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Goal: understand how perturbations
affect delta network organization

Example: Selenga River delta

Fault-induced
subsidence (earthquake)
in 1862 created Proval
Bay (1-2 m deep)
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Faster shoreline
progradation in eastern
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flux is balanced at
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80-100% of sediment
input to delta went to
eastern lobe
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What events are large enough to make
network reorganize?

Case Study: Mississippi River delta

Cumulative subsidence
contribution from
growth faulting is poorly
constrained:
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Diversions planned to
build land (e.g., Ironton)
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Can growth faults
make network
reorganize?
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Will reorganization impact
sediment diversion success?

Open-source methods
pyDeltaRCM: Python implementation of DeltaRCM

W DeltaRCM

deltarcm.org/pyDeltaRCM

5-10x faster, reproducible,
feature-rich, extensible

(JOSS paperin prep.)

DeltaMetrics: data-cube analysis for deltas

object-oriented API, data agnostic

dm.plan.OpeningAnglePlanform

dm.cube.DataCube

deltarcm.org/DeltaMetrics

Yes, and

but only when

subsided region

Modeling fault-induced subsidence
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1) channel network change correlates
with displacement length

2) channel network is connected to

reorganization
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Shoreline asymmetry and recovery
time depend on displacement
length
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Sediment flux asymmetry following
displacement depends on
displacement length

Connection to inlet dictates reorganization
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No correlation with subaerial delta area
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Connectedness determined by
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Connectedness impacts when sediment reaches
block, but flux at this time is not affected



