBeans,
Enterprise Java Beans (see Appendix slide for links)

Scientific “Coupling Frameworks”

Widely used at DOE labs (e.g. LLNL, ANL, Sandia) for

 a wide variety of projects (e.g. fusion, combustion)

Language neutral; Components can be written in C, C++,

Fortran 77/90/95/03, Java, or Python; supported via a

compiler called Babel, using SIDL / XML metadata

Interoperable with ESMF, PRISM, MCT, etc.

Has a rapid application development tool called BOCCA

Similar to CORBA & COM, but science application support

Can be used for single or multiple-processor systems,

 distributed or parallel, MPI, high-performance (HPC)

Structured, unstructured & adaptive grids

Has stable DOE / SciDAC (www.scidac.gov) funding

Overview of CCA

Architecture = A software component technology standard (e.g. CORBA,
CCA, COM, JavaBeans. synonym: “component model”)

Framework = Environment that holds CCA components as they are
connected to form applications and then executed. Provides a small set
of standard services, available to all components. Different frameworks
are needed for parallel vs. distributed computing (e.g. Ccaffeine, Decaf,
XCAT, Legion, SCIRun2; obsolete: Ccain, Mocca)

Components = Units of software functionality (black boxes) that can be
connected together to form applications. Components expose well-
defined interfaces to other components.

Ports = Interfaces through which components interact.

Interface = The “exposed exterior” of anything, such as a component
(arguments), an application (GUI, CLI, API, JNI, MPI, SCSI), etc.

 May involve communication between, or represent a boundary between
any 2 things (e.g. ocean-atmosphere, land-ocean, application-user).

Key CCA Concepts & Terms

One of the key tasks that now faces the CSDMS community is how to
best define the interfaces for our components (including models)
in order to maximize their interoperability with each other and with
components (e.g. PDE solvers, mesh routines, visualization tools)
written by people outside of our community. The goal is to create
the richest possible collection of shared “plug-and-play”
components and to ensure that they can also be used in an HPC
context.

In an object-oriented context, this includes defining robust object
classes and methods. (e.g. string class and associated methods,
“grid class” and associated methods [total, average, histogram,
smooth, regrid, rescale, display])

To better appreciate interface issues, try to imagine how you could
create “plug and play” meshing and discretization components.
What would be inside the black box and what would be passed in
and out? There are several groups working on these issues.

Discussion of Interface Issues

Interface-related issues

• Exterior of a “black box”

(and its “shape” or size, etc.)

• What can it connect to & how?

• Defined by SIDL in a language-

neutral way (args & data types)

• Communication (local / remote)

• Application skeleton

Discussion of Interface Issues

Implementation-related issues

• Contents of a “black box”

• What does it do and how?

• Algorithms, source code

• Efficiency, accuracy, stability

• Numerical schemes

Component architectures like CCA allow you to think about the interface

and implementation of components separately.

Interface Analogies to Ponder: (think about issues in each case)

An antibody binds to or locks onto the surface of a particular antigen,

tagging it for destruction or neutralizing it. (more components = better immunity)

Ways in which joints link bones together (e.g. ball and socket) and why.

Connecting a computer or stereo to peripheral “components” via “ports”.

The decomposition of models into Initialize, Run (one step) and
Finalize components is another example of an interface issue.
Time-stepping is taken out of models and is left to a separate
Driver component.

Imagine designing an application from a set of “black box
components that haven’t actually been implemented yet.
(Everything is a “place-holder.) Which arguments should be
passed in and out of each component? What capabilities (black
boxes) are actually required to do the current job, similar future
jobs or some given set of jobs? SIDL and Bocca allow us to
experiment with different interface prototypes. Somewhat similar
to designing an interstellar spacecraft, where some of the
required components don’t exist yet, but if they did, it would work.

Discussion of Interface Issues

Bussard Ramjet Diagram

 Dr. Robert W. Bussard

 1928-2007

Designer of the Bussard

Ramjet, the Polywell

Fusion Reactor and

nuclear thermal rocket

for Project Rover. Died

on October 7th, 2007 in

Santa Fe.

Babel = A “multi-language” compiler for building HPC applications
from components written in different languages.
(http://www.llnl.gov/CASC/components/babel.html)

SIDL = Scientific Interface Definition Language (used by Babel).

 Allows language-independent descriptions of interfaces.

Bocca = A user-friendly tool for rapidly building applications from
CCA components (RAD = Rapid Application Development)
(http://portal.acm.org/citation.cfm?id=1297390)

Ccaffeine = A CCA component framework for parallel computing
(http://www.cca-forum.org/ccafe/ccaffeine-man)

New CCA build system = Unnamed, user-friendly build system for
the complete CCA “tool chain”. It uses a Python-based tool called
Contractor.

Some Key CCA Tools

CCA: The Babel Tool

Language interoperability is a powerful feature of the CCA framework.

Components written in different languages can be rapidly linked in HPC

applications with hardly any performance cost. This allows us to “shop” for

open-source solutions (e.g. libraries), gives us access to both procedural and

object-oriented strategies (legacy and modern code), and allows us to add

graphics & GUIs at will.

+ f95 + f2003

CCA: The Babel Tool
Minimal performance cost: A widely used rule of thumb is that

environments that impose a performance penalty in excess of 10% will be

summarily rejected by HPC software developers.

Babel’s architecture is general enough to support new languages, such as

Matlab, IDL and C# once bindings are written for them.

More than a least-common-denominator solution; it provides object-

oriented capabilities in languages like C, F77, F9X where they aren’t

natively available.

Has intrinsic support for complex numbers and flexible multi-dimensional

arrays (& provides for languages that don’t have these). Babel arrays can

be in row-major, column-major or arbitrary ordering. This allows data in

large arrays to be transferred between languages without making copies.

Babel opens scientific and engineering libraries to a wider audience.

Babel supports RPC (remote procedure calls or RMI) over a network.

is Middleware for HPC

YesNoNoNoComplex Numbers

Open

Source

Closed

Source

Closed

Source

Vendor

Specific

Licensing

No

Limited

No

.NET

Yes

Yes

Yes*

Babel

NoNoBlueGene, Cray,

Linux, AIX, & OS X

LimitedNoFortran

NoNoMulti-Dim Arrays

COMCORBA

2006

“The world’s most rapid

communication among many

programming languages in a

single application.”

M
ill

io
n
 c

a
lls

/s
e
c

C
O

R
B

A

B
a

b
e

l

.N
E

T

C
O

M

Performance (in process)

CCA: The Babel Tool

Support for Java & Python makes it possible to add components
with GUIs, graphics or network access anywhere in the application
(e.g. via wxPython or PyQT). Python code can be compiled to
Java with Jython. (See www.jython.org for details)

NumPy is a fairly new Python package that provides fast, array-
based processing similar to Matlab or IDL. SciPy is a closely
related package for scientific computing. Matplotlib is a package
that allows Python users to make plots using Matlab syntax.

Python is used by Google and is the new ESRI scripting language.
It can be expected that this will result in new GIS-related
packages/plug-ins. Python is entirely open-source and a large
number of components are available (e.g. XML parser). Currently
has over one million users and is growing.

 GIS tools are often useful for earth-surface

 modeling and visualization.

Python Support in CCA / Babel

Butler, H. (2005) A guide to the Python universe for ESRI

users, ArcUser (April-June 2005), p. 34-37. (tools for

ellipsoids, datums, file formats like shapefiles)

Python: Batteries Included, special issue of "Computing

in Science & Engineering devoted to Python, May-June

2007, vol. 9(3), 66 pp. Nice collection of articles, incl.

papers on ipython, matplotlib, GIS, solving PDEs.

CCA: The Bocca Tool

Provides project management and comprehensive build environment for

creating and managing applications composed of CCA components

The purpose of Bocca is to let the user create and maintain useful HPC

components without the need to learn the intricacies of CCA (and Babel)

and waste time and effort in low-level software development and

maintenance tasks. Can be abandoned at any time without issues.

Bocca lays down the scaffolding for a complete componentized

application without any atttendent scientific or mathematical

implementation.

Built on top of Babel; is language-neutral and further automates tasks

related to component “glue code”

Supports short time to first solution in an HPC environment

Easy-to-make, stand-alone executables coming in March 2008

 (automatically bundles all required libraries; RC + XML -> EXE)

CCA: The Bocca Tool
General usage:

 bocca [options] <verb> <subject type> [suboptions] <target name>

Examples:

bocca create project myproj --language=f90

bocca create component

bocca edit component

Current verbs:

create, change, remove, rename, edit, display, whereis, help, config,

export

Subject types (CCA entity classes):

port, component, interface, class, package

Target names are SIDL type names:

e.g. mypkg.MyComponent, mypkg.ports.Kelvinator

A good paper on Bocca is available at:

http://portal.acm.org/citation.cfm?id=1297390 (pdf)

A Bocca Script Example
#! /bin/bash
Use BOCCA to create a CCA test project.
October 23, 2007. S.D. Peckham
#-----------------------
Set necessary paths
#-----------------------
source $HOME/.bashrc
echo "==="
echo " Building example CCA project with BOCCA "
echo "==="

#--------------------------------------
Create a new project with BOCCA and
Python as the default language
#---------------------------------------
cd $HOME/Desktop
mkdir cca_ex2; cd cca_ex2
bocca create project myProject --language=python
cd myProject

#--------------------------------
Create some ports with BOCCA
#--------------------------------
bocca create port InputPort
bocca create port vPort
bocca create port ChannelShapePort
bocca create port OutputPort

#--
Create a Driver component with BOCCA
#---------------------------------------
bocca create component Driver \
 --provides=gov.cca.ports.GoPort:run \
 --uses=InputPort:input \
 --uses=vPort:v \
 --uses=OutputPort:output

#----------------------------------
Create an Initialize component
#----------------------------------
bocca create component Initialize \
 --provides=InputPort:input

#---
Create two components that compute velocity
#---
bocca create component ManningVelocity \
 --provides=vPort:v \
 --uses=ChannelShapePort:shape
bocca create component LawOfWallVelocity \
 --provides=vPort:v \
 --uses=ChannelShapePort:shape

#--
Create some channel cross-section components
#--
bocca create component TrapezoidShape \
 --provides=ChannelShapePort:shape
bocca create component HalfCircleShape \
 --provides=ChannelShapePort:shape

#-------------------------------------
Create a Finalize component
#-------------------------------------
bocca create component Finalize \
 --provides=OutputPort:output

#--------------------------------------
Configure and make the new project
#--------------------------------------
./configure; make

CCA: The Ccaffeine-GUI Tool

A “wiring diagram” for a simple CCA project. The CCA framework

called Ccaffeine provides a “visual programming” GUI for linking

components to create working applications.

CCA: The Ccaffeine Tools

Ccaffeine is the standard CCA framework that supports parallel computing.

Three distinct “Ccaffeine executables” are available, namely:

Ccafe-client = a client version that expects to connect to a multiplexer front end

which can then be connected to the Ccaffeine-GUI or a plain command line

interface.

Ccafe-single = a single-process, interactive version useful for debugging

Ccafe-batch = a batch version that has no need of a front end and no

interactive ability

These executables make use of “Ccaffeine resource files” that have “rc” in the

filename (e.g. test-gui-rc).

The Ccaffeine Muxer is a central multiplexor that creates a single multiplexed

communication stream (back to the GUI) out of the many cafe-client streams.

For more information, see: http://www.cca-forum.org/ccafe/ccaffeine-man/

Other CCA-Related Projects

CASC = Center for Applied Scientific Computing

 (https://computation.llnl.gov/casc/)

TASCS = The Center for Technology for Advanced Scientific Computing Software
 (http://www.tascs-scidac.org) (focus is on CCA and associated tools; was CCTTSS)

PETSc = Portable, Extensible Toolkit for Scientific Computation
 (http://www.mcs.anl.gov/petsc) (focus is on linear & nonlinear PDE solvers; HPC/MPI)

ITAPS = The Interoperable Technologies for Advanced Petascale Simulations Center

 (http://www.itaps-scidac.org) (focus is on meshing & discretization; was TSTT)

PERI = Performance Engineering Research Institute

 (http://www.peri-scidac.org) (focus is on HPC quality of service & performance)

TOPS = Terascale Optimal PDE Solvers

 (http://www.scidac.gov/ASCR/ASCR_TOPS.html) (focus is on solvers)

SCIRun = CCA framework from Scientific Computing and Imaging Institute

 (http://software.sci.utah.edu/scirun.html) (this is a CCA framework)

Conclusions

The Common Component Architecture (CCA) is a mature and powerful

environment for component-based software engineering (CBSE) and

building high-performance computing (HPC) applications.

Some of its most powerful tools include Babel, Bocca, Ccafe-GUI and the

Ccaffeine framework. Each of these tools fulfills a particular need in an

elegant manner in order to greatly simplify the effort that is required to

build an HPC application.

The CCA framework currently meets most of the requirements of CSDMS

and native Windows support (vs. Cygwin) is likely in the near future.

CCA has been shown to be interoperable with ESMF and should also be

interoperable with a Java version of OpenMI.

For more information, please see the “CCA Recommended Reading List”

at http://csdms.colorado.edu (Products tab)

Other Component Architecture Links
(Commercial, non-HPC, non-scientific computing)

CORBA (Object Management Group)

http://www.omg.org/gettingstarted

http://www.omg.org/gettingstarted/history_of_corba.htm

COM (Component Object Model, Microsoft, incl. COM+, DCOM & ActiveX)

http://www.microsoft.com/com/default.mspx

.NET (Microsoft Corp.)

http://www.microsoft.com/net

JavaBeans (Sun Microsystems)

http://java.sun.com/products/javabeans

Enterprise JavaBeans (Sun Microsystems)

http://java.sun.com/products/ejb

Widely used by U.S. climate modelers

Based on Fortran90 (efforts underway for C coupling)

Components follow the Initialize, Run, Finalize scheme

Has a new development tool called MAPL

Started with NASA, now has buy-in from NOAA, DoD, DOE, NSF.

May be adopted by CCSM; see:

 www.ccsm.ucar.edu/cseg/Projects/Working_Groups/soft/esmf

ESMF Infrastructure
Data Classes: Bundle, Field, Grid, Array

Utility Classes: Clock, LogErr, DELayout, Machine

ESMF Superstructure
AppDriver

Component Classes: GridComp, CplComp, State

User Code

Overview of ESMF

• Parallel-computing friendly (MPI)

• Compatible with PRISM & CCA.

• Many useful tools in its Infra-

 structure & Superstructure

• Mainly structured grids so far

Emerged from hydrologic community in Europe with corporate

buy-in (e.g. Delft Hydraulics, DHI, HR Wallingford)

Based on Microsoft’s C# (similar to Java) and support for Java is

under development by HydroliGIS (Italy)

Components follow the Initialize, Run, Finalize scheme

Emphasizes support for data formats (e.g. WML)

Currently incompatible with non-Windows computers, so language

and platform specific

Designed for a single-processor (PC) environment

Funding future is currently uncertain beyond 2010

Does not seem to have the maturity or buy-in of ESMF & CCA.

Overview of OpenMI

