

Experimental results: source to sink

Source to sink AGU Chapman conference

> **Chris Paola** Quantitative stratigraphy group University of Minnesota

National Center for Earth-Surface Dynamics

Particular thanks to...

John Martin, Exxon Mobil Wonsuck Kim, UT Austin

Source-to-sink thinking becomes increasingly important with increasing time scale

These ideas are readily seen in small-scale experiments because time scale is directly related to system size

On source to sink scales sedimentary environments are process domains linked via *moving boundaries*

On source to sink scales, *mass balance* is a first-order control on sedimentary facies

Signal transmission is strongly influenced by *sediment storage* & *release*

Depositional steady state

Steady States

Grade: no mass loss or gain

Erosional: mass gain (erosion) balances uplift

Depositional: mass loss (deposition) balances subsidence

 $\frac{-\partial q_s}{\partial x}$ \boldsymbol{O}

Moving boundaries: dynamic process domains linked by internal boundary conditions

DO NOT PANIC.

This talk contains images and data from *laboratoryscale experiments*

- These experiments *are not miniature analogs* of natural systems
- *They are experiments, not models.* Their relevance to field scales comes from scale independence, not classical scaling

Experimental Earthscape (XES) system

Time is greatly compressed

Subsidence-surface interaction on accessible time scales

Sink In a box!

Quantifying mass balance: fractional sediment extraction

e.g. χ = 0.3 means the distance over which 30% of the sediment is extracted from the system.

Quantifying mass balance: fractional sediment extraction

Using mass extraction as a measure lets us compare basins of different shape and size on a consistent basis

Provides a quantitative way of expressing *proximal* – *distal*

1

X

We can think of the point χ = 0.5 as the "depositional midpoint" of the basin

The two measures are directly related

Applying the chi transformation to stratigraphy

Note: consistently *lower* channel density for slow subsidence stage

x = 3.58 m

Strong et al., 2005, IAS Fluvial Sedimentology 7

Applying the chi transformation to stratigraphy

 $\chi = 0.4$

At 40% mass extraction, the deposit is still channel dominated

 $\chi = 0.7$

But by 70% extraction, predominant depositional element is sheets (extensive, thin lobes)

Strong et al., 2005, IAS Fluvial Sedimentology 7

Why should mass balance affect stacking?

- channel fraction & stacking density depend on rate of channel mobility relative to rate of deposition
 - high mobility rel. to deposition \rightarrow high channel density
- channel mobility \propto bed-material flux
- thus high values of flux/deposition (bypass ratio)
 → more frequent + more active channels → increased channel density

Application to turbidite mini-basins

From Beaubouef and Friedmann 2000

Basin 4: From Beaubouef et al. 2003

Paola & Martin, in limbo

XES 01 turbidity currents in a mini-basin

Violet et al. 2005 JSR

East Breaks Minibasin

XES 01 turbidity currents in a mini-basin

Violet et al. 2005 JSR

XES01 vs. Brazos-Trinity System

From Beaubouef et al 2003

XES01 vs. Brazos-Trinity System

Beaubouef et al 2003

Chi = 0.1

Beaubouef et al 2003

Chi = 0.1

XES01 vs. Brazos-Trinity System

Chi = 0.61

Medial

Chi = 0.5

2.00

Beaubouef et al 2003

XES01 vs. Brazos-Trinity System

Chi > 0.95

Beaubouef et al 2003

Chi = 0.86

Bed curvature statistics

XES 01

East Breaks Minibasin

ecdf seismic amplitude lengths: East Breaks Minibasin

ecdf bounding surface curvature: XES 01

ecdf seismic amplitude curvature: East Breaks Minibasin

Curvature: channels vs expansion deposits

Similar changes with increasing mass extraction in unconfined turbidites and fluvial deposits

Mass-balance effects: experimental half-graben basin

Modified from Leeder and Gawthorpe (1987) and Mack and Seager (1990)

Sean Connell (UNM), Wonsuck Kim, Gary Smith (UNM), Chris Paola

XES06-1: Cross Section Profile

Initial Conditions Stage 0b (0 hrs)

Sediment Discharge (Qs, ml/minute)

Axial-Dominant Stage 1b (80 hours)

b

Footwall-Dominant Stage 2 (123 hours)

Axial-Dominant Stage 3 (180 hours)

Hanging-wall Stage 4 (225 hours)

Hanging-wall Stage 4 (225 hours)

Kim et al. 2011 Geology, in review

Eustatic sediment pumping: general idea

Sediment is transferred offshore during RSL falls

But it is preferentially retained in the fluvial system during RSL rise

So what is the *net effect* of eustatic cycling on sediment delivery to the deep ocean, and in particular, is there net 'pumping' effect associated with repeated eustatic cycling?

XES 02 experiment

Goal: *measure the stratigraphic effects of isolated & superposed eustatic cycles*

run basics

slow cycle

symmetrical amplitude: 11cm duration: 108 hours

rapid cycle

symmetrical amplitude: 11cm duration: 18 hours

superposed cycle

6 rapid cycles on one slow cycle

XES 02

data collection and preparation

- 90 usable scans of the entire experimental surface
- 89 isopach maps
- 1 cm-resolution stratigraphic images 474 strike images 125 full dip sections

Time-dependent cumulative marine fraction

Time-dependent cumulative marine fraction

To quantify the effect of eustatic pumping, we need a reference case: clinoform progradation with constant eustatic sea level (ESL)

Time-dependent cumulative marine fraction

Compare the case as run with superposed ESL cycles with the same scenario but with simple monofrequency ESL cycles, same water displacement

Preserved cumulative marine fraction

Summary of pumping effect

Little net pumping effect from ESL cycles that do not create net fluvial erosion – fluvial loss during fall is compensated exactly by fluvial gain during rise

Net effect including all slow and rapid cycles: increase final marine fraction from 0.35 to 0.49

Net effect of adding superposed high-frequency cycles: increase final marine fraction from 0.45 to 0.49

Net pumping effects become strong when sediment supply is phase-shifted relative to ESL (as originally proposed by Perlmutter et al.)

Obliteration of supply signals by stick-slip sediment transport

Key idea: threshold-dominated transport leads to sediment storage and release (stick-slip transport)

Storage and release of sediment under steady conditions

Thresholds and randomness

Numerical Rice Pile [Frette, 1993]

A simple, threshold-based toppling transport model

Numerical rice pile - results

Fluctuations over a wide range of scales

Variability saturates at $t = t_x$

Stick-slip transport obliterates high *f* sediment cycles, but...

Cycles with period larger than largest avalanche are preserved

Summary: S2S ideas

- Mass balance as first-order control on deposit architecture across the sink
- Mass balance and moving boundaries explain domains fed by multiple inputs
- Weak net offshore pumping from base level cycles under steady sediment supply
- Signal shredding by stick-slip transport

How is fluvial sediment mass balance influenced by offshore conditions?

John B. Swenson¹, Jeré A. Mohr¹, Chris Paola^{2,3}, & Lincoln F. Pratson⁴

(1) Department of Geological Sciences, University of Minnesota Duluth, Duluth, MN, USA
 (2) Department of Geology & Geophysics, University of Minnesota, Minneapolis, MN, USA
 (3) St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA
 (4) Division of Earth & Ocean Sciences, Duke University, Durham, NC, USA

Ask a fluvial geomorphologist what controls erosion and deposition in the fluvial system, and you hear things like:

- Water discharge
- Sediment supply
- The ratio of the above
- Slope
- Grain size

The answer involves local fluvial variables

Let's look at the problem another way...

Fluvial system is one part of linked depositional system

What role do non-eustatic, downstream processes play in controlling large-scale fluvial sedimentation?

Choke Points – A Conceptual Model

Motivation: Fluviodeltaic clinoforms migrate as approximately self-similar waveforms.

Mechanisms for Affecting Flux at the Foreset Toe (Q_{st}):

Pre-existing basin geometry

Clinoform toe "feels" underlying topography

Alongshore transport

High wave energy can 'smear' fluvial sediment flux laterally, effectively un-choking toe

Turbidity currents

Sustained turbidity currents can reduce foreset slope (Kostic *et al.*, 2002) and affect how foreset toe interacts with underlying topography

Un-choking the clinoform system with a combination of underlying topography and sustained turbidity currents:

Supporting flume experiments (J. Mohr):

Ramp angle ~ 26° (~ 20% < angle of repose)

Silt (40 µm) fed once clinoform toe reaches ramp

Experimental Results – Sustained Turbidity Currents

No turbidity currents

Turbidity currents

Results: Sensitivity to concentration of suspended silt (C_{silt})

Results: Fluvial aggradation and shoreline progradation

Fluvial aggradation:

For C_{silt} > 2%, reduction of foreset angle stalls system, resulting in fluvial bypass and incision

Shoreline response:

For $C_{silt} > 2\%$, reduced foreset angle un-chokes clinoform toe, thereby arresting progradation

Stratigraphic implications:

Un-choking the clinoform toe provides a mechanism for sand bypass to deeper-marine environments w/o a change in sea level

Conclusions:

- Clinoform toe is a critical point (a 'choke point') in the linked depositional system
- Flux *discontinuity* across foreset controls shoreline progradation and large-scale *fluvial sedimentation*
- Turbidity currents in combination with basement geometry can 'un-choke' the clinoform system
- Un-choking is a mechanism for sediment transfer to deep-marine environments