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Key ideas

Source-to-sink thinking becomes increasingly important with
Increasing time scale

These ideas are readily seen in small-scale experiments
because time scale is directly related to system size

On source to sink scales sedimentary environments are
process domains linked via moving boundaries

On source to sink sca_les, mass balance is a first-order control
on sedimentary facies

Signal transmission is strongly influenced by sediment storage
& release
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Grade: no mass loss or
gain

Erosional: mass gain
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Depositional: mass loss
(deposition) balances
subsidence




Moving boundaries: dynamic process domains
linked by internal boundary conditions
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DO NOT PANIC.

This talk contains images and data from laboratory-
scale experiments

These experiments are not miniature analogs of
natural systems

They are experiments, not models. Their relevance to
field scales comes from scale independence, not
classical scaling




Experimental Earthscape (XES) system

transport surface

pa- [ solenold

- Vvalve pressurlzed
waler reservoir

to water supply
to gravel recycling




Time is greatly compressed

Subsidence-surface interaction on
accessible time scales

Sink In a box!




Quantifying mass balance: fractional sediment extraction

define a dimensionless distance y in terms of mass loss down

the depositional system:

called A.in earlier X rate of deposition

papers

/ NB: the interval AT is

v (x)dx chosen to be long
AT enough to average out
flow-controlled
0 fluctuations

450

T~

sediment supply

Strong et al., 2005, IAS Fluvial Sedimentology 7



Quantifying mass balance: fractional sediment extraction

Using mass extraction as a
measure lets us compare
basins of different shape and
size on a consistent basis

Provides a quantitative way of
expressing proximal — distal

We can think of the point
x = 0.5 as the
“depositional midpoint”
of the basin




Quantifying mass balance: bypass ratio

Bypass ratio B is the ratio between deposition and bypass:

local avg. unit
sediment flux
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Applying the chi transformation to stratigraphy

Note: consistently
lower channel
density for slow
subsidence stage

Strong et al., 2005, IAS Fluvial Sedimentology 7



Applying the chi transformation to stratigraphy

At 40% mass

extraction, the deposit
is still channel
dominated

But by 70% extraction,
predominant
depositional element is
sheets (extensive, thin
lobes)

Strong et al., 2005, IAS Fluvial Sedimentology 7



Why should mass balance affect stacking?

« channel fraction & stacking density depend on
rate of channel mobility relative to rate of
deposition
— high mobility rel. to deposition = high channel density

« channel mobility « bed-material flux

 thus high values of flux/deposition (bypass ratio)
- more frequent + more active channels -
Increased channel density



Application to turbidite mini-basins

Brazos-Trinity System, offshore Gulf of Mexico
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XES 01 turbidity currents in a mini-basin
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East Breaks Minibasin
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XES 01 turbidity currents in a mini-basin

Violet et al. 2005 JSR
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XESO01 vs. Brazos-Trinity System
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XESO01 vs. Brazos-Trinity System
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XESO01 vs. Brazos-Trinity System

Chi =0.05

Coal transported by a single event Levees of the channel formation
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XESO01 vs. Brazos-Trinity System
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XESO01 vs. Brazos-Trinity System

Chi=0.86



Bed curvature statistics

XES 01 East Breaks Minibasin

ecdf bounding surface length: XES 01 ecdf seismic amplitude lengths: East Breaks Minibasin
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Curvature: channels vs expansion deposits

Similar changes with increasing
mass extraction in unconfined
turbidites and fluvial deposits




Mass-balance effects: experimental
half-graben basin

hangingwall footwall drainage
drainage Transverse or Ei'asm- Transverse | source
source (Distal HW Ramp) (A;’;:_ (piedmont) |

river)

footwall
uplift
4 X \ block
slo W.er subsidence
rapid

Modified from Leeder and Gawthorpe (1987) and Mack and Seager (1990)

Sean Connell (UNM), Wonsuck Kim, Gary Smith (UNM),
Chris Paola




XES 06 plan view setup

X =5819 mm

| X = 2500 mm

hangingwall input  x=1000 mm
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XESO06-1: Cross Section Profile
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Initial Conditions Stage Ob (O hrs

XES_ R06_PreSub :
— 42.0012 - 42:00:04

BIZ2E006 4 52 27 2w Ocrd = 3800

150 200 250

Sediment Discharge (Qs, ml/minute)




Axial-Dominant Stage 1b (80 hours
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Footwall-Dominant Stage 2 (123 hours)
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Axial-Dominant Stage 3 (180 hours
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Hanging-wall Stage 4 (225 hours
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Hanging-wall Stage 4 (225 hours

XES_ RO6_Subside
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Eustatic sediment pumping: general idea

Sediment is transferred offshore during RSL falls

But it is preferentially retained in the fluvial system
during RSL rise

So what is the net effect of eustatic cycling on sediment
delivery to the deep ocean, and in particular, is there
net ‘pumping’ effect associated with repeated eustatiq
cycling?




XES 02 experiment

Goal:

measure the stratigraphic effects
of isolated & superposed eustatic
cycles

run basics

slow cycle

amplitude:
duration:

base level (mm)

base level curve
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amplitude:
duration:

6 rapid cycles on one slow cycle

initial basement

final basement

flow direction ——— >




data collection and preparation

diment-water v I i
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" / surface

89 isopach maps

vinog/ais TT 1 cm-resolution stratigraphic images
' | V 474 strike images

gravel basement ‘
) ¢ \ _heéxagonal subsidence cells

an s 125 full dip sections

topographic scan : basin VOIUme —> 2 cut patternS

(every 0.05 m)

28m

topographic scan

(every 0.01 m)

0.02

strike volume
|

a0 % &%p




Time-dependent cumulative marine fraction

XES 02 data vs. Numerical model
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Time-dependent cumulative marine fraction
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To quantify the
effect of eustatic
pumping, we
need a reference
case: clinoform
progradation
with constant
eustatic sea
level (ESL)




Time-dependent cumulative marine fraction

Same water displacement with XES 02

Compare the
case as run with
superposed ESL
superposed ESL cycles with the
simple ESL cycles same scenario
cycles, constant but with simple
water monofrequency
displacement ESL cycles,
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Preserved cumulative marine fraction
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Summary of pumping effect

Little net pumping effect from ESL cycles that do not
create net fluvial erosion — fluvial loss during fall is
compensated exactly by fluvial gain during rise

Net effect including all slow and rapid cycles: increase final
marine fraction from 0.35 to 0.49

Net effect of adding superposed high-frequency cycles:
increase final marine fraction from 0.45 to 0.49

Net pumping effects become strong when sediment supply
Is phase-shifted relative to ESL (as originally proposed
by Perlmutter et al.)




Obliteration of supply signals by stick-slip
sediment transport

Key idea: threshold-dominated transport leads to
sediment storage and release (stick-slip transport)

43

Jerolmack & Paola 2010 GRL



Storage and release of sediment under steady conditions
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Thresholds and randomness

Deposit of a rice pile
is constructed from
this output
(avalanching and
stick-slip)

Steady input

Intermittent output

Steps of all sizes form in profile (storage)
Threshold exceedance causes ailure (release)




Numerical Rice Pile [Frette, 1993]
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Numerical rice pile - results

MODEL — output flux . EXPERIMENT — output flux
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Stick-slip transport obliterates high f sediment cycles, but...
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Cycles with period larger than largest avalanche are preserved
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Summary: S2S ideas

Mass balance as first-order control on
deposit architecture across the sink

Mass balance and moving boundaries
explain domains fed by multiple inputs

Weak net offshore pumping from base
level cycles under steady sediment

supply
Signal shredding by stick-slip transport




How is fluvial sediment mass balance
influenced by offshore conditions?
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Ask a fluvial geomorphologist what
controls erosion and deposition in the

fluvial system, and you hear things
like:

The answer involves local fluvial variables




Let’s look at the problem another way...

(Upstream)

(Downstream) Sediment supply = Q_

Water supply = Q,,
Eustatic sea level

Subsidence rate
(Distributed)

Fluvial system is one part of linked depositional system

What role do non-eustatic, downstream processes play in
controlling large-scale fluvial sedimentation?




Choke Points — A Conceptual Model

Fluvial aggradation here... _ js controlled by shoreline
progradation here... @

...which is controlled by ability
of system to clear sediment
from the foreset toe.

®

Flux discontinuity
across foreset

~(l=0-"

Clinoform toe is a ‘choke point’ Agg. rate ~ Prog. rate ~
in the linked transport system




Choke Points - Limiting Cases

A General case: Partially choked

B Completely choked (Gilbert delta)

Qs

&&ﬁ Prog. Rate ~ Max

C Completely un-choked

»QSS _— » () ~ 2" O » /" 3
Q .
N Prog. Rate ~ 0




L e e

Steckler et al. (1999) :

Pre-existing basin
geometry

Clinoform toe “feels”
underlying topography

Alongshore transport

High wave energy can ‘smear’
fluvial sediment flux laterally,
effectively un-choking toe

Turbidity currents

Sustained turbidity currents can reduce
foreset slope (Kostic et al., 2002) and
affect how foreset toe interacts with
underlying topography




Un-choking the clinoform system with a combination of
underlying topography and sustained turbidity currents:

A No turbidity currents

Turbidity currents
reduce foreset slope...




Supporting flume experiments (J. Mohr):

| ;
!
!
!
/ Constant base level

|
E/ Shelf
|
|
|
|
|
|
|

Ramp angle ~ 26° ( ~ 20% < angle of repose)

Silt (40 um) fed once clinoform toe reaches ramp




Experimental Results — Sustained Turbidity
Currents
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Results: Sensitivity to
concentration of suspended
silt (Cg;)




Shoreline position (cm)

Results: Fluvial aggradation and shoreline progradation

N
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Fluvial aggradation
atx=15cm from
sediment source

" Shoreline
| progradation

0% Concentration

2% Concentration

4% Concentration

6% Concentration
| ]

50
Time (min)

60 70

Fluvial surface elevation (cm)

Shoreline response:

For C > 2%, reduced foreset
angle un-chokes clinoform toe,
thereby arresting progradation




Stratigraphic implications:

Un-choking the clinoform toe provides a
mechanism for sand bypass to deeper-marine
environments w/o a change in sea level

Steady sea level

Basin-floor fans




Conclusions:

« Clinoform toe is a critical point (a ‘choke point’) in
the linked depositional system

Flux discontinuity across foreset controls
shoreline progradation and large-scale fluvial
sedimentation

Turbidity currents in combination with basement
geometry can ‘un-choke’ the clinoform system

Un-choking is a mechanism for sediment transfer
to deep-marine environments




