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1 Intro

The MCMM, namely the Meander Centerline Migration Model, simulates the long-

term evolution of a meandering river flowing above a heterogeneous self-formed flood-

plain. On one hand, the structure of the floodplain surface builds up and modifies

because of the river migration leading to neck cutoff process and forming oxbow lakes

and scroll bars. On the other hand, the river migration is affected by the heterogeneous

distribution of the floodplain erodibility given by the presence of the above-mentioned

environments on the floodplain surface.
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2 Mathematical modelling of meander dynamics

This section is based on the work of Bogoni (2017) and outlines the mathematical

and numerical tools required to build a model able to handle the long-term migration

of meandering rivers flowing above heterogeneous floodplains. The main quantities

and variables involved in the problem are outlined in Section 2. The frame of the

numerical modelling builds upon other models available in literature, e.g. Camporeale

et al. (2005); Lanzoni et al. (2006); Lanzoni and Seminara (2006); Frascati and Lanzoni

(2009). It consists of a migration model for the river axis, a model for the floodplain

structure, and a morphodynamic model for the curvature-driven flow field.

References and notations

With reference to the sketch of Figure 1, let (x∗, y∗, z∗) be a Cartesian reference system

where x∗ is the longitudinal flow direction, and (s∗, n∗, z∗) be a orthogonal intrinsic

reference system. Hereafter the superscript ∗ will denote dimensional quantities. More-

over, R∗ is the local curvature radius of the river axis, and θ the local angle of the

axis tangent with respect to the longitudinal direction. The curvature by definition

is C∗ = 1/R∗. As far as the channel cross section is concerned, 2B∗
0 and D∗

0 are the

width and the depth of a reference straight rectangular channel having the same flow

discharge, 2B∗
0D

∗
0U

∗
0 , bed slope S, and characteristic grain size d∗s of the considered

meandering river (e.g., d∗50), with U∗
0 the cross-sectionally averaged velocity. In addi-

tion, η∗ and H∗ are the local bed elevation and the free surface elevation with respect

to a given datum, while D∗ = H∗ − η∗ is the local flow depth. The local velocity

components along the longitudinal, transverse and vertical direction are u∗, v∗, and

w∗, respectively.

The next step is to scale the above relevant quantities through the uniform flow pa-

rameters. Hence:

(x∗, y∗, s∗, n∗, R∗) = B∗
0 (x, y, s, n,R) (1a)

(z∗, η∗, H∗, D∗) = D∗
0 (z, η,H,D) (1b)

(u∗, v∗, w∗) = U∗
0 (u, v, w) (1c)
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Figure 1: Reference systems and notation for a) the river planform and b) the cross-

section.

A curvature parameter may be defined as follows:

ν0 =
B∗

0

R∗
0

(2)

where R∗
0 is a reference radius of channel axis curvature, e.g. the minimum value

attained along the investigated reach. The fundamental hypothesis for deriving the

mathematical model is that ν0 is a small parameter, i.e. the river planforms are made

by sufficiently gentle and wide bends such that the local curvature radius is much

larger than the cross section width. The dimensionless local curvature C turns out to

be (Frascati and Lanzoni, 2013):

C = − 1

ν0

∂θ

∂s
(3)

The relevant morphological parameters are the half width to depth ratio β, the Shields

number τ∗ and the dimensionless grain size ds, defined as follows:

β =
B∗

0

D∗
0

(4a)

τ∗ =
CfU

∗
0
2

∆gd∗s
(4b)

ds =
d∗s
D∗

0

(4c)

where g is the gravity acceleration, ∆ = (ρs−ρ)/ρ is the submerged specific gravity of

the sediment (ρs ' 2650 kg / m3, ρ = 1000 kg / m3), and Cf is the friction coefficient.
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Velocity and depth are related together through the Froude number:

F0 =
U∗
0√
gD∗

0

(5)

Finally, the sediment motion leads to a volumetric discharge per unit width denoted

as q∗s , which may be scaled as:

Φ =
qs
Rpν

(6)

where ν ' 10−6 m2/s is the kinematic viscosity of water, and Rp is the Reynolds

particle number:

Rp =

√
g∆d∗s

3/2

ν
(7)

Hereafter, under dominant bedload transport Φ is computed through the formula of

Parker (1990). The particle Reynolds number, which controls the intensity of sus-

pended load transport (see, e.g., Frascati and Lanzoni, 2010) is also considered to

evaluate the threshold above which suspended load takes place (Van Rijn, 1984a). In

this case the total load predictor of Engelund and Hansen (1967) is used to compute

Φ. Moreover, Rp is used to establish whether the river bed is flat or dune-covered

(Van Rijn, 1984b) when computing the friction coefficient Cf through the method of

Engelund and Hansen (1967).

The long-term migration of the river

The long-term migration of river planforms is driven by the complex interplay of the

processes of erosion at the inner bank and deposition at the outer bank, possibly

leading to spatial and temporal variation of the local channel width. Among others,

the affecting factors may be the type of bank failure, the composition of the banks

and of the slumped block material, and the vegetation properties. The erosion and

deposition processes usually occur at different times and different time scales (Asahi

et al., 2013). However, many meandering rivers tend to have a near constant width as

channel sinuosity evolves (Parker et al., 2011), showing a normal distribution of channel

widths when the fluvial system is subjected to a steady-forcing discharge (Wickert

et al., 2013). Eventually, the typical ridge-and-swale bar topography develops (van De

Lageweg et al., 2014). This scenario requires an active communication between bank
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erosion at the outer bend, i.e. bank pull, and bank growth at the inner bend, i.e. bank

push (Eke et al., 2014; van De Lageweg et al., 2014; Schuurman et al., 2016). As a

consequence, a constant width of the river cross section may be assumed as a first

approximation, and the river path may be described by its centerline.

Referring to the planimetric sketch of Figure 1, the configuration of the channel axis

at a certain time t may be described by the current distribution of angles θ (s∗, n∗)

formed by the local tangent to the channel axis with the longitudinal direction. Indeed,

Seminara et al. (2001) demonstrated that the planimetric evolution at the generic

location s along the river axis is described by the following integro-differential equation:

∂ζ

∂s
=
∂θ

∂t
− ∂θ

∂s

∫ s

0
ζ
∂θ

∂s
ds (8)

where the lateral migration velocity ζ and the time t are scaled as:

ζ∗ = U∗
0 ζ (9a)

t∗ =
U∗
0

B∗
0

t (9b)

Equation (8) drives the lateral migration of the river path across the floodplain over

the time, producing a local displacement ξn (s) normal to the channel axis:

dξn (s)

dt
= ζ (s) (10)

Because of the previous assumption of nearly constant cross section width, the relation

proposed by Ikeda et al. (1981) to model the river migration across the valley surface

may be assumed. In dimensionless form, the relation reads:

ζ = E Ub (11)

where E is a dimensionless long-term erosion coefficient, while Ub = U∗
b /U

∗
0 is the

dimensionless excess near-bank velocity, i.e. the difference between the longitudinal

velocity U
∣∣
n=1

at the outer bank (n = n∗/B∗
0 = 1) and the longitudinal velocity

U
∣∣
n=−1

at the inner bank (n = n∗/B∗
0 = −1) All the involved terms are function of

the coordinate s along the river centerline.

The problem outlined so far is solved numerically by discretizing the dimensionless

river centerline s through a polyline made by N points Pi(xi, yi), defined with respect
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Figure 2: Sketch of the migration of a point P lying on the channel axis, due to

the displacement from the configuration s(t) to the new configuration s(t + ∆t).

Quantities may be either dimensional or dimensionless, the scaling factor being B∗
0 .

to the Cartesian reference system of Figure 1. As described by the sketch in Figure 2,

the differential equation (10) is solved numerically trough finite differences. At each

dimensionless time step tk+1 = tk + ∆tk, the migration of the ith node in the direction

n normal to s is computed through a time marching procedure of the form (Crosato,

1990):

xk+1
i = xki −∆tki

ζki + ζk−1
i

2
sin θki , (12)

yk+1
i = yki + ∆tki

ζki + ζk−1
i

2
cos θki , (13)

where xk+1
i = xi(t

k+1), yk+1
i = yi(t

k+1), and ζki = Eki U
k
bi. The value θki of the local

tangent angle is computed by backward and forward averaging (Lanzoni and Seminara,

2006):

θki =
1

2

(
arctan

yki+1 − yki
xki+1 − xki

+ arctan
yki − yki−1

xki − xki−1

)
(14)

This angle is also used to discretize the geometrical relationship (3) and to determine
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the local value of the dimensionless curvature Cki :

Cki = − 1

ν0

θki+1 − θki−1

2∆ski
(15)

where ∆ski is the dimensionless distance between two consecutive points. The possible

numerical anomalies arising from the curvature computation (Schwenk et al., 2015) are

filtered out by using a Savitzky-Golay smoothing filter (Orfanidis, 1995; Motta et al.,

2012a). The time step size ∆tki is controlled by requiring that:

∆tki ≤ α
(

∆ski
Eki U

k
bi

)
max

(16)

where α is a parameter defining the threshold between stable and unstable computa-

tions, to be chosen empirically (α ∼ 10−2) on the basis of a balance between com-

putational effort and accuracy of the numerical solution (Crosato, 1990; Lanzoni and

Seminara, 2006).

Since the deformation experienced by the channel axis at each time step leads to contin-

uous variations of ∆ski , the mesh is periodically re-built to maintain quasi-uniformity

of the node spacings, adding or removing nodes to maintain the value of ∆ski into the

range 2/3 and 4/3.

The progressive elongation of the channel axis produces neck cutoffs, whereby the

upstream and downstream portions of a bend loop approach each other and eventually

intersect. The meander loop is then bypassed, and the older, more sinuous reach

is abandoned by the active river, forming an oxbow lake when sedimentation closes

its ends. These processes may last many years (Gagliano and Howard, 1984) but,

because of the long time scales characterizing the evolution of the river planform,

they can be assumed to occur instantaneously in the simulation model. Following

Howard and Knutson (1984) and Sun et al. (1996), the presence of potential neck

cutoffs is detected by controlling the dimensionless distance between a given point

Pi and the nearby points Pi+r located sufficiently downstream (e.g., r ≥ 8). This

control is made through the algorithm developed by Camporeale et al. (2005) which

improves the computational efficiency of the model. When the computed Cartesian

distance between nodes Pi and Pi+r is lower than a threshold value, say ∆sr = 2.2,

all the points Pi+j , j = 1, r − 1 are removed from the computational grid, defining a
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new oxbow lake (Figure 3). A few nodes upstream of Pi and downstream of Pi+r (e.g.,

Pi−q, Pi+r+q, q = 1, 2, 3) are also removed to prevent the formation of a high-curvature

river reach (Frascati and Lanzoni, 2009) that, in nature, is unlikely to persist owing

to the rapid smoothing action of the current and the along river propagation of the

geometric disturbances generated by the cutoff even (Hooke, 1995; Camporeale et al.,

2008).

(a) Natural cutoff process.

P i

scroll bar

neck cutoff

P i+r
abandoned

reach

P i-q
P i+r+q

active

reach
E f

Eb

Eo

(b) Numerical cutoff process.

Figure 3: Example of (a) a natural neck cutoff process producing a different geomor-

phic environment inside the oxbow lake contour (Darling River, Australia, 31◦ 33’ S

143◦ 30’ E, source: Google Earth Pro), and of (b) the numerical modelling of neck

cutoff occurrence, with the formation of two new environments, namely the oxbow

lake formed by the abandoned reach and the inner scroll bar bounded by the previous

element. Symbols are as follows: r determines the points that are considered to check

the occurrence of a incipient neck cutoff; q is the number of point removed to avoid

the presence of a high-curvature river reach after a cutoff; Ef , Eb, and Eo are the

erodibility coefficients assigned to the pristine floodplain, the scroll bar environment

and the oxbow lake environment, respectively.

The alternate form of cutoff, the chute cutoff, is not treated by this model.

As observed above, the total length of the channel and the bed slope change over time

due to the elongation driven by migration and the shortening due to cutoff occurrences.

As a consequence, suitable relations must be imposed in order to keep consistent

steady flow and sediment transport conditions. Assuming a constant discharge and a

temporally constant floodplain gradient, the relevant physical parameters between two
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time steps k and k + 1 are updated as follows:

βk+1

βk
=

(
Ckf

Ck+1
f

)1/3(
σkT
σk+1
T

)1/3

(17)

τk+1
∗
τk∗

=

(
Ckf

Ck+1
f

)−1/3(
σkT
σk+1
T

)2/3

(18)

dk+1
s

dks
=

(
Ckf

Ck+1
f

)1/3(
σkT
σk+1
T

)1/3

(19)

where σT is the river sinuosity, defined as the ratio of the dimensionless intrinsic length

L = L∗/B∗
0 (computed along the channel centerline) to the dimensionless Cartesian

length lx = l∗x/B
∗
0 (obtained projecting the river axis on the longitudinal axis x oriented

in the direction of the floodplain gradient).

Floodplain features

The model described so far has been found to effectively reproduce typical meander

shapes observed in nature (simple bends, compound bends and multiple loops) for a

constant (in time and space) floodplain erodibility (Frascati and Lanzoni, 2009). The

bank erosion coefficient, however, generally depends on soil properties, deposition and

consolidation processes, groundwater dynamics (Han and Endreny, 2014), and dis-

tribution of riparian vegetation (Perucca et al., 2007; Motta et al., 2012a,b; Wickert

et al., 2013). To mimic these heterogeneities, the valley surface is, as a first approxima-

tion, schematized by three different geomorphic units with different local coefficients

E (Figure 3), depending on the soil properties as well as on the vegetation cover.

The first geomorphic unit is the pristine floodplain, with coefficient E = Ef . It cor-

responds to the undisturbed floodplain consisting of sediment deposited by repeated

flooding events, not yet impacted and consequently reworked by the river migration.

The second geomorphic unit corresponds to the oxbow lake environment, with co-

efficient E = Eo. It mimics the fine-filled abandoned channel reach which leads to

the formation of plugs that may obstruct the lateral migration of the active channel

(Toonen et al., 2012). Finally, the third geomorphic unit corresponds to the scroll

bar environment, with coefficient E = Eb. It mimics the floodplain area bounded by

an oxbow lake, characterized by the typical ridge-and-swale sequence. In particular,
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coarse-grained sediments typically accumulates on the ridge, while finer sediment (silt

and clay) deposit in the upper part (Nanson, 1980) because of the temporary flow ex-

pansions (van De Lageweg et al., 2014). The structure of vegetation reflects the local

topography and hydrological conditions (Zen et al., 2016) contributing to the erosional

complexity of the scroll bodies.

100 B0
*

Figure 4: Example of a simulated planform dynamics, with the formation of scroll

bars (older are dark green, younger are light green) and oxbow lakes (gray stripes

bounding the previous elements, corresponding to the abandoned bends).

All the erosion coefficients are kept constant over time in order to maintain the mod-

elling framework at the lowest possible level of complexity, thus temporal variations

caused, e.g., by soil compaction and biological dynamics are not considered. Further-

more, incision, soil uplift, and subsidence are not accounted for, assuming that the

floodplain surface is infinitely large and keeps its elevation constant over time. Pos-

sible changes in the hydrological regime and flow unsteadiness associated with flood

waves are neglected as well.

Spatial variability ensuing from the meandering dynamics is accounted for as follows.

All the progressively formed geomorphic environments (oxbow lakes and scroll bars)

are saved as polygons given by the abandoned mesh nodes (Figure 4). As the generic

node Pi of the active channel axis migrates laterally, the river may encounter three

different environments during its lateral migration onto the valley. The winding num-

ber algorithm of Hormann and Agathos (2001) is used to identify whether the current
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point lies within a pre-saved geomorphic unit and, hence, to choose the appropriate

local erosion coefficient.

The flow field

This section briefly summarizes the key points of two mathematical models of channel

morphodynamics implemented in the model, namely the model developed by Ikeda

et al. (1981), hereafter referred to as IPS model, and the model developed by Zolezzi

and Seminara (2001), hereafter referred to as ZS, similarly to the approach of Frascati

(2009). Both models are based on the assumption of a secondary bidimensional flow

driven by the curvature distribution and superimposed to the primary uniform flow

travelling the channel.

The use of two models entailing a different level of approximation is motivated by

the importance that the coupling of the flow field and the sediment balance equations

has on the quantitative reproduction of observed river planforms. The former model

however, assumes empirically the form of the channel cross-section.

The IPS model has been widely used (see, among the others, Perucca et al., 2005;

Güneralp and Rhoads, 2011; Schuurman et al., 2016). The decoupling of the equations

governing the flow field and the sediment conservation does not allow to solve for the

bed configuration, thus an empirical relation is required. The dimensionless excess

near-bank velocity Ub takes the type:

Ub = U∗
0 F

[
ν0, β, Cf , τ∗, C,

∫ s

0
C(ξ) eλ0(s−ξ) dξ

]
(20)

where the characteristic exponent λ0 = −2βCf drives the convolution integral which

accounts for the effect of the upstream curvature distribution on the downstream reach

(downstream influence).

The ZS morphodynamic model solves the steady flow field in a movable bed river with

variable curvature of the channel axis. It was derived by integrating over the depth

the continuity equation and the Reynolds-averaged Navier-Stokes equations (RANS),

written in intrinsic coordinates, and by introducing a parametrization of the secondary

flow driven by the channel axis curvature (Zolezzi and Seminara, 2001). The extension

of the model to cases involving width variations was developed by Frascati and Lan-
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zoni (2013). The resulting equations are fully coupled to the Exner sediment balance

equation, also written in curvilinear coordinates, and closed by means of a suitable

sediment transport law. All the relevant equations are then linearized, by expanding

in terms of small parameters, taking advantage of the typically wide character of river

bends (small curvature ratio ν0). Eventually, the following functional relationship is

found:

Ub = U∗
0F

[
ν0, β, Cf , τ∗, C,

∫ s

0
C(ξ) eλmj(s−ξ) dξ

]
(21)

where λmj (m = 0,∞; j = 1, 4) are characteristic exponents for the mth lateral

Fourier mode which are crucial to determine, through the related convolution inte-

grals, whether flow and bed topography at a given position s are affected by the river

reach located upstream (downstream influence) or downstream (upstream influence)

(Zolezzi and Seminara, 2001; Lanzoni and Seminara, 2006). The four exponents are the

solutions of the four-order ordinary differential equation that arises from the linearized

continuity and momentum equations coupled with the sediment balance equation. Fig-

ure 5 shows three examples of the trends followed by the characteristic exponents λmj

as functions of the values of the half width to depth ratio β, compared with the

behaviour of the characteristic exponent λ0 resulting from the IPS approach. It is

worthwhile to note that, generally, λm1 is real positive, λm4 is real negative. They de-

scribe non-oscillatory spatial perturbations which decay fairly fast either downstream

or upstream. The other two exponents λm2 and λm3 are complex conjugate, having re-

spectively equal real parts (λm2r = λm3r) and opposite imaginary parts λm2i = −λm3i.

They describe oscillatory spatial perturbations which decay fairly slowly, spreading

their influence over a considerable channel length (Lanzoni et al., 2006). Moreover,

λm3r can be negative or positive, depending whether the aspect ratio β is smaller or

larger than a threshold value, βr . Channels characterized by aspect ratios β < βr are

defined subresonant, leading to a downstream influence, as in the IPS model. On the

contrary, channels characterized by aspect ratios β > βr are defined superresonant,

leading to a upstream influence. This latter condition can not emerge when using the

IPS model, as the latter is driven by a first-order ordinary differential equation because

of the uncoupling of the sediment balance equation and the flow field. Subresonant
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Figure 5: Typical behaviour of the four characteristic exponents λmj of the ZS ap-

proach as a function of the half width to depth ratio β, for three different scenarios.

Continuous lines correspond to the real parts, dashed thin lines correspond to the

imaginary parts, while the dashed thick line corresponds to the characteristic expo-

nent λ0 of the IPS approach. The three scenarios are characterized by the following

parameter sets: a) τ∗ = 0.1, ds = 0.005, flat bed; b) τ∗ = 0.3, ds = 0.001, dune-

covered bed; c) τ∗ = 0.6, ds = 0.0001, dune-covered bed.
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meanders are typically upstream skewed and migrate downstream, while superresonant

meanders are typically downstream skewed and migrate upstream (Lanzoni et al., 2006;

Lanzoni and Seminara, 2006).

Further details about the derivation, performances, and limitations inherent in lin-

earization of the flow field model may be found in Zolezzi and Seminara (2001) and

Frascati and Lanzoni (2013).

In order to increase the computational efficiency in the numerical implementation,

the convolution integrals appearing in the expressions for the velocity perturbation

(20) and (21) are evaluated using Simpson rule, truncating the integration when the

function to be integrated, that decayes exponentially, is smaller than a given tolerance,

say 10-4 (Lanzoni and Seminara, 2006).
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3 File SIM

The SIM file is a formatted text file containing the leading parameters of the flow filed

computation, the structure of the floodplain and the simulation parameters.

Variable types are as follows:

• I : integer variable,

• R : double precision variable (real∗8)

• S : integer switch

• Tn : text with n maximum types.

Row Variable Type Description

1 Text row

2 <SIM name> T20 simulation name (max 20 letters)

3 Text row

4 β R half width to depth ratio

5 τ∗ R Shields number

6 ds R dimensioless grain roughness

7 flagbed S source for bed configuration

1:from Rp; 2:from typebed

8 Rp R Reynolds particle number

9 typebed S fixed bed configuration

1:flat bed; 2:dune-covered

10 r R transverse transport parameter (Talmon 1995)

11 jmodel S flow field model

1: ZS approach; 2: IPS approach

12 Nz I number of points for the vertical flow integration

in ZS model

13 Mdat I order of the Fourier expansion in ZS model

File SIM continues on next page
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File SIM continues from previous page

Row Variable Type Description

14 Text row

15 Ef R erodibility coefficient of the floodplain

16 Eb R erodibility coefficient of the point bars

17 Eo R erodibility coefficient of the oxbow lakes

18 flagox S flag for existing structure of the floodplain

0: no; 1: yes

19 Text row

20 N0 I initial number of points

21 flagxy0 S initial planform configuration

1: straight path randomly perturbed;

2: given configuration from filexy

22 filexy T20 name of geometry file with dimensionless coordi-

nates (maximum 20 letters)

23 ∆s R resampling distance between axis points

24 ∆smin R minimum allowed value of grid size (times ∆s)

25 ∆smax R maximum allowed value of grid size (times ∆s)

26 Nrand I number of point interested by a slight perturba-

tion if flagxy0 = 1

27 stdv R standard deviation of initial perturbation if

flagxy0 = 1

28 tollc R minimum threshold before neck-cutoff

29 jre I points removed upstream and downstream of a

cutoff

30 jnco I minimum threshold points for neck cutoff search-

ing (> 2)

31 ksavgol I SavitzkyGolay flag

File SIM continues on next page
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File SIM continues from previous page

Row Variable Type Description

< 0: number of smoothing repetitions in each

iteration (absolute value);

> 0: iteration wait between two smoothings;

0: no smoothing.

32 Text row

33 flagtime S flag for defining the end of the simulation

1: time;

2: coefficient multiplying the time of first cutoff;

3: number of iterations;

4: number of cutoffs;

5: number of printed configurations.

34 TTs R simulation time if flagtime = 1

(dimensionless years)

35 kTTfco R coefficient for first cutoff time if flagtime = 2

36 nend I item number if flagtime ≥ 3

(number of iterations / number of cutoffs / num-

ber of printed configurations)

37 tt0 R starting time (dimensionless years)

38 flagdt S flag for time marching

1: fixed and equal to dt0;

2: dynamic but always < dt0.

39 dt0 R fixed time step (dimensionless years)

40 cstab R coefficient for time marching

41 ivideo I iterations between two screen prints

42 iscreen I iterations between two file prints

End of file SIM
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4 File XY

File XY contains the initial geometrical path of the computational domain, scaled with

the half width B∗
0 . This text file consists of a matrix with N0 rows, i.e. one row per

node, and 2 columns which are the dimensionless longitudinal coordinate x = x∗/B∗
0

and the transverse coordinate y = y∗/B∗
0 , respectively.

x1 y1

x2 y2

. . . . . .

xN0 yN0

21
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5 File SIMULATION

File <SIM NAME> SIMULATION.DAT records the temporal trends of some geometrical

parameters, i.e. number of points forming the river axis, number of floodplain features.

This file consists of a matrix with nt rows, i.e. one row per printed time step, and 7

columns which are specified in the table below.

Column index Variable Description

1 jp index of the current printed step

2 jt iteration index

3 t dimensionless time of the current step

4 N
number of points forming the channel

axis

5 Npb

current total number of axis points

within the scroll bar environments

6 Npo

current total number of axis points

within the oxbow lake environments

7 Nnco cumulate number of neck cutoffs

23



6 File PARAMETERS

File <SIM NAME> PARAMETERS.DAT records the temporal trends of the leading mor-

phodynamic parameters. This file consists of a matrix with nt rows, i.e. one row per

printed time step, and 10 columns which are specified in the table below.

Column index Variable Description

1 jp index of the current printed step

2 jt iteration index

3 t dimensionless time of the current step

4 L = L∗/B∗
0

dimensionless length of the current

channel path, scaled by the half width

5 β half width to depth ratio

6 τ∗ Shields number

7 ds grain size to depth ratio

8 Cf friction coefficient

9 typebed bed configuration

(1: flat bed, 2: dune-covered)

10 typeload sediment flux type

(1: bedload 2: total load)
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7 File CUTOFFS

File <SIM NAME> CUTOFFS.DAT records the temporal trends of the cutoff occurrences.

This file consists of a matrix with nnco rows, i.e. one row per cutoff occurrence, and

10 columns which are specified in the table below.

Column index Variable Description

1 j
index of the current neck cutoff

occurrence

2 Nrem

number of point forming the abandoned

bend

3 N former number of axis points

4 jchup
last node of the channel axis upstream of

the cutoff

5 jcoup upstream node of the cutoff

6 jcodw downstream node of the cutoff

7 jchdw
first node of the channel axis downstream

of the cutoff

8 Nnew new number of axis points

9 t dimensionless time of the current step

10 jt iteration index
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8 File CONFIGURATION

File CONFIGURATION <jt>.OUT contains the geometrical features of the computa-

tional domain at the printing step jp which corresponds to the instant time t, basing

on file SIMULATION. This file consists of a matrix with nn rows, i.e. one row per node,

and 6 columns which are specified in the table below.

Column index Variable Description

1 x = x∗/B∗
0 dimensionless longitudinal coordinate

2 y = y∗/B∗
0 dimensionless transverse coordinate

3 s = s∗/B∗
0 dimensionless intrinsic coordinate

4 −θ
negative local angle of the axis river with

the longitudinal direction

5 ν0C dimensionless local curvature

6 Ub =
U∗|n=1 − U∗|n=−1

U∗
0

dimensionless excess near-bank velocity
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9 File OXBOW

File OXBOW <j>.OUT contains the geometrical path of the current oxbow lake, scaled

with the half width B∗
0 . This text file consists of a matrix with Nox rows, i.e. one

row per node, and 2 columns which are the dimensionless longitudinal coordinate x =

x∗/B∗
0 and the transverse coordinate y = y∗/B∗

0 forming the oxbow lake, respectively.

x1 y1

x2 y2

. . . . . .

xNox yNox

10 File POINTBAR

File POINT BAR <j>.OUT contains the geometrical path of the current point bar,

scaled with the half width B∗
0 . This text file consists of a matrix with Npb rows, i.e. one

row per node, and 2 columns which are the dimensionless longitudinal coordinate x =

x∗/B∗
0 and the transverse coordinate y = y∗/B∗

0 forming the point bar, respectively.

x1 y1

x2 y2

. . . . . .

xNpb
yNpb
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11 File LAMBDA

File <SIM NAME> LAMBDA.DAT records the temporal trends of the characteristic eigen-

values of the mathematical model for the curvature-driven flow field.

When the flow field is computed by the IPS model, this file consists of a matrix with

nt rows, i.e. one row per printed time step, and 4 columns which are specified in the

table below.

Column index Variable Description

1 jp index of the current printed step

2 jt iteration index

3 t dimensionless time of the current step

4 λ0 characteristic exponent of the IPS model

When the flow field is computed by the ZS model, this file consists of a matrix with

nt ×Mdat rows, i.e. Mdat rows per printed time step where Mdat is the order of the

Fourier expansion in ZS model, and 12 columns which are specified in the table below.

28



Column index Variable Description

1 jp index of the current printed step

2 jt iteration index

3 jm current Fourier mode

4 t dimensionless time of the current step

5 Re(λm1)
real part of the first characteristic

exponent of the ZS model

6 Im(λm1)
imaginary part of the first characteristic

exponent of the ZS model

7 Re(λm2)
real part of the second characteristic

exponent of the ZS model

8 Im(λm2)
imaginary part of the second

characteristic exponent of the ZS model

9 Re(λm3)
real part of the third characteristic

exponent of the ZS model

10 Im(λm3)
imaginary part of the third characteristic

exponent of the ZS model

11 Re(λm4)
real part of the fourth characteristic

exponent of the ZS model

12 Im(λm4)
imaginary part of the fourth

characteristic exponent of the ZS model
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Part III

Other files
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12 File XY TEMP

File XY.DAT is a text file containing the backup data of the last iteration. The header

lines contain the last update of the leading parameters:

• jt : last iteration index;

• t : dimensionless time of the current step;

• β : half width to depth ratio;

• τ∗ : Shields number;

• ds : grain size to depth ratio;

• Cf : friction coefficient;

• jp : index of the current printed step;

• N : number of points forming the channel axis;

• text line.

The file contains also a matrix with N rows, i.e. one row per node, and 2 columns

which are the dimensionless longitudinal coordinate x = x∗/B∗
0 and the transverse

coordinate y = y∗/B∗
0 , respectively.

x1 y1

x2 y2

. . . . . .

xN yN
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13 Files FLOODPLAIN

The following files are generated and updated by the numerical code during the simula-

tion runs, and they are required for a future new simulation which involves an existing

floodplain structure.

• File <SIM NAME> NNCO.dat contains the number of cutoffs occurred so far.

• Files <SIM NAME> PB.dat contain the storage indices defining the point bar

arrays.

• Files <SIM NAME> OX.dat contain the storage indices defining the oxbow lake

arrays.

14 File TIME

File <SIM NAME> TIMESIM.DAT recors the date and time of beginning and end of the

simulation, as well as the simulation duration.
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