Estuarine morphodynamics: better be certain about uncertainty

Evaluating 150 years of morphodynamics in San Francisco Bay (USA) and the Western Scheldt estuary (NL)

> Gerard Dam (UNESCO-IHE, Svasek Hydraulics) Mick van der Wegen (UNESCO-IHE, Deltares) Bruce Jaffe (USGS, Santa Cruz, USA) Dano Roelvink (UNESCO-IHE, Deltares)







### Energy dissipation (Ediss/m^2/s) for fixed banks



Van der Wegen et al. (2008), JGR-ESP





### But first...







# ....the weather forecast for the next days.

Temp. op 2m in °C - Regio NL Midden (model run: 12-05-2014 02:00 uur)



(www.buienradar.nl)

Deltares

Enabling Delta Life



#### Uncertainty trumpet



### How do process-based models perform?















### Morphological process-based model:

FINEL2d model (www.finel2d.com ):

- 2DH simulation finite elements method;
- Only tidal forcing;
- Engelund-Hansen sediment transport formula
- 1 fraction of sand
- Roughness constant in time and space
- MORFAC: 24.75
- Non-erodable layer
- Parameterisation of spiral flow
- Water motion calibrated















### 110 years hindcast period 1860 - 1970

Bathymetric recordings in:

1860- initial bathymetry
1878
1890
1905
1931
After 1955 every 2 years till 1970





### Erosion/sedimentation 1860-1878 (18 years)





### Erosion/sedimentation 1860-1890 (30 years)

Model Run 2; erosion/sedimentation 1860 - 1890





### Erosion/sedimentation 1860-1905 (45 years)

Model Run 2; erosion/sedimentation 1860 - 1905





### Erosion/sedimentation 1860-1831 (71 years)

Model Run 2; erosion/sedimentation 1860 - 1931





### Erosion/sedimentation 1860-1955 (95 years)

Model Run 2; erosion/sedimentation 1860 - 1955



Measurement: erosion/sedimentation 1860 - 1955



### Erosion/sedimentation 1860-1960 (100 years)

Model Run 2; erosion/sedimentation 1860 - 1960



Measurement: erosion/sedimentation 1860 - 1960

### Erosion/sedimentation 1860-1970 (110 years)

Model Run 2; erosion/sedimentation 1860 - 1970



Measurement: erosion/sedimentation 1860 - 1970

### Brier-skill score (Sutherland et al., 2004)

$$BSS = 1 - \frac{\left\langle (Y - X)^2 \right\rangle}{\left\langle (B - X)^2 \right\rangle} = 1 - \frac{\left\langle error^2 \right\rangle}{\left\langle signal^2 \right\rangle}$$

#### Where:

Y=Bed level prediction at time T X=Bed level observation at time T B=Bed level at t=0 And the <> denote the arithmetic mean. Rating (van Rijn et al., 2003):

- <0 : Bad
- 0-0.3 : Poor
- 0.3-0.6 : Reasonable/fair
- 0.6-0.8 : Good
- 0.8-1.0 : Perfect





### BSS 1860 – 1970; entire Western Scheldt



Deltares



## Error and signal 1860 – 1970

$$BSS = 1 - \frac{\left\langle (Y - X)^2 \right\rangle}{\left\langle (B - X)^2 \right\rangle} = 1 - \frac{\left\langle error^2 \right\rangle}{\left\langle signal^2 \right\rangle}$$



Deltares





### BSS: 3 hindcast periods



### Error and signal; 3 hindcast periods



### Energy dissipation levels



### How do process-based models perform?







### Remarks

- Performance of process-based model is weak in the first decades, but increases significantly on the longer run
- Model and measurements show decreasing energy dissipation levels and rates
- Application of long-term developments (eg. Sea level rise) seems more valuable than decadal predictions
- How to decrease morphodynamic spin-up time?

Dam et al. (2014), submitted









### Hydraulic mining

### San Francisco Estuary in the 1980s

- Area: ~1200 km<sup>2</sup>
- Average depth: 7 m
- Median depth: 3 4 m
- Deepest point: ~120 m (Golden Gate)

Jaffe 2009

















### Three characteristic periods

- 1. Excess sediment supply due to *hydraulic mining* about 150 years ago *measured deposition*.
- 2. Dramatic decrease in sediment supply after stop in hydraulic mining and *dam construction* in the last century *measured erosion*.
- *3. Climate change* will further perturb the morphodynamics as sea level rises and the river discharge regimes are altered by warming and precipitation changes further erosion?




#### Deposition in San Pablo Bay 1856 to 1887



Average net deposition was ~ 8 million m3/ yr

Jaffe et al. (2007)





### Erosion in San Pablo Bay 1951 to 1983



Average net erosion was ~ 0.8 million m3/yr









#### Aim of the study

- To hindcast bathymetric changes in San Pablo Bay with a process-based morphodynamic model.
- 2) To assess uncertainty levels.
- 3) To eventually predict future development under climate change scenarios.





## Delft 3D

- Process-based 3D numerical model
- Shallow water equations
- Multiple transport formulations
- Multiple sediment fractions
- Bed slope effects
- Bed level update every time step
- Waves, density currents







#### Boundary conditions





Figure 9. Example of tidal height (black lines, left axis) and tidal currents (red, right axis) for a single week. A., Carquinez Strait in the northern estuary; B., San Mateo Bridge in South Bay. Schematization by applying only M2, M4, K1 and O1 at the boundaries





Sediment supply via  $Qs = \alpha Qr^{\beta}$  (historic proxy by Ganju et al (2008))Deltares UNESCO-IHE Institute for Water Education IIIII

Enabling Delta Life

#### Model schematization

- Wind diurnal with 7 m/s around noon
  - 6 months from the west
  - 5 months from south east
- Sediment transport formulae
  - Van Rijn for sand, 3 fractions
  - Krone/Partheniades for mud, 5 fractions







#### Unknown parameters

| Sand fractions | 9     |
|----------------|-------|
| Mud fractions  | 20    |
| Wind           | 4     |
| Flow           | 10    |
| Wave           | 10    |
| Total          | 53 !! |

Some physically unknown (not measured) Some introduced by schematization (time-saving)





# Can a process-based model (like Delft3D) reproduce decadal morphodynamics?





#### Seasonal fluctuations (modeled)



#### nett volume change per year



1856-1887 1951-1983 1983-2013











#### Subquestion:

How much percent of the modeled erosion/deposition volume skill?What is the confidence level given input parameter uncertainty?





## Skill score (BSS) and Confidence index (CI)

$$BSS = 1 - \frac{\left\langle (Y - X)^2 \right\rangle}{\left\langle (B - X)^2 \right\rangle} = 1 - \frac{\left\langle error^2 \right\rangle}{\left\langle signal^2 \right\rangle}$$

$$CI = 1 - \frac{\left\langle \sigma_{\text{mod}}^2 \right\rangle}{\left\langle \mu_{\text{mod}\,abs}^2 \right\rangle}$$







0.2 0 0.5 1 1.5 distance, m 2.5 2

0.5

0

0.5

0

2.5

2

0.5

00

0.5

1 1.5 distance, m

0.5

2.5

2

1.5

1 distance, m

0.5

0<sup>L</sup>

#### Model performance indicator (MPI) combination of uncertainty and skill

| indicator           | criterion             | 1856-1887                                                        | 1951-1983 | 1983-2013 |  |
|---------------------|-----------------------|------------------------------------------------------------------|-----------|-----------|--|
| Confidence          | CI > 0.3              | 90%                                                              | 68%       | 60%       |  |
| Skill               | BSS > 0.5             | 57%                                                              | 19%       |           |  |
| MPI                 | CI > 0.3<br>BSS > 0.5 | 53%                                                              | 9%        |           |  |
|                     |                       |                                                                  |           |           |  |
| Doltaros            |                       | xx % of the modeled erosion and sedimentation volume fulfils the |           |           |  |
| Enabling Delta Life |                       | criterion                                                        |           |           |  |

#### *CPI : Volumetric percentage fulfilling confidence criterion* (CI<sub>th</sub>)







#### Concluding remarks

- Estuarine morphodynamic development is better predictable at longer (> decades) time scales
- After decades the model skill score becomes significant even in complex environments
- Uncertainty levels by uncertain model input parameter settings remain limited
- Plan form plays a governing role in the morphodynamic development of confined systems such as estuaries.





#### Thank you for your attention!







#### References

- Van der Wegen, M., and B. E. Jaffe, (2014) *Processes governing decadal-scale depositional narrowing of the major tidal channel in San Pablo Bay, California, USA*, JGR-ES, DOI: 10.1002/2013JF002824
- Van der Wegen, M., and B. E. Jaffe, (2013) *Towards a probabilistic assessment of process-based, morphodynamic models*, <u>Coastal Engineering</u> 75, 52–63, doi: 10.1016/j.coastaleng.2013.01.009
- Van der Wegen, M., and B. E. Jaffe, (2013) *Does centennial morphodynamic evolution lead to higher channel efficiency in San Pablo Bay, California?*, Special issue of <u>Marine Geology</u>, doi: 10.1016/j.margeo.2013.06.020
- Van der Wegen, M., (2013) *Numerical modeling of the impact of sea level rise on tidal basin morphodynamics*, <u>J.</u> <u>Geophys. Res. Earth Surf.</u>, 118, doi:10.1002/jgrf.20034.
- Van der Wegen, M., Roelvink, J.A., (2012), *Reproduction of estuarine bathymetry by means of a process-based model: Western Scheldt case study, the Netherlands*, <u>Geomorphology</u>, doi: 10.1016/j.geomorph.2012.08.007
- Van der Wegen, M., B. E. Jaffe, and J. A. Roelvink, (2011), *Process-based, morphodynamic hindcast of decadal deposition patterns in San Pablo Bay, California, 1856–1887*, J. Geophys. Res., 116, F02008, doi: 10.1029/2009JF001614.
- Van der Wegen, M., A. Dastgheib, B.E. Jaffe and J. A. Roelvink, (2011), *Bed composition generation for morphodynamic modeling: case study of San Pablo Bay in California*, USA. <u>Ocean Dynamics</u>, InterCoh 2009 Special issue, doi: 10.1007/s10236-010-0314-2
- Van der Wegen, M., Z. B. Wang, H. H. G. Savenije, and J. A. Roelvink (2008), *Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment*, J. Geophys. Res., 113, F03001, doi: 10.1029/2007JF000898.
- Van der Wegen, M., and J. A. Roelvink (2008) *"Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model, J. Geophys. Res.*, 113, C03016, doi:10.1029/2006JC003983.













#### Energy dissipation and tidal prism in San Pablo Bay









# What are governing tidal conditions?









- 60% of the slope *deposition* occurs during flooding of the shoals;
- 75 % of the slope erosion occurs during ebbing of the shoals;

Deltares

Enabling Delta Life



(b)

100

75

flood

#### Question :

• What is the impact of the geometry on the location of the patterns?



#### Reproduction of the Western Scheldt bathymetry by means of a process-based, morphodynamic model

or:

# What are the main driving forces that determine the morphological patterns in a tidal embayment?

Mick van der Wegen and Dano Roelvink







Institute for Water Education

Enabling Delta Life

#### Conclusions

- Modeling approach reproduces realistic and characteristic patterns in the Western Scheldt tidal basin.
- Major tidal forcing shows significant skill in reproducing the bathymetry, even for variations in model parameter settings.
- Model performance varies over 200 years due to continuous pattern formation and deepening of the basin





- Based or **Process** prin**based** in odels conservation.
- Use mathematical equations for water motion, sediment transport and bottom change
- Uses an empirical formula for sediment transport derived in a laboratorium (timescale of seconds).
- General view: Long-term morphological changes are not possible to model using process-based models!





General view on performance of long-term morphology of Morphological models drift away from reality over time due to:

-Build up of errors;

-Non-lineair interactions that are unpredictable over time;

-Processes are missing (simplification of system).







(www.buienradar.nl)




What is the value of long-term morphological modelling in estuaries using a process-based model?

(long-term = decades – century timescale)





#### Case study: Western Scheldt estuary, The Netherlands







# Hindcast of 1860-1970 period: (110 years)







#### 1998 bathymetry

#### Flattened bathymetry

After 15 years

After 30 years



#### Variations:

- Tidal Forcing M2, M4, M6
- Transport formulation Engelund Hansen, Van Rijn
- Bed slope parameter
- 2D, 3D
- Inclusion/exclusion :
  - Dredging and dumping actvities
  - River discharge (500 m3/s)
  - Non-erodible substrate
- Sediment grain size











## Mean depth



Exporting basin:

About 1m deepening over 200 years

~100 Mm<sup>3</sup>/200 years

~500,000 m<sup>3</sup>/year



#### Hypsometry after 200 years







## Brier Skill Score

$$BSS = 1 - \frac{\left\langle (\Delta vol_{\text{mod}} - \Delta vol_{\text{meas}})^2 \right\rangle}{\left\langle \Delta vol_{\text{meas}}^2 \right\rangle}$$

- Δvol volumetric change compared to the initial flat bed, (m<sup>3</sup>)
- mod modeled quantity,
- meas measured quantity
- =1 is perfect model
- <0 is worse than a flat bed</li>







## What determines the BSS?

$$BSS = 1 - \frac{\left\langle \left(\Delta vol_{\text{mod}} - \Delta vol_{\text{meas}}\right)^{2} \right\rangle}{\left\langle \Delta vol_{\text{meas}}^{2} \right\rangle}$$

$$BSS = \frac{\alpha - \beta - \gamma + \varepsilon}{1 + \varepsilon}$$

(Sutherland et al. 2004)

- Amplitude (α) Pattern formation (size of the patterns)
- Phase (β) Pattern formation (location)
- Mean level  $(\gamma)$

Longitudinal profile









## Confidence index

$$CI = 1 - \frac{\sigma_{\text{mod}}^2}{\mu_{\text{mod}\,abs}^2}$$



1856-1887 period 1951-1983 period 1983-2013 period





