Coupled Modeling of River and Coastal Processes: New Insights about

Delta Morphodynamlcs Avulsions, and Autogenic Sediment Flux Variability

Duke 5 - Brad Murray! (abmurray@duke.edu), Katherine Ratliff, Eric Hutton?

- "x i
e scrooL or T 1Earth & Ocean Sciences, Duke University, Durham, NC; ?Community Surface Dynamics Modeling System, Boulder, CO E § @?DMS

Motivation & Research Questions [ New Delta Evolution Model

Deltas are flat & fertile = densely populated
Important for agriculture, resources, and transportation
Inhabitants increasingly susceptible to natural disasters
Humans have:
* Decreased sediment supply (e.g. dams)
* Altered river course (e.g. channelization, levees)
Relative sea-level rise rate (SLRR) increases = aggradation & Mississippi Delta
backfilling increase (morphodynamic backwater) = avulsions UL
assumed to be more frequent

Need to link both fluvial, deltaic, and coastal systems over multi-
avulsion and lobe-building timescales

Based on couplings using the Community Surface Dynamics
Modeling System framework (Basic Model Interface)
Generalized & scale invariant

Capable of simulating large space & time scales
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What key feedbacks between fluvial and coastal processes

drive avulsions and delta morphology?
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Wave climate diffusivity affects morphology Avulsion time scales

* low wave height: sign of wave climate diffusivity doesn’t matter; waves too low to affect shape « diffusively wave-dominated: progradation slow, avulsions take longer to occur

* higher wave height: sign does matter, affects morphology & avulsion time scales * river-dominated or U>0.5: progradation not inhibited, avulsions happen quickly
* diffusive (U<0.5) = flat shorelines, progradation inhibited * Increasing SLRR* only decreases avulsion time scales for wave-diffused deltas!
* antidiffusive (U>0.5)-> locally smooth, but cuspate shorelines - In river-dominated or U>0.5 cases, lateral (transgressive) movement of shoreline

WSS fluvial dominance counteracts base-level driven aggradation, no net affect on avulsion timing
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