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Uncertainty and Validation

Clockwise from top left: (1) Observed depth change data,
(2) Prediction using 1% of observation data (absolute value
of depth change shown), (3) Prediction using 10% of 
observation data, (4) Prediction using 100% of observation
data. 

Predictors

Method: K-Nearest Neighbor (KNN), an unsupervised
machine learning/data mining technique. At every grid
point with a predictand and n predictors:
• Predictand vector is compared to all observation vectors
• The k (user-defined parameter) observation vectors
closest in parameter space to the predictand vector are
averaged and resulting value is assigned to the predictand

 

Goal: Leverage relationship between predictand 
(undersampled parameter to be predicted) and predictors 
(parameters correlated with predictand) to provide “best 
guess” of predictands between known observations  

Test Case: Mississippi River Delta Front
• Largest distributary of Mississippi 
  River sediment/water1

• Why chosen:
  ◦ Societally important, therefore 
    well-studied (data-rich)
  ◦ Many slope failure preconditioning 
    and triggering factors 
    (predictors) and annual recurrence 
    interval slope failures2

 

Machine Learning and Data Mining Towards a Quantitative Assessment 
of Submarine Slope Failure Predictors
Jeffrey Obelcz1*, Warren T. Wood2

(1) NRC Postdoctoral Fellow, Naval Research Lab, Stennis Space Center, MS, USA 

(2) Naval Research Lab, Stennis Space Center, MS, USA 

*Corresponding author- jbobelcz@gmail.com

Abstract
Submarine slope failure is a ubiquitous process and dominant pathway for sediment and organic carbon flux from continental margins to the deep sea. Slope failure occurs over a wide range of temporal and spatial scales, from small (104-105 m3/event), sub-annual failures on heavily sedimented river 
deltas to margin-altering and tsunamigenic (10-100 km3/event) open slope failures occurring on glacial-interglacial timescales. Despite their importance to basic (closing the global source-to-sink sediment budget) and applied (submarine geohazards) research, submarine slope failure frequency and 
magnitude on most continental margins remains poorly constrained. This is primarily due to difficulty in 1) directly observing events, and 2) reconstructing age and size, particularly in the geologic record. The state of knowledge regarding submarine slope failure preconditioning and triggering factors is 
more qualitative than quantitative; a vague hierarchy of factor importance has been established in most settings but slope failures cannot yet be forecasted or hindcasted from a priori knowledge of these factors. 
A new approach to address the knowledge gaps outlined above is using machine learning to quantitatively identify triggering and preconditioning factors that are most strongly correlated with submarine slope failure occurrence. This requires three general steps: 1) compile potential predictors of slope 
failure occurrence (gridded and interpolated at desired resolution), 2) compile predictands (specific values that we wish to predict), and 3) recursively test predictor/predictand correlation with observed data until the strongest correlations are found. Potential predictors can be parsed into categories such 
as morphology (gradient, curvature, roughness), geology (clay fraction, grain size, sedimentation rate, fault proximity), and triggers (seismicity, significant wave height, river discharge). Predictands (i.e. training and validation data) are various proxies for slope failure occurrence, including depth change 
between bathymetric surveys and sediment shear strength. The initial test sites are heavily sedimented, societally important river deltas, as they host both frequent slope failures and ample predictor/predictand measurements. Once predictors that strongly correlate with submarine slope failure 
occurrence are identified, this approach can be applied in more data-poor settings to further our current understanding of global submarine slope failure distribution, frequency, and magnitude.

Problem

Mississippi River Delta Front. Blue 
outline shows location of predictor grids 
to left. Abbreviations: PAL-Pass a 
Loutre, SP-South Pass,SWP-Southwest 
Pass. Depth contours are in 25 m 
increments.

● Submarine slope failure difficult to observe, leading to 
difficulties forecasting; hindcasts difficult as well due to 
ambigious evidence of occurrence
● Triggering and preconditioning factors of slope failure 
qualitatively, but not quantitatively known for most settings
QUESTION: Can we quantitatively assess the 
importance of preconditioning/triggering factors of 
submarine slope failure, and use this knowledge to 
predict future failures?
 

Results
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Interpretation
• KNN can be used to estimate 
depth change (proxy for slope
failure) as “placeholder” for data
• Porosity, shear strength, and 
gradient showed strongest 
predictive capability of depth 
change in MRDF setting
• KNN reproduced general 
spatial trends of depth change
(and lack thereof), but lots of
mismatch in scale/geologic
facies-significant room for 
improvement

 

Approach: Machine Learning

• This ensures predictand values are 
interpolated from geologically similar 
data, even if not spatially proximal, i.e. 
Mississippi (Gulf of Mexico) and Yellow 
River Deltas (South China Sea)

             Preconditioning factors for slope failure
• Gradient            • Curvature           • Water depth
• Sedimentation Rate       • Proximity to faults    
• Total Organic Carbon    • Porosity3  • Shear strength
                             Triggering factors of slope failure
• Tropical Storm/Hurricane passage (∆ seafloor pressure)
• River Floods          • Sedimentation Rate (oversteepening)
                              Predictands
• Bathymetric change (elevation change = slope failure)
• Landslide scarps/deposits (derived from bathymetry)
• Landslide deposits (identified via subbottom profiling)
                     

• Uncertainty estimated
via standard deviation
of top k predictors (left,
prediction using 
bathymetry and slope)
• Uncertainty highest
in areas of largest depth
change
 • Depth change 
predicted outside 
mudflow gully/lobe 
zones, not seen in 
observed data 

• Ten-fold cross validation used to test predictive capability
• Error increases as values increase and data decreases

Future Work
• Integrate more predictors into
KNN algorithm (more = better)
• Find better predictand for
submarine slope failure, depth 
change is imperfect
• Integrate combinative 
predictors into workflow
(i.e. depth + porosity)
• Test algorithm on settings 
assumed to be close in 
parameter space to MRDF 
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