HIGH RESOLUTION SURFACE PROCESS MODELING IN A GRASS GIS ENVIRONMENT

MICHAEL BARTON (ASU), ISAAC ULLAH (ASU), & HELENA MITASOVA (NCSU)

North

ANTHROPOCENE LANDSCAPES

- Modeling surface processes requires simulating changes across both space and time
- To understand the role of humans in surface dynamics requires modeling at human scales

ANTHROPOCENE LANDSCAPES

- What temporal/spatial scales relevant to modeling anthropogenic landscape char
- Anthropocene
 - Last 10k years
 - Begins with farming
 - Increasingly important anthropogenic component surface processes
- Spatial/temporal scales of huminopacts
 - Lifetimes to millennia
 - Household to global

ANTHROPOCENE LANDSCAPES

- Research focus
 - Impacts of agropastoral land-use on landscapes and societies
 - Origins of agriculture
 - Socio-ecological systems with feedbacks between social and biophysical drivers
- Modeling platform
 - GRASS GIS
 - Python
 - Java

- GRASS = Geographic Resource Analysis Support System
- Full featured GIS and spatial modeling platform
- Open source
- Multi-platform

• Earth scientists well-represented among user base and on dev team

• Raster/grid support

GRASS GIS La	iyer Manager
🔓 £ 8 🖬 🖪 🖪 🕻	\mathbf{I} \mathbf{M} \mathbf{M} \mathbf{G} \mathbf{G} \mathbf{G}
	44 🚫
	4 Þ ×
adsmajor_g7@test_and_demo	۲ ۲
eams_g7@test_and_demo	x
vation_shade@PERMANENT	x

raster buffers around streams over relief m

Many tools for surface process modeling and analysis

- north

time

-

Voxel support

- All geospatial functions available as command-line modules
- Scriptable in many languages
- Strong Python support
- Source code modifiable (written in C and Python)

DYNAMICS (MEDLAND)

- Coupling different model formalisms to create a computational laboratory for studying the long-term interactions of agropastoral land-use and landscape change in Mediterranean socioecological systems.
- Modeling environment as experimental laboratory
- Archaeological record of early farming provides data for validating and improving model outcomes.

Study areas in eastern Spain and western Jordan

bsite - http://medland.asu.edu

- Will focus first on surface process modeling aspects of MedLand laboratory
- Implemented as recursive scripts in GRASS GIS
 - Start with DEM of topography
 - Calculate net erosion / deposition for each landscape cell
 - Add/subtract net erosion/deposition to DEM
 - Create new DEM of topography

- Different algorithms used for modeling processes in different topographic settings
- Diffusion equation for drainage divides, ridge tops, hill tops
- Where Δz is net vertical change (erosion/deposition), β is slope, and κ is an empirically derived constant for different substrates

$\Delta z = \kappa \cdot \sin(\beta)$

- USPED equation modified for 3D landscapes (transport limited) for hill slopes, rills, and gullies
- Where transport capacity *T_c* is estimated from sediment flux (*T_c* ≈ *Q_s*); *R* (rainfall), *K* (soil), and *C* (land cover) are empirically derived RUSLE constants; *A* is upslope contributing area; *m* and *n* are empirically derived constants for different flow regimes (hill slopes vs. rills/gullies).

$R \cdot K \cdot C \cdot A^m \cdot \sin(\beta)^n$

- Shear stress equation for channels
- Where κ is an empirically derived constant for different substrates
 τ = shear stress, and N_e is number of storm events per year

 $T_c = N_e \cdot \kappa_t (\tau)^n$

- Calculation of shear stress (τ) for channels, where h = water depth per storm event, and 9806.65 is a gravitational constant for falling water
- *h* is calculated on the basis of an idealized hydrograph, where *t* is the duration of a storm event in hydrographic instants and is equivalent to the flow velocity of water (calculated by the Manning equation) divided by the cell resolution. *R*_e is the rainfall per event and *A* is the upslope contributing area for each cell

CHANGE

- **Basic assumption**
 - Flowing water carries sediment at capacity $(T_c \approx Q_s)$
- **Dynamics**
 - Changes to hydrology affect transport capacity
 - Water will erode or deposit sediment until its load reaches its new capacity

PHASE SHIFTS

PHASE SHIFTS

- Each process phase modeled separate
- Resulting maps patched together

- MedLand terrestrial surface process model is implemented as a Python script in GRASS: r.landscape.evol.py
- Easily run from within GRASS GIS environment
- Takes advantage of fast, efficient GRASS modules in C

$\bigcirc \bigcirc \bigcirc$			r.lar	dscape.evol		
Creat erosi soil c howe TEMP Curre	e raster ma on/depositi epth maps. ver, singula ORARY MAI ntly flags –	ps of net ero on using the This module In flow regim PS AND REQU Z -b -n -f ar	osion/deposi USPED equa e uses appro es can be ch JIRES A LOT re hard code	tion, the mod ation, bedroo opriate flow o osen instead OF FREE FILE d to run by o	dified terrain su k elevations aft on different land t THIS SCRIPT V SPACE! Note th default.	rface (DE er soil pr lforms by VILL PRO nat all flag
Requir	ed Input	Flow_type	Optional	Command o	utput	
Input elev	ation map (DEM):				
[•	
Initial bed	rock elevati	ons man (fo	r first iteratio	on only):		(ir
	ock cicvati		in stricture.	on only).		(1)
Prefix for	all output n	naps:				
	6		())			1-
by numer	cal suffix if	more than o	ne iteration	aea by pren):	x and followed	(0
elevation						
Name ste	n for the ou	itput soil de	oth map(s) (preceded by	prefix and	(
followed t	y numerica	l suffix if mo	ore than one	iteration):		
Delinfell (D	f				CA).	
5.66	ractor) con	Stant (AVERA	AGE FOR WH	OLE MAP AR	EA):	
Soil eroda	nility index	(K factor) m	an or consta	nt:		
0.42	July macx	(it factor) in				
0.42						
Soil densi	y constant	(for conversi	on from ma	ss to volume):	(so
1.2184					•	
Landcover	index (C fa	ictor) map oi	constant:			
0.001					•	
Anuall pre	cin totals n	an or const	ant (in meter	rs ner vear):		
0.2				s per year,		
0.2						
Number o 100	days of ra	in per year (i	nteger):			(ra
			lose	Run	Сору	

- Can complete 1 modeling cycle in under 1 minute for 1 million cells
- Tuned for annual cycles
- Could be retuned for monthly, daily, or event-based cycles

LABORATORY

- r.landscape.evol one component of hybrid modeling laboratory that includes...
 - Java ABM of human households and their land-use decisions
 - GRASS GIS-based model of landscape dynamics
 - Regression-based models of local climate and vegetation
- Open source software for research transparency and global accessibility

LABORATORY

 Coupled modeling system controlled from Java ABM and interface

Agent Environment Model Interaction Model System Settings	
Villages Resources Households	
	00
bability: 3 (*) % per 6 (*) people per family	Agent Environment Model Interaction Model System Settings
ty Delta: 1 🗘 % (increase/decrease in a cycle)	Villages Resources Households
inimum: 1 (1) % Maximum: 5 (1) %	FARMING PARAMETERS Labor Required Initial Expected Yield Calories (man-days/ha/year) (kg/ha/year) (kcal/ko
bability: 2 x % per 6 x people per family	WHEAT 50 450 350
ty Delta: 5 (increase/decrease in a cycle)	
inimum: 2 🗘 % Maximum: 10 🗘 %	BARLEY 51 456 350
on providing labor: % (rounded up to whole person)	NOTE: Barley Is Only Consumed after Being Used as Fodder for Sheep and Goats
00000 kcal / capita / year Labor provided: 300 man-days / capita / y	OVICAPRID GRAZING PARAMETERS
cost to travel to farm: 2800 Yield Expectation Scalar: 75	Number of Ovicaprids Per Person: 4 Ovicaprid Grazing Density Factor: 1
50 75 100 125 150	Ratio of Sheep to Goats: Sheep : 1 To Goats : 1 Fallow Field Grazing: ON
50 75 100 125 150	Annual Sheep Fodder Requirement 584 kg Annual Goat Fodder Requirement 894 kg
2010 Save Configuration Load Configuration Validate	Annual Caloric Yield per Sheep 0 kcal Annual Caloric Yield per Goat 0 kcal
(Valuate)	

LABORATORY

- Experiments in complex interactions of socioecological systems
- Investigating long-term anthropogenic change in Holocene landscapes
- Providing new insights into coupled human & natural processes

IN NORTHERN JORDAN

- Hamlet
 - Cultivation limited to wadi bottoms
 - Grazing causes most erosion
 - Erosion primarily in uncultivated uplands
 - Redeposited sediment in cultivated zones is 53% of erosion

IN NORTHERN JORDAN

- Village
 - Cultivation in uplands; more extensive grazing
 - Cultivation causes most erosion
 - Erosion in cultivated and uncultivated zones
 - Redeposited sediment only 29% of erosion

DYNAMICS IN EASTERN SPAIN

0

10 km

DYNAMICS IN EASTERN SPAIN

RELEVANT PUBLICATIONS

- Barton, C. Michael, Isaac I.T. Ullah, Sean M. Bergin, Helena, Mitasova, Hessam Sarjoughian (In Press). Looking for the future in the past: long-term change in socioecological systems. *Ecological Modelling*.
- Mitasova, Helena, Russell S. Harmon, Michael Barton, & Issac Ullah (In Press). Geospatial information sciencebased erosion modeling. In *Treatise in Geomorphology: Vol. 3 Remote Sensing and GI Science*. Elsevier, Amsterdam.
- Barton, C. Michael, (In Press). Stories of the Past or Science of the Future? Archaeology and Computational Soci Science. In *Computational Approaches to Archaeological Spaces*, edited by A. Bevan and M. Lake.
- Ullah, I.I., & Sean Bergin (In Press). Modeling the consequences of village site location: Least Cost Path Modelin in a coupled GIS and Agent-Based model of village agropastoralism in Eastern Spain. In *Least Cost Analysis of Social Landscapes: Archaeological Case Studies for Beginners and Experts Alike*, edited by D.A. White and S. L. Surfac Evans.
- Ullah, I.I., (2010). A GIS method for assessing the zone of human-environmental impact around archaeological sites: a test case from the Late Neolithic of Wadi Ziqlâb, Jordan. *Journal of Archaeological Science*, 33(6):623-632. Corrected Proof.
- Barton, C. Michael, Isaac Ullah, and Sean Bergin (2010). Land use, water, and Mediterranean landscapes: modelling long-term dynamics of complex socio-ecological systems. *Philosophical Transactions of the Royal Society* A, 368:5275-5297.
- Barton, C. Michael, Isaac Ullah, and Helena Mitasova (2010). Computational modeling and Neolithic socioecological dynamics: a case study from southwest Asia. *American Antiquity*, 75(2):364-386.
- Mayer, G.R., H.S. Sarjoughian, (2009). Composable cellular automata, Simulation, 85(11-12): 735-749. PDF (1 Mb)
- Mayer, G.R., H.S. Sarjoughian, (2008). A composable discrete-time cellular automaton formalism, *First International Workshop on Social Computing, Behavioral Modeling, and Prediction,* pp. 187-196, Springer, April, Phoenix, AZ.
- Marca Carry Harrow Carica him (2007) Carry lattice of simulations a hadrid as at lands and delaying

COMSES NETWORK

- A new community of practice
- Building capacity and promoting best practices for computational modeling

()	0 (*) (#) http://www	v.openabm.org/	🛧 🔹 🗶 🔀 🐨 the settlement of the a
st Visited *	Latest Headlines & Google	▼ Loading Apple Stuff ▼ ASU Stuff ▼ GRASS ▼ NSF&NIH	programming Cloud classes Valley Metri
Agent Base	ed Modeling Cons +		
	open	a node in the CoMSES ne	twork Search home about contact
	cmbarton Log	Out Welcome to the OpenABM website. The	OpenABM Announcements
	Home	OpenABM site includes a growing collection of	New Content Feature: Classroom Materials OpenABM has added a new content section,
	Home	asked questions about computational modeling, frequently	Classroom Materials, where teaching materials of ABM can be shared with the community
	NSF Model Library	a modeling library intended to provide a locus for authors and modelers to share their models, and	2010 OpenABM and CSSS Modeling
	Education	forums for modeling related discussion and job	Competition OpenABM.org and the Computational Social
	Resources	postings.	Science Society (CSSS) will be holding a
	Forums	More »	a model that best predicts the behavior of subject
	Jobs and Appointments	Upcoming Events	in a foraging experiment.
	Events Calendar	Feb 21, 2011 - Feb 25, 2011 - Winter School Netlogo	Paper Submission Deadlines
	My Profile	Mar 31, 2011 - Apr 01, 2011 - Simulating Knowledge Dynamics in Innovation Networks	Mar 15th, 2011 - 2nd ESSA Summer School on Agent-Based Modelling
	,	Apr 01, 2011 - Spatial agent-based models for socio-ecological systems	Apr 1st, 2011 - Simulating the Social Processes of Science
		Apr 01, 2011 - Apr 03, 2011 - Epistemology of Modeling and Simulation	Apr 4th, 2011 - 12th International Workshop on Computational Logic in Multi-Agent Systems
		Apr 03, 2011 - Apr 08, 2011 - Geomorphology and agent models at EGU	Apr 7th, 2011 - Evolutionary Computation and Multi-Agent Systems and Simulation Workshop
		More »	Jun 1st, 2011 - 2nd International Conference or Reputation (ICORE 2011)
	🍏 ASLI (Sconmons	© 2010 OpenABM Conso

COMSES NETWORK

- Computational Models Library
- Linking models to publications
- Permanent Handle for published models
- Model certification
- NSF data sharing requirement

	(Po	olicy induced) Diffusion of	Innovations - An integrated demand-supplydel based on Cournot Competit	tion Open Agent Based
m		Bonjour Most Visited	Google + Apple Stuff + ASU Stuff + GRASS + NSF&NIH + programming + Cloud +	classes Readability
		open	a node in the CoMSES Network	
		cmbarton I Log Out	(Policy induced) Diffusion of Innovations	home about
		Home	demand-supply Model based on Cournot	Competition
		Model Library	By: martin.rixen (martin.rixen) Last Update: 09/19/2011 - 14:15	
		Education	innovation adoption innovation diffusion product diffusion policy induced diffusion m	narket entry market exit
		Resources	epidemic probit	
		Bibliographic Library	HD Video: http://www.youtube.com/watch?v=9jNTI7TloLM @	91 (((((((((((((((((((
		Forums	The model integrates both demand and supply in a single model. The underlying demand function is the crucial element that links both sides. It is determined by	Anarches Spread
t.		Jobs & Appointments	consumer's learning status, the awareness for the new technology, and consumer 's individual price thresholds, their willingness-to-pay. Diffusion proceeds in our	
		Events Calendar	model, if interactions distribute awareness (Epidemic effect) and rivalry reduces	
r.		Community	awareness as well as their willingness-to-pay drives supply-side rivalry. Vice	inc a(i) Industry i Recycle
		My Profile	awareness. Market entry and exit decisions as well as quantity and price settings	
			are driven by the underlying demand function. We utilize Cournot competition to calculate competitive dynamics. Suppliers compete on the quantity of output they will produce. Firms	tion of 0 1000 1000 1000 1000 1000 1000 1000
			produce a homogeneous product, there is no product differentiation.	
			 do not cooperate, there is no collusion. have market power each output decision affects market price. 	

COMSES NETWORK

ost Visited Go	open Agent Base	ed Modeling Consortium a node i abm.org/resources ASU Stuff = GRASS = NSF&NIH = pro	© Q ⁺ tripit ogramming ▼ Cloud ▼	rk	W O y Read It Late	er	»>	
ac	m	a node in the CoMSES Net	work	home abou	Search		L	
ton I Log Out	Modeling Pla	tforms	Modeling Jou	rnais		1		
	A wide selection of r different programmin	modeling platforms are available based on ng languages and modeling strategies. More »	An expanding field of based modeling and sciences.	scholarly journals now c related computational m	over agent- odeling	1		
		Onen Annat Read Medalian Co	and the second	in the CoMSES Notes	More »			
		Open Agent Based Modeling Co	nsortium a node	In the COMSES Netw	Ork		M W C	
IIII Reniour	Most Visited	amintp.//www.openabin.org/education	SC - NCERNILL - Dro	Gramming a Cloude	classes	adahility	Baad It Later	APP
	a		in the CoMSES Net	work			Search	
	a		In the CoMSES Net	work	home	about	contact	
	cmbarton I Log Out		In the CoMSES Net	Agent Based	home	about	contact	
Home	cmbarton I Log Out	Modeling Tutorials Browse a selection of tutorials on agent	-based modeling.	Agent Based We have written a base	home Modeling	about FAQ you get sta	contact	
Home	cmbarton I Log Out	Modeling Tutorials Browse a selection of tutorials on agent These tutorials cover various modeling to NetLogo (including a manual for Netl	-based modeling. platforms from RePast .ogo in Spanish.)	Agent Based We have written a bas agent-based models. foundations of what a	home Modeling sic FAQ to help These question re agent-based	about FAQ you get sta ns and answ models, ar	contact	
Home Model L	cmbarton I Log Out	Modeling Tutorials Browse a selection of tutorials on agent These tutorials cover various modeling to NetLogo (including a manual for NetL	-based modeling. platforms from RePast .ogo in Spanish.) More »	Agent Based We have written a bas agent-based models. foundations of what a when should they be	home Modeling sic FAQ to help These question re agent-based used in researc	about FAQ you get stans and answ models, ar th.	contact rted with wers cover the ad how and	
Home Model L Educatio	cmbarton I Log Out Library	Modeling Tutorials Browse a selection of tutorials on agent These tutorials cover various modeling to NetLogo (including a manual for NetL	-based modeling. platforms from RePast .ogo in Spanish.) More »	Agent Based We have written a bas agent-based models. foundations of what a when should they be	home Modeling sic FAQ to help These question re agent-based used in researc	about FAQ you get sta is and answ models, ar ih.	Search contact rted with wers cover the ad how and More »	
Home Model L Education Bibliogra	cmbarton I Log Out Library on ces aphic Library	Modeling Tutorials Browse a selection of tutorials on agent These tutorials cover various modeling to NetLogo (including a manual for NetL Educational Books	-based modeling. platforms from RePast .ogo in Spanish.) More »	Agent Based We have written a bas agent-based models. foundations of what a when should they be Classroom Ma	home Modeling sic FAQ to help These question re agent-based used in researc	about FAQ you get sta as and answ models, ar bh.	Search contact rted with wers cover the ad how and More »	
Home Model L Education Bibliogra	cmbarton I Log Out Library on ces aphic Library	Modeling Tutorials Browse a selection of tutorials on agent These tutorials cover various modeling to NetLogo (including a manual for NetL Educational Books Games & Gossip Author: Marco Janssen	-based modeling. platforms from RePast .ogo in Spanish.) More »	Agent Based We have written a bas agent-based models. foundations of what a when should they be Classroom Ma Spatial Agent-Based M Interactions	home Modeling sic FAQ to help These question re agent-based used in researc aterials todels of Huma	about FAQ you get sta is and answ imodels, ar ih.	Search contact red with wers cover the ad how and More »	
Home Model L Educatio Resource Bibliogra Forums Jobs & J	cmbarton I Log Out Library on ces aphic Library	Modeling Tutorials Browse a selection of tutorials on agent These tutorials cover various modeling to NetLogo (including a manual for NetL Educational Books Games & Gossip Author: Marco Janssen An introduction to agent-based modeling practices. This book is actively being dev	-based modeling. platforms from RePast .ogo in Spanish.) More »	Agent Based We have written a bas agent-based models. foundations of what a when should they be Classroom Ma Spatial Agent-Based M Interactions Course materials deve Agent-based Modeling	home Modeling sic FAQ to help These question re agent-based used in researc aterials todels of Human loped by Dawn class. Material	about FAQ you get stat is and answ models, ar sh.	Search contact red with wers cover the nd how and More » hent her Spatial 2007 and 2009	
Home Model L Education Bibliogra Forums Jobs & J Events	cmbarton I Log Out .ibrary on cess aphic Library Appointments Calendar	Modeling Tutorials Browse a selection of tutorials on agent These tutorials cover various modeling to NetLogo (including a manual for Nett Educational Books Games & Gossip Author: Marco Janssen An introduction to agent-based modeling practices. This book is actively being dev Janssen.	-based modeling. platforms from RePast .ogo in Spanish.) More »	Agent Based We have written a bas agent-based models. foundations of what a when should they be Classroom Ma Spatial Agent-Based M Interactions Course materials deve Agent-based Modeling sessions are provided. welcome!	home Modeling sic FAQ to help These question re agent-based used in researce aterials todels of Huma loped by Dawn class. Material Comments and	about FAQ you get sta as and answ models, ar in-Environm Parker for is from the 2 d suggestio	Search contact rted with wers cover the ad how and More » hent her Spatial 2007 and 2009 ons are	
Home Model L Educatio Resource Bibliogra Forums Jobs & J Events (Commu	cmbarton I Log Out .ibrary on ces aphic Library Appointments Calendar inity	Modeling Tutorials Browse a selection of tubrials on agent These tubrials cover various modeling to NetLogo (including a manual for NetL Browse & Gossip Author: Marco Janssen An introduction to agent-based modeling practices. This book is actively being dev Janssen.	-based modeling. platforms from RePast .ogo in Spanish.) More »	Agent Based We have written a bas agent-based models. foundations of what ai when should they be Classroom Ma Spatial Agent-Based M Interactions Course materials deve Agent-based Modeling sessions are provided. welcome!	home Modeling sic FAQ to help These question re agent-based used in researc aterials hodels of Huma loped by Dawn class. Material Comments and	about FAQ you get sta is and answ models, ar in th.	Search contact red with wers cover the ad how and More » hent her Spatial 2007 and 2009 ons are	

- Links to data archives for parameterization, testing, and validation
 - Standards for metadata and model description
 - Educational resources
- Special interest groups
- High performance computing access

ACKNOWLEDGEMENTS

- National Science Foundation: grants BCS-410269 (MedLand), GEO-909394 (CoMSES)
- ASU: School of Human Evolution and Social Change, Center for Social Dynamics & Complexity, School of Earth and Space Exploration, School of Computing Informatics and Decision Systems Engineering, School of Geographical Sciences and Urban Planning, School of Sustainability
- Partners: Universitat de València, Universidad de Murcia, University of Jordan, North Carolina State University, University of Wisconsin, Hendrix College, University of Alaska, Geoarchaeological Research Associates, GRASS GIS Development Team

