Miami Isopycnic Coordinate
Ocean Model
(MICOM)

User's Manual

Details of the numerical code

G. LaNcrois, Agence de Développements en Hydrodynamique et Océanographie
Cotiere, France

TRANSLATED AND REVISED FROM THE ORIGINAL FRENCH BY :

D. Brydon, Los Alamos National Laboratory, USA
R. Bleck, University of Miami, USA
S. Dean, Los Alamos National Laboratory, USA

CODE VERSION 2.6, MANUAL VERSION 2.6A, FEBRUARY 7, 1997
This manual is available at: http://www.acl.lanl.gov/CHAMMP /micom.html
Report corrections to: micom_manual@acl.lanl.gov

CONTENTS

Contents

Preface
0.1 Background
0.2 Revisions to the Manual oo
0.3 Acknowledgements
0.4 Funding e

Introduction

1 FORTRAN 77 Version 2.6

1.1 Declarations e
1.1.1 Symbolic Constants
1.1.2 Variables of state and auxiliary variables
1.1.3 Logical variables
1.1.4 Atmospheric forcings
1.1.5 Numerical parameters
1.1.6 Comnstants L
1.1.7 Assignments L
1.2 Imitializations L e
1.3 Running MICOM
1.3.1 Makefile e
1.3.2 Output for testing purposeso
1.4 Configuring MICOM e
1.4.1 Implementation
1.4.2 Projections
1.43 Mesh. o e
1.44 Bathymetry o
Continuity equation : cnuity.f
2.1 Formalism and numerical techniques
2.1.1 FCT (Flux-Corrected Transport) scheme
2.1.2 Interface diffusion
22 Usage
2.2.1 Order of operations
2.2.2 Flowchart L
2.3 Variables e e e e
2.3.1 Identification oL
2.3.2 Global variableso
2.3.3 Local variables
2.4 Procedures e e e e e e e e
Advection-diffusion : tsadvc.f
3.1 Formalism and numerical methods
3.1.1 Maintaining the positivity of thickness
3.1.2 Treatment of the tendency term
3.1.3 Treatment of the diffusion term oL
3.1.4 Filtering

~ OO D

oo co Qo

Ne)

11
12
13
14
14
14
14
15
16
16
16
17
17

20
20
21
24
25
25
33
34
34
34
34
34

CONTENTS

3.2 Usage
3.2.1 Order of operations
3.2.2 Flowchart
3.3 Variables e e e e e
3.3.1 Identification
3.3.2 Global variables
3.3.3 localvariables
3.4 Procedures e e e e e e e e
3.5 The SMOLARKIEWICZ MPDATA
3.5.1 Formalism L
3.5.2 Usage e e
3.5.3 Order of operations Lo
3.5.4 Flowchart e
3.5.50 Variables
4 Forcing : momeql.f
4.1 Formalism and numerical techniques
4.1.1 Montgomery potential L oo
4.1.2 Bottomdrag
4.1.3 Influence of thewind 0.
4.2 Usage
4.2.1 Order of operations L e
4.2.2 Flowchart
4.3 Variables e e e e e
4.3.1 Identification
4.3.2 Global variables
4.3.3 Local Variables
5 Momentum : momeq2.f
5.1 Formalism and numerical techniques
5.1.1 Numerical scheme o
5.1.2 Turbulent viscosity L
5.1.3 Turbulent momentum flux
5.1.4 Intersection with the bathymetry
5.1.5 Boundary conditionso Lo
5.1.6 Vorticity
0.2 Usage o s
5.2.1 Order of operations L
5.2.2 Flowchart e
5.3 Variables L
5.3.1 Identification e
5.3.2 Global variables L
5.3.3 Local variables L
5.4 Procedures e e e e e e

38
38
42
42
42
43
43
43
43
43
46
46
50
ol

53
93
93
95
o6
o6
o6
60
60
60
61
61

CONTENTS

6 Barotropic mode : barotp.f

6.1 Formalism and numerical techniques
6.1.1 Rescaling of variables
6.1.2 Rearrangement of the velocity profile.
6.1.3 Filtering
6.1.4 Continuity equation L o
6.1.5 Equationsof motion L L Lo

6.2 Usage
6.2.1 Order of operations L
6.2.2 Flowchart

6.3 Variables e e e e
6.3.1 Identification L
6.3.2 Global variableso
6.3.3 Local variables

Convection : convec.f

7.1 Usage . . o o v oo e e e e e e
7.1.1 Order of operations

7.2 Variables e e e e e e e e
7.2.1 Global variables
7.2.2 Local variables

Diapycnal mixing : diapfl.f

8.1 Formalism and numerical techniques
8.1.1 Turbulent diffusion
8.1.2 Turbulent heat flux. Lo
8.1.3 Numerical implementationo L.

8.2 Usage o s
8.2.1 Order of operations L o
8.2.2 Flowchart e

8.3 Variables L
8.3.1 Identification oL
8.3.2 Global variables
8.3.3 Local variables L

Ocean mixed layer : mxlayr.f

9.1 Formalism e e e e e e e
9.1.1 Internal energy and turbulent kinetic energy
9.1.2 Parametrization of turbulent dissipation
9.1.3 A recent prediction model of the mixed layer
9.1.4 Entrainment condition Lo oo
9.1.5 Constants and numerical parameters

9.2 Numerical techniques L L e
9.2.1 Entrainment algorithm L oo
9.2.2 Detrainment algorithm

9.3 Usage o i i e

9.3.1 Orderof operations L e

76
76
76
77
77
77
78
78
79
84
85
85
85
85

86
86
86
88
88
88

CONTENTS

9.3.2 Flowchart
9.4 Variables e e e e e e e e
9.4.1 Identification
9.4.2 Global variables e
9.4.3 Local variables
9.5 Procedures L e e e e e e

10 Ocean-atmosphere exchanges : thermf.f
10.1 Formalism and numerical techniques
10.1.1 Heat balance e
10.1.2 Mechanical energy transfers L L.
10.2 Usage o e
10.2.1 Order of operations e
10.2.2 Flowchart e
10.3 Variables e
10.3.1 Identification
10.3.2 Global variables L
10.3.3 Local variables L
10.4 Procedures e e e

11 Calculational grid
12 Equation of state

13 Sub-programs
13.1 Functions e e e e
13.2 Subroutines e

14 MICOM notes

References

117
121
121
121
122
123

124
124
124
125
125
125
126
126
126
127
127
127

128

129

131
131
131

132

136

CONTENTS 6

Preface

0.1 Background

This manual was created in French by G. Langlois to describe MICOM, code version 2.5. This
first English version of the manual, manual version 2.6A, is an English translation, with revisions
that make it more compatible with MICOM code version 2.6. Note, however, that the code
fragments in this manual are from code version 2.5.

0.2 Revisions to the Manual

Version 2.6A, February 7, 1997.

0.3 Acknowledgements

We thank Brice Rosenzweig, Los Alamos National Laboratory, for his help in understanding the
original French.

0.4 Funding

This work has been supported by the United States’ Department of Energy (DOE) Computer
Hardware, Advanced Mathematics and Model Physics (CHAMMP) program. CHAMMP is
one component of the DOE’s Global Climate Change Program. MICOM is funded within the
CHAMMP program to develop an efficient global isopycnic coordinate ocean model that is
suitable for global climate studies.

CONTENTS 7

Introduction

The University of Miami MICOM code is a primitive equation numerical model that describes
the evolution of momentum, mass, heat and salt in the ocean. The theoretical support of the
model has been described by BLECK et al. in a publication entitled “Salinity-Driven Thermo-
cline Transients in a Wind- and Thermohaline-Forced Isopycnic Coordinate Model of the North
Atlantic” (JPO, 22, 1486-1505). Isopycnic ocean models use equations that have a coordinate
of density in the vertical direction instead of the ’traditional’ vertical coordinate of length. The
difference between traditional ocean models - 'z coordinate’ models - and isopycnic models, sim-
ply stated, is that the former predict water density changes at fixed depth levels, whereas the
latter predict the depths at which certain density values are encountered. Thus, the traditional
roles of water density and height as dependent and independent variables are reversed. To be
specific, in MICOM, we use potential density (density corrected for compressibility effects) as
the vertical model coordinate. After a change of variables over the vertical coordinate such that
o:(z,y,2,t) = (z,y,s(z,y, 2,1),t)), the general conservation equations written for the variable
s (= p) (BLECK 1978) are applied both in the isopycnic domain and in the surface mixed layer.
The distribution of variables is organized according to the Arakawa C grid. The thermodynamic
variables as well as the variables of motion are treated as layer variables. The isopycnic layers are
indexed by their upper interfaces. The model uses a split-explicit numerical scheme to separately
calculate the barotropic and baroclinic components of the field of prognostic variables (BLECK
& SMITH 1990). The solution of the barotropic component is shifted in time. It is treated
by a simple forward-backward scheme using the mass forward field in the continuity equation
and the last pressure field in the equation of motion. The procedure to reproduce the flow of
isopycnals is identical to that described in BLECK & BOUDRA (1986). Each isopycnic layer is
able to alternatively appear or disappear in each point of the domain. The treatment of the
problem of the intersection of isopycnals with the bathymetry is analogous to that worked out
in BLECK & SMITH (1990). The forcing of the model is affected by two functions of turbulent
heat flux and momentum. The effect of the wind is confined to the mixed layer whose thickness
can not exceed that of the Ekman layer. The interaction modes of the mixed layer with the sub-
adjacent isopycnic layers are described in BLECK et al. (1989). The treatment of the equations
of horizontal advection-diffusion of heat and salt is accomplished by a third-order conservation
scheme derived from the work of SMOLARKIEWICZ & CLARK (1986) and SMOLARKIEWICZ &
GRABOWSKI (1990). The model accommodates a user specified, horizontal geographic zone. An
example domain extends from 10° to 60°N with a spatial resolution of 1°. The vertical stratifi-
cation is reproduced by choosing the number of isopycnic layers, for example 10, and specifying
their respective densities.

1 FORTRAN 77 VERSION 2.6 8

1 FORTRAN 77 Version 2.6

In version 2.6 of the FORTRAN code of MICOM, the main program is named micom.f. The di-
mensions of various variables are introduced by means of symbolic constants. The corresponding
parameter statements are grouped in the file dimensions.h (¢f. § 1.1.1). The dimension dec-
larations are grouped in the file common_blocks.h (¢f. § 1.1). The program makes calls to
different statement functions grouped in the file stmt_functions.h (c¢f. § 13).

Before iterative integration calls, it is necessary to define the different characteristics of a simu-
lation. One can summarize the setup of MICOM 2.6 in the following manner :

I. The first step consists of introducing the bathymetry (cf. § 1.4.4) and to take steps
to distinguish the submerged zones from those on land. (¢f. § 1.4.4).

II. The second phase has the goal of characterizing the projection used. Several
options may be used. Generally, the system of equations is solved on a Mercator
grid with the x axis indicating South and the y axis pointing East. It is possible to
use a Mercator grid whose poles are rotated to the equator by changing the logical
variable rotat (cf. § 1.4.2). With this choice, one needs to calculate the associated
spatial parameters: mesh size, Coriolis parameter, etc.

III. Initialization of the variables is done in the third step (cf. § 1.2).

IV. The iterative computations are based on 9 main procedures. Each of these
subroutines is listed in the order called along with the function it performs :

subroutine cnuity : continuity equation ;

subroutine tsadvc : advection equation ;

subroutine momeql : momentum equations ;

subroutine momeq2 : momentum equations ;

subroutine barotp : dynamic barotropic mode ;

subroutine convec : vertical convection ;

subroutine diapfl : diapycnal mixing ;

subroutine thermf : ocean-atmosphere exchanges ;

subroutine mxlayr : evolution equation of the surface mixed layer.

MICOM’s scheme needs results of the previous two computations. These results are
saved via a third dimension. The index km represents the solution at time step nAt
and the index kn represents alternately the results at (n — 1)At and (n + 1)At.

V. After each iteration, the version 2.6 of MICOM offers a certain number of outputs
(writing files, graphical output, etc.) as well as 2 control tests. (¢f. § 1.3.2).

1.1 Declarations

1.1.1 Symbolic Constants

The different parametric constants have been grouped in the following list :

idm,ii,iil number of computational rows

1

FORTRAN 77 VERSION 2.6

jdm,3jj,3j1
kdm, kk

ms ,msd
nlato,nlongo
nlatn,nlongn

athird 1/3

number of computational columns

number of computational layers

maximum number of submerged segments in rows or columns
grid dimensions in latitude/longitude (i,j) direction

grid dimensions in (rotated) (i,j) direction

The number of layers is fixed by the statement : parameter (kdm=...)

1.1.2 Variables of state and auxiliary variables

u(idm, jdm,2xkdm) ,uold (idm, jdm,kdm)

v(idm, jdm,2+kdm) ,vold(idm,jdm,kdm)

dp(idm, jdm,2*kdm) ,dpold(idm,jdm,kdm)

dpu(idm, jdm,2*kdm) ,dpv(idm, jdm, 2¥kdm)

p(idm,jdm,kdm+1)

pu(idm, jdm,kdm+1) ,pv(idm, jdm,kdm+1)

corio(idm, jdm)

psikk(idm, jdm)

vort (idm, jdm) ,potvor (idm, jdm)
thmix (idm, jdm,2)

temp (idm, jdm, 2¥kdm)

saln(idm, jdm,2*kdm)

sdot (idm, jdm)

montg(idm, jdm,kdm)
defor1(idm, jdm) ,defor2(idm, jdm)
ubavg(idm, jdm,3) ,vbavg(idm, jdm,3)

pbavg(idm, jdm,3)

The common_blocks.h file contains an unlabeled common that declares the following variables :

u component of velocity
v component of velocity
layer thickness

layer thickness at the computational point of
variables u and v

interface pressure

interface pressure at the computational point of
variables u and v

Coriolis parameter

Montgomery potential in the bottom layer
vorticity and potential vorticity

mixed layer density

temperature

salinity

mixed layer entrainment velocity (generalized ver-
tical velocity)

Montgomery potential
deformation components
barotropic velocity

barotropic pressure

1 FORTRAN 77 VERSION 2.6

ubrhs (idm, jdm) ,vbrhs (idm, jdm)

utotm(idm, jdm) ,vtotm(idm, jdm)

utotn(idm, jdm) ,vtotn(idm, jdm)

uflux(idm, jdm) ,vflux(idm, jdm)
ufluxl(idm, jdm) ,vfluxl(idm, jdm)
uflux2(idm, jdm) ,vflux2(idm, jdm)
uflux3(idm, jdm) ,vflux3(idm, jdm)
uflx(idm, jdm,kdm) ,vf1x(idm, jdm,kdm)
utill(idm, jdm) ,util2(idm, jdm)
util3(idm, jdm) ,util4 (idm, jdm)
gradx (idm, jdm) ,grady (idm, jdm)
pgfx(idm, jdm) ,pgfy (idm, jdm)
scu(idm) ,scv(idm) ,scp(idm)
scu2(idm),scv2(idm) ,scp2(idm)
scui(idm),scvi(idm) ,scpi(idm)
scu2i(idm),scv2i(idm),scp2i(idm)
depthu(idm, jdm) ,depthv(idm, jdm)
pvtrop(idm, jdm)

depths (idm, jdm)

drag(idm, jdm)

visc(idm, jdm)
uja(idm,jdm),ujb(idm,jdm)
via(idm, jdm) ,vib(idm, jdm)

wgtia(idm, jdm) ,wgtib(idm, jdm)

wgtja(idm,jdm) ,wgtib(idm, jdm)

pbot (idm, jdm)

10

baroclinic forcing terms (right hand side) in barotropic

u,v equations

u, v components of total (barotropic+baroclinic)
velocity

u, v components of total (barotropic+baroclinic)
velocity at 2 time levels

horizontal mass fluxes

temporary storage arrays
» » »
u, v components of horizontal pressure gradient
u, v components of horizontal pressure force
grid scale at the u,v,p points
grid scales squared
inverses of scu,scv,scp
inverses of scu2,scv2,scp2
bottom pressure at u,v points
potential vorticity of barotropic flow
water depth
bottom drag
eddy viscosity
velocities at lateral u neighbor points
» » o o» » »

A%

submerged sidewall weights, indicate presence of
land at neighbor point

7 7 ” ” ” ”

bottom pressure at t=0

1 FORTRAN 77 VERSION 2.6

tracer(idm, jdm,kdm) inert tracer concentration (optional)

thup (idm,kdm) , thdn(idm,kdm) bulk theta above and below the interface of row
k

sgain(idm,kdm) variation of salinity from diapyc. mix.

surflx(idm, jdm) thermal energy flux through the surface

buoyfl(idm, jdm) surface buoyancy flux

ustar(idm, jdm) friction velocity

turgen(idm, jdm) turbulent kinetic energy generation

dpmx (idm, jdm) maximum thickness at neighbor points

tdp(idm, jdm) ,sdp(idm, jdm) vertical heat and salt integrals

klist(idm, jdm) index of the layer under the mixed layer

1.1.3 Logical variables

common/swtchs/ contains the logical variables :

diagno
rotat
thermo
windf
vthenu
trcrin

trcout

enables diagnostic messages

90 degree rotation of the poles of the Mercator projection
enable thermodynamic forcing functions

include wind stress in forcing functions

used in forward-backward differences scheme

read initial tracer field from restart file

advect tracer field and save it in restart file

1.1.4 Atmospheric forcings

The monthly average values of atmospheric forcings are contained in common/frcing/ :

taux(idm, jdm,12)
tauy (idm, jdm,12)
wndspd(idm, jdm,12)
radflx(idm, jdm,12)
airtmp(idm, jdm,12)
precip(idm, jdm,12)

vapmix (idm, jdm,12)

wind stress in z direction
wind stress in y direction
wind speed (tke source)

net short-wave radiation flux
pseudo air temperature
precipitation

atmospheric water vapor mixing ratio

1 FORTRAN 77 VERSION 2.6 12

rmu(nbdy)

weights for lateral boundary condition relaxation

pwall(2*nbdy, jdm,kdm,12) pressure boundary condition along sidewalls

swall (2#nbdy, jdm,kdm, 4) salinity boundary condition along sidewalls

twall (2#nbdy, jdm,12)

mixed layer temperature boundary condition along sidewalls

1.1.5 Numerical parameters

common/varbls/ collects various numerical parameters :

common/varbls/nstep,nstepl,nstep2,time,time0,deltl,1step,d1t,10,11,12,13,
common/varbls/time,deltl,d1lt,w0,wl,w2,w3,ws0,wsl,ws2,ws3,
area,watcum,empcum,nstep,nstepl,nstep2,lstep,10,11,12,13,1s0,1s1,1s52,1s3

where :

deltil

10,11,12,13

wl,wl,w2,w3

baroclinic time step
indices of monthly atmospheric forcing files

time interpolation coefficients of atmospheric forcing

common/parms1/ contains the following parameters :

theta (kdm)

thbase
baclin
batrop

thkdff

veldff
temdff
viscos
diapyc

vertmx

mixfrq

hi

used to calculate specific volume in layer k: alpha = 1/rho =
thref x (1 — theta(k))

base value of specific volume
baroclinic time step
barotropic time step

diffusion velocity (¢m/s) for thickness diffusion (diffusivity divided
by mesh size gives cm/s)

diffusion velocity (¢m/s) for momentum dissipation
diffusion velocity (e¢m/s) for temperature

coefficient of nonlinear viscosity

diapycnal diffusivity times buoyancy frequency (cm?/s?)

diffusion velocity (¢m/s) for momentum mixing at the mixed layer
base

number of time steps between diapycnal mixing calculations

depth interval used in lateral weighting of horizontal pressure gra-
dient

1

1.1.6 Constants

FORTRAN 77 VERSION 2.6 13
slip slip = +1 for free-slip boundary condition, slip = -1 for non-slip
condition
cbar rms flow speed (cm/s) for linear bottom friction law
diagfq number of days between model diagnostics
ntracr number of time steps between tracer transport

wuvl, wuv2
wtsl, wts2
wbaro
thkmin

thkbot

weights for time smoothing of u, v field

weights for time smoothing of ¢, s field

weight for time smoothing of barotropic u, v, p field
minimum mixed-layer thickness (m)

thickness of bottom boundary layer (pressure units)

The constants are grouped in common/consts/ :

tenm
onem
tencm
onecm
onemm
g
csubp
spcifh
cd

ct
airdns
evaplh
thref

epsil

pressure thickness value corresponding to 10 m of water thickness

1m ”

10 ecm K
1em

1 mm
gravitational acceleration

specific heat of air at constant pressure (J/g/ °C)
specific heat of sea water (J/g/ °C)

drag coefficient

thermal transfer coeflicient

air density at sea level (g/cm?)

latent heat of evaporation (J/g)

reference value of specific volume (cm?/g)

small nonzero number used to prevent division by zero

1 FORTRAN 77 VERSION 2.6 14

1.1.7 Assignments

All the parameters are initialized by a block data sub-program whose statements are in blkdat.f.
For example, the specific volume of each layer is initialized by the statement :

c
¢ --- specific volume in layer k is alpha = 1/rho = thref x (1 - theta(k))
data theta/.02500,.02550,.02595,.02635, .02670,
.02700, .02725,.02745,.02760, .02770/
c
Note

MICOM 2.6 uses the CGS system of units. For example the gravitational constant is speci-
fied by the statement :

c

¢ —-—- ’g’ = gravitational acceleration
data g/980.6/

c

To know the relation between the difference of pressure existing between the upper and lower
limits of a slice of water of unit density and the distance between these interfaces, we introduce
the constants :

c
¢ --- layer thicknesses in units of pressure:

data tenm,onem,tencm,onecm,onemm/980600.,98060.,9806.,980.6,98.06/
c

1.2 Initializations

The field variables are initialized by the two successive steps :

1) Call the subroutine inicon.f whose main function is to set all initial values to zero.
It is also during this step that we calculate the Montgomery potential (c¢f. § 4) and
the potential vorticity of the model ocean at rest.

2) Reading of data from the preceding run.

1.3 Running MICOM
1.3.1 Makefile

All the elements necessary to create an executable MICOM (compilation, etc.) are specified in
a makefile. The different source files are referenced in the macro SCRS within the makefile :

1 FORTRAN 77 VERSION 2.6 15

SRCS = micom.f advem.f barotp.f bigrid.f blkdat.f cnuity.f convec.f
diapfl.f dpudpv.f forfun.f indxi.f indxj.f inicon.f momeql.
momeq2.f mxlayr.f oldnew.f overtn.f pakk.f pakmsk.f poflat.f
prtmsk.f psmoo.f restart.f thermf.f tsadvc.f zebra.f

Hh
—

Similarly, the different object files are referenced in the macro 0BJS :

#

0BJS = micom.o advem.o barotp.o bigrid.o blkdat.o cnuity.o convec.o
diapfl.o dpudpv.o forfun.o indxi.o indxj.o inicon.o momeql.o
momeq2.0 mxlayr.o oldnew.o overtn.o pakk.o pakmsk.o poflat.o
prtmsk.o psmoo.o restart.o thermf.o tsadvc.o zebra.o

—

The MICOM makefile specifies the loading or linking by :

#
micom : $(0BJS)
£f77 -v -o micom $(0BJS)

Similarly the generation of each object file is specified by :

#
mxlayr.o : mxlayr.f dimensions.h common blocks.h stmt_functions.h
£77 $(FFLAGS) -c mxlayr.f

#
The macro FLAGS represents options for the £77 compiler :
#
FLAGS = -0
#

In R. Bleck’s notes (cf. § 14), he indicates that on some machines it is more efficient to use

powers of 2 to dimension the symbolic constants idm and jdm, while on others it is less.

1.3.2 Output for testing purposes

The coordinates of the point where detailed results are printed are specified in common/testpt/ :
common/testpt/itest,jtest

Version 2.6 of MICOM does two types of tests :

1) Calculation of the barotropic stream function. This is done with an overrelaxation
method in the subroutine poisnd.f.

1 FORTRAN 77 VERSION 2.6 16

2) Estimation of the meridional overturning rate. This is done in the subroutine
overtn.f, where we calculate the zonally averaged meridional heat flux and display
it in stream function form.

1.4 Configuring MICOM

1.4.1 Implementation

The geometry of the application domain is stored in the file dimensions.h. The horizontal ex-
tent is defined by the 2 parameters idm and jdm.

The specification of islands and continents is done with the help of the parameter ms. It sets
the maximum number of interruptions of the oceanic domain in rows or in columns plus one.
The equivalent in the diagonal direction is represented by the parameter msd. For each of the 4
points of the C grid (u,v, Ap, Q), common/gindex/ contains seven tables of entries.

1) one table of dimension idm«jdm: iu(idm, jdm). At submerged points, iu(i,j)=1;
else, iu(i,j)=0.

2) one table comprising the number of submerged segments in the row ¢ : isu(jdm);
3) a table giving the lower limits of each segment by column : ifu(jdm,ms) ;

4) a table giving the upper limits of each segment by column : ilu(jdm,ms) ;

5) a table comprising the number of segments of the column j : jsu(idm) ;

6) a table of lower limits of each segment by row : jfu(idm,ms) ;

7) a table of upper limits of each segment by row : jlu(idm,ms).

A segment is defined as a number of contiguous submerged points. To represent the separation
between land and sea along the diagonals, common/diags/ contains 5 tables whose values come
from numerical processing of the bathymetry file (¢f. § 1.4.4):)

1) a table of the number of segments in each diagonal : nsec (idm+jdm);

2) a table of the abscissas of the lower limits of each segment : ifd(idm+jdm,msd) ;
3) a table of the abscissas of the upper limits of each segment : ild (idm+jdm,msd) ;
4)) a table of the ordinates of the lower limits of each segment : j£d(idm+jdm,msd) ;
5) a table of the ordinates of the upper limits of each segment : j1d(idm+jdm,msd).

This information is only used in diagnosing the barotropic stream function.

1.4.2 Projections

Two projections can be used. The projection is chosen by setting the variable rotat. The
different assignments used are in common/pivot/ :

common/pivot/xpivo,ypivo,grido,xpivn,ypivn,gridn

1) rotat=.false. : normal Mercator projection (z pointing South and y pointing
East). xpivn specifies the 7 index of the equator (xpivo,ypivo,ypivn are not used) ;

2) rotat=.true. : Mercator projection after a 90 degree rotation (z pointing East
and y pointing North). In this case, xpivo,ypivo indicate respectively the coordi-
nates 7, j of the pivot in the standard grid. In the grid after the rotation, xpivo,ypivo
and xpivn,ypivn reference the coordinates of two points situated on the equator.
(figure 1).

1 FORTRAN 77 VERSION 2.6 17

Typically, we initialize the variables by the statement :
data xpivn,gridn/41.,2./

grido is the mesh size of the latitude/longitude grid in degrees and gridn is the mesh size
of the actual model grid (whether rotated by /2 or not) in degrees longitude.

The subroutine newold.f computes the coordinates of points in the rotated grid as a function
of their positions in the original grid. The subroutine oldnew.f carries out the inverse function.

1.4.3 Mesh

The size of the mesh is a function of latitude which is itself a function of the distance between a
point and the equator. The two functions giving respectively the latitude from the grid distance
and its inverse respectively are found in the file stmt_functions.h :

c
¢ ——- formulae relating latitude to grid distance from equator
c
alat(distl,grid)=(2.*atan(exp(disti*grid/radian))-pi/2.)
dist(alatl,grid)=alog(tan((2.*alatl+pi)/4.))*radian/grid
c

1.4.4 Bathymetry

The distribution of variables in a C grid is such that only idm-1*jdm-1 depths are required to
represent the bathymetry of the ’rectangular’ portion of the ocean considered. (c¢f. § 11). By
convention, land zones are given a depth of zero. The distinction between exposed and sub-
merged zones is carried out by the call :

c

¢ ——- determine do-loop limits for u,v,p,q points
call bigrid(depths)

c

The boundaries of the segments along diagonals are needed by the optional Poisson solver
(cf. § 1.3.2).) To integrate the system of equations over the whole domain, the boundaries of
segments by rows and by columns have to be determined for the four points which bound the
mesh (cf. § 11). To do this, in bigrid.f, we have the statements :

c
¢ --- determine loop indices for mass and velocity points

call indxi(ip,ifp,ilp,isp)

call indxj(ip,jfp,jlp,jsp)

call indxi(iu,ifu,ilu,isu)

call indxj(iu,jfu,jlu,jsu)

call indxi(iv,ifv,ilv,isv)

call indxj(iv,jfv,jlv,jsv)

1 FORTRAN 77 VERSION 2.6

c
¢ ——— determine loop bounds for vorticity points, including interior and
¢ —--- promontory points

call indxi(iq,ifq,ilq,isq)
call indxj(iq,jfq,jlqg,jsq)

18

19

FORTRAN 77 VERSION 2.6

1

I I I I I I I					
					I]
					R=NE=]
					>
					lo i fo et
T					
					[
\\\\\\\\\\\\\\\\\\\\ oLl L1					
e e					
B B Bl el e e il el					
e e					
L ________ [
e e					
T T T T T T T T T T e et e At					
e - - e e il S					
\\\\\\\\\\\\\\\\\\\\ 1oL 1L @
.- o O
= 22
[oTa el
[T

Rotation by 90° about

Xpivo, ypivo

Equator}

Figure 1: Rotation of the initial grid and positions of segments representing the equator in each

of 2 grids.

2 CONTINUITY EQUATION : CNUITY.F 20

2 Continuity equation : cnuity.f

2.1 Formalism and numerical techniques

|
I
:
.
: ~~ — ‘
I — I
! L1 hy ! < h; >
| 1)
~—_ =)
[—
I T — — —_ I
I I
I I
I I
I I
I I
I I
I i : I
I I
I I
I I
I I
I I
I I
I I
I -l I
- —— — —— !
= —— = 1 |2
I —— I
I I
! Pi i ' < h; >
s I
I I
I
= e ———
o= = ~ = S— Q).,_\.
I —_— e 5
I)
I I
‘ ha ‘
: X :
| o | < hy>
| _— - — |
~
| _onl > |
I = ™ I
7 >
| _ ~ |
' ~ > |
I e > I
e N
=2 N

Figure 2: Vertical discretization of the multilayer ocean

BLECK & SMITH (1990) assume that the difference in pressure between the two interfaces of
the k' layer has the form :

Api = (1 +n)Apj, (1)
with Apy, = gprhy, and Apj, = gprh),. Elsewhere, we introduce the decomposition :
u, =u-+ U.;C (2)
with : N
k=1 Pehwuy
w = Sk P 3)
> k=1 Pkl
and : o
u, =0 (4)

The tendency equation for the component Ap’ entering in the total expression for the change of
pressure in the layer k is then written (BLECK & SwmITH, 1990) :
0 Ap)
S AP+ V- (uAp)y = ZPEV - (@) (5)
ot D),

2 CONTINUITY EQUATION : CNUITY.F 21

Under the hydrostatic hypothesis, with a free surface, we have :

N

N
=> Ap}, Z pihi, = gpr H (6)
k=1

with H the water depth :
N

N

H(w,y) = (i) =Y he =& (7)
k=1 k=1

(h) represents the initial thickness of the layer k and &; represents the change in the free surface

(c.f. figure 2). p, is the column mean density.

2.1.1 FCT (Flux-Corrected Transport) scheme

The base FCT scheme from the work of ZALESAK (1986) is outlined here in 7 steps :

1) The first inference of the variable Apj, is made by introducing a classic upstream
scheme. We denote it by Ap k10 the layer k. The diffusive fluxes of this first step
are calculated from the total veloc1ty field u. Consider the problem (5) without its
second term in a one-dimensional form and take P’y = (uAp')x. Then we can write :

rup Zﬁip k APmld if uip1/0k >0
P jog = WAY)Y oy = (8)
?}H/z k Apz-i—l o Uiy <0

where mid and old refer to two successive instants in the leapfrog scheme. In a
donor-cell scheme, the upstream fluxes as well as the velocity should be defined at
the interfaces between the cells.

2) Always in using the total velocity field, we proceed next to calculate the non-
diffusive flux by a scheme second-order in space and centered in time :

Ap”md 4 Ap(mid
id i+1,k
ilil/Z,k = (“Apl)fﬂ/z,k ?31/2 k 2 . (9)

3) We introduce the flux of anti-diffusion A such that : A/, = Pilj-l/z,k _Pilj-zi/z,k‘
To assure the stability of the scheme (i.e. to counter the appearance of negative
values of Ap;i**’), we substitute for the anti-diffusive flux A with the corrected flux
A° such that : Af+1/2,k = Ciy1/2,kAit1/24 and with : 0 < C < 1. For C = 0, we
restore the flux of order 1 and C' = 1 gives back the flux of order 2. The final solution
is expressed by a combination of fluxes of orders one and two which moderates the
perturbations of stability which appear. For each layer, we have (BARAILLE &

FILATOFF, 1995) :

min (Rf,, 5 Riy) if Agpij0k >0

Civ1/2k = (10)
min (R}, i R p) i Ajprjor <0

2

CONTINUITY EQUATION : CNUITY.F

where we successively introduce :
P, = max (0, Ai—1/2,k) — min (0, Ai+1/2,k)

P}, = max (0, Ai+1/2,k) — min (0, Aiq/z,k)

then :
Qz k — lmam Ap;j,k
11 (12)
Q Ap, . Ap/mm
and
' ' 1,829 i ptos o
min At pr ik =
R:—k — ik
L 0 if Pﬁc =0
I11 { (13)

min (1, %iﬁk) if P >0

i,k

0 1ka—0

\ \

R;,_k and R;, represent the biggest multiplicative factors of anti-diffusive flux which
assure respectively : Ap’”‘H < Api*® and Ap’”‘H > Ap'mm with :

App®® = max(Api | i, Ap, Aty)
(14)
Api™ = min(Api™y ., Apfly, Apft, 1)
The formulas corresponding to the bidimensional case are given in BARAILLE & F1-
LATOFF (1995).

4) In summing the form (5) without the second term over the N layers of the vertical
discretization, as we have dpj /0t = 0, we obtain :

N
=Y V-P=0 (15)
k=1

It is clear that to satisfy this condition, a second order approximation of the flux P’
is better than any lower order approximation. We then write the identity :

N
> (AR Pili1/2,k) =0 (16)

k=1
The sum of anti-diffusive flux corrections over the vertical introduces a bias in the

conservation of pj for which we must compensate. To do this, we calculate the
vertical sum of flux corrections (by means of a second order approximation) :

N
Aiv1p = (1 - Ci+1/2,k) Aiv1/2k (17)

k=1

22

CONTINUITY EQUATION : CNUITY.F

5) To evaluate the effect of the anti-diffusive flux “integral”, we calculate by layer
the new thickness :
Apgk = Ap;t‘,f — At (V- Ac)i,k (18)

From that we obtain the bottom pressure :
N
! !/
pl =Y Apyf (19)
k=1

6) Unless we have Cj /9 = 1 for each layer, pg # p;,i. To remedy this problem, we
make a second correction B to the upstream flux such that :

Ap’-Tk
Bit12k = TZ’AHUQ (20)
b;
The final flux takes the form :
Pi,flT;Z,k = ‘Pz'lfljili/Q,k + Az?+1/2,k + Bi+1/2,k (21)

and we rectify the preceding estimation Ap;:rk by the relation :
k
Apfk = Apgk — At (V-B), (22)

where we put the bottom pressure to :
1 - 1
! !
by, = Z Api,k (23)
k=1

7) The last step is to account for the right hand side of the original equation (5).
Once we are at this stage, we will claim that the flux was corrected to best satisfy
dp;, /0t = 07 Vi. From that, we can therefore write for each layer k& :

&Ap;ﬂfm + V- P;ﬂfm = p—’fv - (upy) (24)
Py

as we, of course, are looking to eventually satisfy :
N .
> Apl™ =i (25)
k=1
For all points, the form (24) is summed over the vertical giving that :
N .
v (Z P?f’”) — V- (). (26)
k=1

In the divergence term, the vertical flux average and the flux sum are in equilibrium.
On the other hand, the flux and therefore the layer thickness may need adjustment.

23

2 CONTINUITY EQUATION : CNUITY.F 24

Accounting for the second term of (5) in the calculation of the final thickness Ap; n
gives the simple equation :

. Ap'i
Apl™ = =kp, (27)
Py
From this we obtain :
. k .
p;cf_f_q :ZApgfm for k=1,....N (28)

=1

with therefore : p%zfl = p;)fm = pj,. Then in the summations (6), (19), (23) and (28),
we assume that the surface pressure is zero (pj = 0).

2.1.2 Interface diffusion

In the shallow-water multilayer model, the conservation of mass is cast in the form (BARAILLE
& FILATOFF, 1995) :

0
aApk + V- (ulp)r =0 (29)

Once the decomposition (1) is introduced in the formula, we can see that formally the equation
(5) comes from the approximation: (1 +7n) =~ 1. We notice that nevertheless the use of this
approximation does not disturb in any case the property: 0p,/0t = 0 (BARAILLE & FILATOFF,
1995). Thus we see that the sum of the changes in Ap’ over the vertical in this approximation
is such that at each point, p stays constant. In practice, the accounting of 7 is such that :

1+n=

1 X

Prh (30)
prH ,;1
so as to restore the introduction of a diffusion term V - (vVAp') in the conservation equation
(5). As in finite differences, the product v9(Ap)/0z is numerically equivalent to ugdp (where
dp represents the growth of the thickness of a layer between two adjacent meshes), BLECK et
al. (1992) introduce a “diffusion velocity” ug = v/Az (where Az is the size of the mesh) to
simulate the isopycnic diffusion. We typically have : ug = 0.5 e¢m/s for the variable Ap.
From the preceding FCT scheme, we obtain p%n and p;]iz ik’ the pressures at the k' den-
sity interface in 2 adjacent points with coordinates x; and x;_1. In these 2 points, the bottom
pressures are respectively pgi and pgi_l. We make this statement concrete by the form :

. ugAt
Difl/Z,k = min {pﬁ, - p;,k max |:p;jl,k —pzi,l, Az (p;q,k - p;,k):| } (31)

During a time interval At, the variation of pressure at the interface k comes from the expression :

opiy Az
This last equation is then written for the interfaces k =2,..., N :

pt = pit - (Di+1/2,k - Dze1/2,k) (33)

2 CONTINUITY EQUATION : CNUITY.F 25

in which we put :
1 1 1
Ap%r = p;?k—l:i-l - p%r (34)
To remain coherent with the previous step, the flux retained at the two interfaces of the layer
are written :

fin _ plfin 1)
Fz’+1/2,k71 = Pi+1/2,k71 + EDZ+1/2J€

fin _ plfin 1.
Fi+1/2,k = Pi+1/2,k AtDZ+1/2J€

2.2 Usage

In MICOM 2.6, the numerical calculation of the baroclinic continuity equation is performed by
the subprogram :

subroutine cnuity (list of arguments)

2.2.1 Order of operations

The algorithm is based on a consecutive treatment of isopycnic layers. First, we initialize the
variables necessary to calculate the flux integrals over the vertical coordinate :

c
do 41 j=1,jj1
c
do 74 1=1,isp(j)
do 74 i=ifp(j,1),ilp(j,1)
74 util3(i,j)=0.
c
do 40 1=1,isu(j)
do 40 i=ifu(j,1),ilu(j,1)
40 utotn(i,j)=0.
c
do 41 1=1,isv(j)
do 41 i=ifv(j,1),ilv(j,1)
41 vtotn(i,j)=0.
c

The first calculational step consists of computing the two components of upstream flux in ap-
plying (8) :

c
¢ --- compute low-order (diffusive) fluxes at old time level
c

do 12 j=1,jj1
c

do 11 1=1,isu(j)
do 11 i=ifu(j,1),ilu(j,1)
utotm(i,j)=(u(i,j,km)+ubavg(i,j,m))*scu(i)

2

CONTINUITY EQUATION : CNUITY.F 26

11

12

if (utotm(i,j).ge.0.) then
gq=min(dp(i-1,j,kn),max(0.,depthu(i,j)-util3d(i-1,j)))
else

g=min(dp(i ,j,kn),max(0.,depthu(i,j)-util3(i ,j)))
end if

uflux(i,j)=utotm(i,j)*q

do 12 1=1,isv(j)

do 12 i=ifv(j,1),ilv(j,1)

vtotm(i, j)=(v(di,j,km)+vbavg(i,j,m))*scv(i)

if (vtotm(i,j).ge.0.) then
g=min(dp(i,j-1,kn),max(0.,depthv(i,j)-util3d(i,j-1)))
else

g=min(dp(i,j ,kn),max(0.,depthv(i,j)-util3d(i,j)))
end if

vflux(i,j)=vtotm(i,j)*q

Then, we determine the diffusive solution :

C

¢ -—-- advance -dp- field using low-order (diffusive) flux values

C

19

190

dpmin=999.

do 19 j=1,jj1
do 19 1=1,isp(j)
do 19 i=ifp(j,1),ilp(j,1)
dpold(i,j,k)=dp(i,j,kn)
util3(i,j)=utild(i,j)+dp(i,j,kn)
dp(i,j,kn)=dp(i,j,kn)-(uflux(i+1,j)-uflux(i,j)
+vflux(i,j+1)-vflux(i,j))*deltl*scp2i(i)
dpmin=min (dpmin,dp(i,j,kn))

if (dpmin.lt.-onecm) then

do 190 j=1,jj1

do 190 1=1,isp(j)

do 190 i=ifp(j,1),ilp(j,1)

if (dp(i,j,kn).eq.dpmin)
write (*,’(i9,’’ i,j,k=’’,3i4,’’ neg. dp (m) in loop 19’’,
£9.2)’) nstep,i,j,k,dpmin/onem

continue

end if

Following that, we add the second order flux and calculate the anti-diffusive flux by simply
taking the difference between the upstream flux and the second order flux. The second order

2 CONTINUITY EQUATION : CNUITY.F 27

fluxes are stored in the arrays uflux(i,j) and vflux(i,j). Meanwhile, we keep track of up-
stream fluxes in the arrays uflx(i,j) and vflx(i,j). Note that the centering in space of the
pressure term of equation (9) has been performed in the preceding calculation of the barotropic
component of the current. (subroutine barotp). The numerical values of the thicknesses at the
calculational points of the 2 horizontal components of velocity are found in the global variables
dpu(i,j,k) and dpv(i,j,k).

--- compute ’antidiffusive’ (i.e., high-order minus low-order) fluxes.
--- high-order fluxes are second-order in space, time-centered.

O o0 o o0

do 21 j=1,jj1

do 20 1=1,isu(j)
do 20 i=ifu(j,1),ilu(j,1)
uflx(i,j,k)=uflux(i,j)

20 uflux(i,j)=utotm(i,j)*dpu(i,j,km)-uflux(i,j)

do 21 1=1,isv(j)
do 21 i=ifv(j,1),ilv(j,1)
vilx(i,j,k)=vflux(i,j)

21 vflux(i,j)=vtotm(i,j)*dpv(i,j,km)-vflux(i,j)

The third step decomposes into two parts :

1) Determination of the local extrema of the variable Ap. We save the results in the
arrays utill(i,j) and util2(i,j) ;

2) Computation of flux correctors following the method outlined above. The re-
sults are also stored in the arrays utili(i,j) and util2(i,j)

c
¢ —-—- at each grid point, determine the ratio of the largest permissible
¢ -—- pos. (neg.) change in -dp- to the sum of all incoming (outgoing) fluxes
c

do 25 i=1,ii1l

do 25 1=1,jsp(i)

do 25 j=jfp(i,1),jlp(i,1)

ja=max(jfp(i,1),j-1)

jb=min(jlp(i,1),j+1)

utill(i,j)=max(dp(i,j,kn),dp(i,ja,kn),dp(i,jb,kn))

25 util2(i,j)=min(dp(i,j,kn),dp(i,ja,kn),dp(i,jb,kn))

c

do 27 j=1,jj1
do 27 1=1,isp(j)
do 27 i=ifp(j,1),ilp(j,1)

2 CONTINUITY EQUATION : CNUITY.F 28

ia=max(ifp(j,1),i-1)
ib=min(ilp(j,1),i+1)

utill(i,j)=max (utili(i,j),dp(ia,j,kn),dp(ib,j,kn))
util2 (i, j)=max(0.,
min(util2(i,j),dp(ia,j,kn),dp(ib,j,kn)))

utili(i,j)=(utili(i,j)-dp(i,j,kn))
/ ((max (0. ,uflux(i,j))-min(0. ,uflux(i+l,j))
+max (0. ,vflux(i,j))-min(0.,vflux(i,j+1))+epsil)
*deltl*scp2i(i))

27 util2(i,j)=(util2(i,j)-dp(i,j,kn))
/((min(0. ,uflux (i, j))-max(0.,uflux(i+l,j))
+min (0. ,vflux (i, j))-max(0.,vflux(i,j+1))-epsil)
xdeltl*scp2i(i))

In a fourth phase, we determine the flux correction given by (17). We store the results in
variables utotn(i,j) and vtotn(i,j).

c
¢ --- limit antidiffusive fluxes
¢ —-—- (keep track in -utotn,vtotn- of discrepancy between high-order
¢ --- fluxes and the sum of low-order and clipped antidiffusive fluxes.
¢ -—- this will be used later to restore nondivergence of barotropic flow)
c
do 29 j=1,jj1
c
do 28 1=1,isu(j)
do 28 i=ifu(j,1),ilu(j,1)
if (uflux(i,j).ge.0.) then
clip=min(1.,utill(i,j),util2(i-1,j))
else
clip=min(1.,util2(i,j),util1i(i-1,j))
end if
utotn(i,j)=utotn(i,j)+uflux(i,j)*(1.-clip)
uflux(i,j)=uflux(i,j)*clip
28 uflx(i,j,k)=uflx(i,j,k)+uflux(i,j)
c

do 29 1=1,isv(j)

do 29 i=ifv(j,1),ilv(j,1)

if (vflux(i,j).ge.0.) then
clip=min(1.,util1(i,j),util2(i,j-1))
else
clip=min(1.,util2(i,j),utili(i,j-1))
end if

2 CONTINUITY EQUATION : CNUITY.F 29

vtotn(i,j)=vtotn(i,j)+vflux(i,j)*(1l.-clip)
vilux (i, j)=vflux(i,j)*clip
29 vf1x(i,j,k)=vflx(i,j,k)+vflux(i,j)

Then we proceed to the inference of a new thickness given by (18).

--- evaluate effect of antidiffusive fluxes on -dp- field

o O 0

dpmin=999.

do 1 j=1,jj1
do 1 1=1,isp(j)
do 1 i=ifp(j,1),ilp(j,1)
dp(i,j,kn)=dp(i,j,kn)-(uflux(i+1,j)-uflux(i,j)
+vflux (i, j+1)-vflux(i,j))*deltl*scp2i(i)
p(i,j,k+1)=p(i,j,k)+dp(i,j,kn)
1 dpmin=min(dpmin,dp(i,j,kn))

if (dpmin.lt.-onecm) then

do 3 j=1,jj1

do 3 1=1,isp(j)

do 3 i=ifp(j,1),ilp(j,1)

if (dp(i,j,kn).eq.dpmin)
write (*,’(i9,’’ i,j,k=’?,3i4,’’ neg. dp (m) in loop 1’7,
£9.2)’) nstep,i,j,k,dpmin/onem

3 continue
end if

From there, it is then possible to determine the second correction to the flux expressed by
(20), and to perform the estimation (22) of the thickness of the layer considered. The final
values of the fluxes are placed in the arrays uf1x(i,j) and vflx(i,j).

c
¢ ——— restore nondivergence of vertically integrated mass flow by
¢ —-—- recovering fluxes lost in the flux limiting process.
¢ ——- treat these fluxes as an ’upstream’ barotropic correction to
¢ --- the sum of diffusive and antidiffusive fluxes obtained so far.
c

do 77 k=1,kk

km=k+mm

kn=k+nn
c

do 45 j=1,jj1
c do 44 1=1,isu(j)

2 CONTINUITY EQUATION : CNUITY.F

do 44 i=ifu(j,1),ilu(j,1)
if (utotn(i,j).ge.0.) then
q=dp(i-1,j,kn)/p(i-1,j,kk+1)
else
q=dp(i ,j,kn)/p(i ,j,kk+1)
end if
uflux(i,j)=utotn(i,j)*q
44 uflx(i,j,k)=uflx(i,j,k)+uflux(i,j)

do 45 1=1,isv(j)
do 45 i=ifv(j,1),ilv(j,1)
if (vtotn(i,j).ge.0.) then
q=dp(i,j-1,kn)/p(i,j-1,kk+1)
else
g=dp(i,j ,kn)/p(i,j ,kk+1)
end if
vilux (i, j)=vtotn(i,j)*q
45 vflx(i,j,k)=vflx(i,j,k)+vflux(i,j)

dpmin=999.

do 14 j=1,jj1
do 14 1=1,isp(j)
do 14 i=ifp(j,1),ilp(j,1)
dp(i,j,kn)=dp(i,j,kn)-(uflux(i+1,j)-uflux(i,j)
+vflux (i, j+1)-vflux(i,j))*deltl*scp2i(i)
p(i,j,k+1)=p(i,j,k)+dp(i,j,kn)
14 dpmin=min(dpmin,dp(i,j,kn))

if (dpmin.lt.-onecm) then

do 140 j=1,jj1

do 140 1=1,isp(j)

do 140 i=ifp(j,1),ilp(j,1)

if (dp(i,j,kn).gt.dpmin) go to 140

write (*,’(i9,’’ i,j,k=’’,3i4,’’ neg. dp (m) in loop 14’7,
£9.2)’) nstep,i,j,k,dpmin/onem

¢ ——— if -dpmin exceeds 1 meter, provide additional diagnostics

if (dpmin.gt.-onem) go to 140

call prtij(i,j,k,u(1,1,km),1.,v(1,1,km),1.,dp(1,1,km),
1./onem,temp(1,1,km),10.,saln(1,1,km),10.)

call prtij(i,j,0,ubavg,1.,vbavg,l.,p(1,1,kk+1),1./onem,
pbavg,1./onecm,p,1./onem)

140 continue
end if

77 continue

30

2 CONTINUITY EQUATION : CNUITY.F 31

For the last step, we make the adjustment (27).

c
¢ ———- add bottom-pressure restoring term arising from split-explicit treatment
¢ --- of continuity equation (step 4 in appendix b to 1992 brhs paper)
c
do 39 j=1,jj1
do 39 1=1,isp(j)
do 39 k=1,kk
kn=k+nn
do 39 i=ifp(j,1),ilp(j,1)
dp(i,j,kn)=dp(i,j,kn)*pbot(i,j)/p(i,j,kk+1)
39 p(i,j,k+1)=p(i,j,k)+dp(i,j,kn)
c

The treatment of the diffusion term consists of two principal steps :

1) To start, we proceed to calculate the interfacial diffusive flux given by the form
(31), and then to correct the new flux with the aid of the expressions given in (35).
The results are stored in the arrays uflx(i,j) and vf1x(i,j).

c
€ mm e e
¢ -—- thickness diffusion (literally, interface depth diffusion)
€ mmm
c

do 816 k=2,kk

kn=k+nn
c

do 818 j=1,jj1
c

do 817 1=1,isu(j)

do 817 i=ifu(j,1),ilu(j,1)

flxhi= .256%(p(i ,j,kk+1)-p(i ,j,k))*scp2(i)

flxlo=-.25%(p(i-1,j,kk+1)-p(i-1,3,k))*scp2(i-1)

uflux(i,j)=min(flxhi,max(flxlo,
thkdff*delti*(p(i-1,j,k)-p(i,j,k))*scu(i)))

uflx(i,j,k-1)=uflx(i,j,k-1)+uflux(i,j)/deltl

uflx(i,j,k)=uflx(i,j,k)-uflux(i,j)/deltl

817 continue

do 818 1=1,isv(j)
do 818 i=ifv(j,1),ilv(j,1)

CONTINUITY EQUATION : CNUITY.F 32

flxhi= .25%(p(i,j ,kk+1)-p(i,j ,k))*scp2(i)
flxlo=-.25*%(p(i,j-1,kk+1)-p(i,j-1,k))*scp2(i)
vflux(i,j)=min(flxhi,max(flxlo,
thkdffxdeltl*(p(i,j-1,k)-p(i,j,k))*scv(i)))
vilx(i,j,k-1)=vflx(i,j,k-1)+vflux(i,j)/deltl
vilx(i,j,k)=vflx(i,j,k)-vflux(i,j)/deltl
818 continue

do 816 j=1,jjl
do 816 1=1,isp(j)
do 816 i=ifp(j,1),ilp(j,1)

p(i,j,k)=p(i,j,k)-(uflux(i+1,j)-uflux(i,j)
+vflux(i,j+1)-vflux(i,j))*scp2i(i)
816 dp(i,j,kn-1)=p(i,j,k)-p(i,j,k-1)

do 819 j=1,jj1
do 819 1=1,isp(j)
do 819 i=ifp(j,1),ilp(j,1)
819 dp(i,j,kk+nn)=p(i,j,kk+1)-p(i,j,kk)

2 CONTINUITY EQUATION : CNUITY.F 33

2.2.2 Flowchart

[Calculate first order fluxes j

[1% inference of the solution }

[Calculate non-diffusive ﬂuxes}

[Calculate anti-diffusive ﬁuxes}

Determine local extrema

Calculate flux reducers

{ Estimate total flux correction J

{ 27 inference of the solution J

[Evaluate second flux correction J

{ 3¢ inference of the solution J

{ Adjust final thickness J

DIFFUSION STEP

1) Calculate diffusive interfacial flux

and
Correct definitive fluxes

2) Calculate final thicknesses

Figure 3: Order of the treatment of the continuity equation for the baroclinic mode in MICOM
2.6

2 CONTINUITY EQUA

2.3 Variables
2.3.1 Identification

Notation in the theory

(Apimid + Apmid) /2

2.3.2 Global variables

integer variables :

real variables :

2.3.3 Local variables

TION : CNUITY.F 34

Notation in cnuity.f

clip

flxhi

flxlo

utotm(i,j), vtotm(i,j)
ubavg(i,j,n), vbavg(i,j,n)
u(i,j,n), v(i,j,n)

dpu(i,j,k), dpv(i,j,k)

ifp(j,m) ilp(j,m),ifu(j,m), ifv(j,m),iil, ilu(j,m), ilv(j,m),
isp(3), isu(j), isv(j), jjl, kk

delt1,depthu(i,j), depthv(i,j),dp(i,j,k), dpold(i,j,k),dpuli,j,k),
dpv(i,j,k), epsil, onecm, onem, p(i,j,k), saln(i,j,k), scu(i),

scv (i), scp2(i), scp2i(i), temp(i,j,k), thkdff, ubavg(i,j,n),
uflux(i,j), uflx(i,j,k), utili(i,j), util2(i,j), utild(i,j),
utotm(i,j),utotn(i,j), vbavg(i,j,n), vflux(i,j), vflx(i,j,k),
vtotm(i,j), vtotn(i,j)

clip correction factor for antidiffusive fluxes

dpmin variations in pj due to different corrections to the upstream flux
flxhi,flxlo differences in pressure between the interfaces of a lyer and the bottom
ia,ib,ja,jb intermediate indices

q intermediate variable used in the calculation of the fluxes

2.4 Procedures

Subroutines prtij

3 ADVECTION-DIFFUSION : TSADVC.F 35

3 Advection-diffusion : tsadvc.f

3.1 Formalism and numerical methods

In isopycnic coordinates, the thermal evolution equation takes the form :

O Ap+V - (uTAp) + (s@T> - (S@T> _ V. (vApVT) +Hr. (35)
3t — 88 bot 88 top —_——
advec ~ ~ - iso—dif f
dia—dif f

Ap is the thickness of layer k£ of temperature T'. The radiative exchanges are represented by the
term H7. The expression ($0p/0s) represents a vertical mass flux.

In MICOM, the problem of advection of heat and salt is treated by MPDATA coming from the
work of SMOLARKIEWICZ & CLARK (1986) and SMOLARKIEWICZ & GRABOWSKI (1990). The
diapycnic diffusion is accounted for in the diapycnic mixing algorithm described in Section 8.
Regarding the isopycnic diffusion, the numerical method we are using is based on the different
procedures we commented on in Section 3.1.3.

3.1.1 Maintaining the positivity of thickness

Consider the simple form of the problem of advection of an isopycnic layer of thickness Ap, of
temperature 7" and driven by a horizontal velocity u :

0

aTAp + V. (uTAp)=0 (36)
From the solution of the continuity equation, for each layer, we get the mass flows (uAp)?jl
and (vAp)™T! as well as a diagnostic value for Ap"!. Let P = uAp and let h be the thickness

0. 0]

of the layer of interest. Considering the conservation equation :
oh
4 VvV-P=0 37
T (37)

and determining the variation Jh follows from this form, we have :

. At 1 1 1 1
oh(i,f) = — 5 [P:E?j’l,j — Py Pyrtl — Pyt] (38)

Suppose the layer shrinks with time, i.e., h < 0. In this case, |6h| > Ap" ! brings about the
unsatisfactory condition Ap™*t! < 0. The fluxes resulting from the numerical treatment of the
continuity equation are then inconsistent with the variations of thickness calculated in this same
step. The mass flux as well as the layer thickness are necessary in the advection calculation.
The mass fluxes are made to be consistent with the variation of layer thickness so that always
in the case dh < 0, we have |dh| < Ap"~1. Introduce the two utility thicknesses h; and ho :

hi = 1/2(Ap" ™ + Ap™ L+ 6h) 5 hy = 1/2(Ap™ " + Ap™ 1 — 6h) (39)
In the case where the fluxes are strictly consistent (i.e. : dh = Ap"*t — Ap™~ 1), we have :
hi = Ap™ ' and he = Ap™t!

When the flux is consistent, we introduce the utility thicknesses given by (39). Otherwise, when
the fluxes are inconsistent, we maintain the positivity of the layer thicknesses by setting :

hl = —0h and hg =0.

For 6h > 0, we obtain the respective values of hy and ho with identical reasoning.

3 ADVECTION-DIFFUSION : TSADVC.F 36

3.1.2 Treatment of the tendency term

To assure a gradual transition of Ap towards a null value, The finite difference expression of the
tendency term in equation (35) that we generally write in the form :

TnewApnew _ ToldApold
At

is replaced by :
Tnew(Apnew 4 6) _ Told(Apold 4 6)
At
The small parameter € will be non-zero when the loss of mass during a time step averages at
least 90% of the previous value. More precisely, we write :

. (40)

€= A+ (2 + A%)1/? (41)

where A = (0.1Ap°? — Ap™*®) /2. The intermediate parameter e; we therefore fix to the numer-
ical value of 10 c¢m, introduced to assure the validity of (40) when Ap®? and Ap™®® are tending
toward zero.

3.1.3 Treatment of the diffusion term

As in finite differences, the product v9T'/0x is numerically equivalent to ugdT (where T repre-
sents the temperature difference between the two adjacent mesh points bracketing uy). BLECK
et al. (1992) introduce a diffusion velocity ug = v/Axz (where Az is the size of the mesh) to
simulate the isopycnic mixing. We typically have : ug = 1 ¢m/s for the variables T' and S.
On the other hand, in the flux expression appearing in the diffusion term, the variation Ap is
replaced by the harmonic average :

2

/A\I/) = Y 1 .
Apt + Ap;

(42)

The reasoning for this choice is not obvious. It can be found in BLECK et al. (1992). One
can also understand it in the following way: Consider two neighboring mesh points to which
are associated the two values Ap; 1 and Ap; and the two temperatures T; 1 and T;. In order
for the introduction of the factor Ap in the flow expression not to have any effect, we will try
to substitute a neutral value ZZ; that characterizes a neutral state. In this neutral context, two
neighboring mesh points have the same amount of heat () and an average temperature T. If
we allow that the turbulence and therefore the turbulent diffusion be interpreted as a mixing
process, we simply obtain : T = (T;—1 + T3)/2. Of course the neutral state does not have the
same thermal content). We therefore write :

~ Q_1<Q Q)

T=—+ZF=— —+
Ap 2 \Api-1 Ap;

(43)

an identity which led to the form (42). More over, as the inference of the new value T7; requires
a division by Ap, to treat the situations Ap — 0, we introduce a residual thickness given the
fixed numerical value of 1 mm.

3 ADVECTION-DIFFUSION : TSADVC.F 37

3.1.4 Filtering

In the classical manner, to compensate for dispersion problems caused by the leapfrog scheme,
we use Asselin filtering :

TP Ap" = [T7(1— 29)Ap" + (T 1 Ap" ™ + T ap™H)] (44)
So that this form remains valid when Ap — 0, we introduce a residual thickness € such that :
™= (2p" + e)*1 [T {(1 = 29)Ap" + €} + (f”’lﬂn_l + T AP | (45)
In application, e takes a numerical value equivalent to 1072 m. Concerning the thermodynamic
variables, the value v = 0.015625 is used. Moreover, in the code, the filtering is carried out in 2
steps. All things considered, we write :
[Top]" =T" {(1— 29)Ap" + €} + 4T Ap"™ (46)
Then, after having calculated 7"*! and filtering the layer thickness Ap by the formula, :
Ap" = (1—2m)Ap" 4+ (Bp" + ApHY) (47)

we write in the second step :

7 = (8" +) {(Top" - ap (48)

3 ADVECTION-DIFFUSION : TSADVC.F 38

3.2 Usage

In the code of MICOM 2.6, the numerical calculation of the horizontal equations of advection-
diffusion of heat and salt is realized by the subroutine :

subroutine tsadvc (argument list)

Concerning the mixed layer, the variables treated are the specific volume indicated by the
variable thmix(i,j,n) and the salinity saln(i,j,1). For the isopycnic layers, only the salinity
is advected then diffused.

3.2.1 Order of operations

Concerning the mixed layer, we proceed to a smoothing of the components Px and Py of mass
flux over three points. The results are put in the arrays uflux(i,j) and vflux(i,j).

c
if (k.eq.1) then

C e

¢ --- advection of thermodynamic variables in mixed layer

€ mmm

c

¢ --- smooth mixed-layer mass fluxes in lateral direction

do 791 j=1,jj1
do 791 1=1,isv(j)
do 791 i=ifv(j,1),ilv(j,1)
ia=max(i-1,ifv(j,1))
ib=min(i+1,ilv(j,1))
791 vflux(i,j)=.5*vflx(i,j,1)+.25%x(vflx(ia,j,1)+vflx(ib,j,1))

do 792 i=1,ii1l
do 792 1=1,jsu(i)
do 792 j=jfu(i,1),jlu(i,1)
ja=max(j-1,jfu(i,l))
jb=min(j+1,jlu(i,1))
792 uflux(i,j)=.5*uflx(i,j,1)+.25%(uflx(i,ja,1)+uflx(i,jb,1))

Following this, for each computational point, we do the first phase of the filtering following
the formula (46) and we start the procedure verifying the coherence of the mass fluxes with the
variation of thickness of the surface layer. The variables hy and hs correspond to the arrays
utili(i,j) and util2(i,j).

posdef=thbase
do 491 j=1,jj1

do 491 1=1,isp(j)
do 491 i=ifp(j,1),ilp(j,1)

3 ADVECTION-DIFFUSION : TSADVC.F 39

¢ --- time smoothing of mixed layer thermodynamic variables (part 1)
pold=max(0.,dpold(i,j,k))
pmid=max(0.,dp(i,j,km))
saln(i,j,km)=saln(i,j,km)*(wtsl*pmid+onemm)+wts2*saln(i,j,kn)*pold
thmix (i, j,m)=thmix(i,j,m)*(wtsl*pmid+onemm)+wts2*thmix (i, j,n)*pold

¢ -—- before calling ’advem’, make sure (a) mass fluxes are consistent

¢ —--- with layer thickness change, and (b) all fields are positive-definite
flxdiv=(uflux(i+1,j)-uflux(i,j)

+vflux (i, j+1)-vflux(i,j))*deltl*scp2i(i)

util2(i,j)=.5*(dpold(i,j,k)+dp(i,j,kn)-flxdiv)
utili(i,j)=.5%(dpold(i,j,k)+dp(i,j,kn)+flxdiv)
offset=min(0.,utilli(i,j),util2(i,j))
util2(i,j)=util2(i,j)-offset
utill(i,j)=utili(i,j)-offset

smin=min(smin,saln(i,j,kn))
smax=max (smax,saln(i,j,kn))
tmin=min(tmin,thmix(i,j,n))
tmax=max (tmax,thmix(i,j,n))

491 thmix(i,j,n)=thmix(i,j,n)+posdef

Then, the advection of the mixed layer characteristics is realized by the instructions :

c
call advem(2,thmix(1,1,n),uflux,vflux,scp2,scp2i,
deltl,utill,util2)
call advem(2,saln(1,1,kn),uflux,vflux,scp2,scp2i,
deltl,utill,util2)
c

After having filtered the layer thicknesses by the formula (101), we execute the double step
of filtering given by the relation (48). We are then ready to diagnose negative characteristics.

do 461 j=1,jj1
do 461 1=1,isp(j)

do 461 i=ifp(j,1),ilp(j,1)

thmix (i, j,n)=thmix(i,j,n)-posdef
sminn=min(sminn,saln(i,j,kn))
smaxx=max (smaxx,saln(i,j,kn))
tminn=min (tminn,thmix(i,j,n))

3 ADVECTION-DIFFUSION : TSADVC.F

461

tmaxx=max (tmaxx,thmix(i,j,n))

time smoothing of thickness field

pold=max(0.,dpold(i,j,k))

pmid=max(0.,dp(i,j,km))

pnew=max(0.,dp(i,j,kn))

dp(i,j,km)=pmid*wtsl+(pold+pnew) *wts2

time smoothing of mixed layer thermodynamic variables (part 2)
pmid=max(0.,dp(i,j,km))

saln(i,j,km)=(saln(i, j,km)+wts2*saln(i,j,kn)*pnew)/(pmid+onemm)
thmix (i, j,m)=(thmix(i,j,m)+wts2*thmix(i,j,n)*pnew)/(pmid+onemm)

if (tminn+posdef.lt.0..or.sminn.1t.0.)
write (*,’(i9,i4,’’ neg. thmix/saln after advem call ’’,
3pf9.2,0pf9.2)°) nstep,k,tminn,sminn

40

It remains to calculate the neutral thickness for the mesh by accounting for the effect of diffusion
over the mixed layer characteristics :

441

451

do 451 j=1,jj1

do 441 1=1,isu(j)

do 441 i=ifu(j,1l),ilu(j,1)

factor=scu(i)*harmon(max(dp(i-1,j,kn),onemm)
,max(dp(i ,j,kn),onemm))

uflux2(i,j)=factor*(saln(i-1,j,kn)-saln(i,j,kn))

uflux3(i,j)=factor*(thmix(i-1,j,n)-thmix(i,j,n))

do 451 1=1,isv(j)

do 451 i=ifv(j,1),ilv(j,1)

factor=scv(i)*harmon(max(dp(i,j-1,kn),onemm)
,max(dp(i,j ,kn),onemm))

vflux2(i,j)=factor*(saln(i,j-1,kn)-saln(i,j,kn))

vflux3(i,j)=factor*(thmix(i,j-1,n)-thmix(i,j,n))

do 462 j=1,jj1

do 462 1=1,isp(j)

do 462 i=ifp(j,1),ilp(j,1)

factor=temdff*deltl/(scp2(i)*max(dp(i,j,kn),onemm))

saln(i,j,kn)=saln(i,j,kn)-(uflux2(i+1,j)-uflux2(i,j)
+vflux2(i,j+1)-vflux2(i,j))*factor

3 ADVECTION-DIFFUSION : TSADVC.F 41

thmix(i,j,n)=thmix(i,j,n)-(uflux3(i+l,j)-uflux3(i,j)
+vflux3(i, j+1)-vflux3(i,j))*factor
462 temp(i,j,kn)=tofsig(thmix(i,j,n)+thbase,saln(i,j,kn))

Concerning the isopycnic layers, the order of operations is identical to that described for the
mixed layer except for the fact that only the salinity is advected, then diffused. MICOM 2.6 is
designed to treat in parallel any tracer problem :

c
¢ ——- advection of ’ventilation’ tracer (every 5 time steps only)
c
if (trcout.and.mod(nstep,5).eq.0) then
do 68 j=1,jj1
do 68 1=1,isp(j)
do 68 i=ifp(j,1),ilp(j,1)
flxdiv=(uflx(i+1,j,k)-uflx(i,j,k)
+vflx(i,j+1,k)-vflx(i,j,k))*5.*baclin*scp2i (i)
util2(i,j)=.5%(dpold(i,j,k)+dp(i,j,kn)-flxdiv)
utili(i,j)=.5*(dpold(i,j,k)+dp(i,j,kn)+flxdiv)
offset=min(0.,utill(i,j),util2(i,j))
util2(i,j)=util2(i,j)-offset
utill(i,j)=utili(i,j)-offset
68 tracer(i,j,k)=max(0.,tracer(i,j,k))
call advem(2,tracer(1l,1,k),uflx(1,1,k),vf1x(1,1,k),scp2,scp2i,
5.%baclin,utill,util?2)
end if

3 ADVECTION-DIFFUSION : TSADVC.F

3.2.2 Flowchart

{ Spatial filtering J

{1“ phase of Asselin filtering J

Verify coherence of the mass fluxes
with the layer thickness variations

ADVECTION

[Ap layer thickness filtering J

{2’"’ phase of Asselin filtering J

{ Diffusion term treatment }

Figure 4: Order of transport and horizontal diffusion calculations in MICOM 2.6

3.3 Variables
3.3.1 Identification

Notation in the theory Notation in diapfl.f

Z-z/) factor

oh flxdiv

hi, ho wtili(i,j),util2 (i, j)

v, (1 —27) wts2,wtsl

42

3 ADVECTION-DIFFUSION : TSADVC.F 43

3.3.2 Global variables

integer variables : ifp(j,m) ilp(j,m), ifv(j,m), ilv(j,m), isp(j), isu(j), isv(j),
jfl1x(i,j), jfuli,m), jlu(i,m), jsu(i), klist(i,j), kk

real variables : baclin, deltl, dp(i,j,k), dpold(i,j,k), saln(i,j,k), scu(i),
scv(i), scp2(i), scp2i(i), temdff, temp(i,j,k), thmix(i,j,n),
tracer(i,j,k),uflux(i,j),uflux2(i,j),uflux3(i,j), uflx(i,j, k),
utili(i,j), util2(i,j), vflux(i,j), vflux2(i,j), vflux3(i,j),
vElx(i,j,k), wtsl, wts2

logical variables : diagno

3.3.3 local variables

factor intermediate variable in the diffusion term calculation

flxdiv variation of thickness dh due to the divergence of momentum
flux

ia,ib loop counters

ja,jb loop counters

offset intermediate variable in the calculation of Ay and ho

posdef reference value of the specific volume in the mixed layer

pmid,pnew,pold intermediate pressures

smax,smaxx,smin,sminn intermediate salinities

tmax,tmaxx,tmin,tminn intermediate temperatures

3.4 Procedures

Functions harmon

Subroutines prtij, advem

3.5 The SMOLARKIEWICZ MPDATA
3.5.1 Formalism

The formalism used by BLECK to treat the problem of advection of a non-negative quantity
in MICOM is very similar to that used by SMOLARKIEWICZ in MPDATA (SMOLARKIEWICZ &
CLARK, 1986 and SMOLARKIEWICZ & GRABOWSKI, 1990). In a bidimensional form, the general
equation in conservation form can be written :

ofp | OF | 9G _

5 T as Ty =" (49)

where (F,G) = (u1,v1)) represent the fluxes of the quantity 4 in the two directions z,y. f is
an arbitrary positive function. To preserve the sign of ¢, we approximate the form (49) with a

3 ADVECTION-DIFFUSION : TSADVC.F 44

donor-cell scheme. In the first approximation, the upstream flux as well as the components of
the velocity are defined at the interfaces between the cells. This flux can be generally expressed :

Uit1/2 + [Uit1)2] Uiy1/2 — [Uit1)2]
qufl/ZJ = — / 2 - / z/)la]_*_ : / 2 Z / z/)i—l-l,j (50)

which, on introducing the two operators :

P = (i +ir1,)/2 et pp = (ip1; — i) /A

then condenses to the form :
x |u|Am

F% = up” —) (51)

Starting from the standard Taylor expansion :

Az dp Az? 0%¢p

Git1/2,j = bij £ 5 £+) +0(Az)

where ¢ is a variable such that :
¢ =¢+0(Az?)

e = 90 1 O(8?),

The introduction of the forms in (50) lead to :
|u|A:1: [(91,0
ox
Similarly, expanding in a Taylor series in the time step allows us to write the identity :
(f)"+ = (f)" 5f¢_3f¢ At O fip
At - ot 2 0t?

Taking into account (49), the second derivative of the last term can be expressed as a function
of spatial derivatives :

Py 0 [6F +%]
o2 8t or Oy

N (;%j’) Ay (%3—1/})

- a%{ G sl Gral

5, FP — a% u[th + O(Aa?)] + O(Az2)] (52)

+ O(At?)

which gives :

-3l G w)) a G s e
Sefab SRRV TR T I R A S +0(AY) (53)
In combining (52) and (53), we finally obtain :

afy OF 0G
up up = 4=
O f1p + 0, F"P + 0,G Py + o + By

(22)

2 Loz [f \oz Oy oy Lf \O0x Oy
|ulAz Oy [lleyaﬂ 2 A2 A2
8:16 2 o] oyl 2 oy +O(AL, Az™, Ay”)

3 ADVECTION-DIFFUSION : TSADVC.F 45

The essence of the MPDATA scheme is to correct truncation errors of the forward-upstream
scheme by introducing the divergence of the anti-diffusive fluxes :
|u|Az O ult (6_F 8G>

F(mti: - _ = -
2 or 2f \oz oy

Ganti _ |U|Ay8_2/) - U_At <8_F + 8_G>
2 Oy 2f \O0z Oy

and to ameliorate the precision of the initial scheme in resolving (49) with the form :
Sefih = — (0, F"P + §,G"P) — (6, F"" + 5,G"). (55)
In the numerical calculations, the final solution is evaluated in two steps :

1) Determination of the upstream fluxes F*? and G"P and approximation of the
transported but diffused solution %P,

2) Establishment of the anti-diffusive fluxes. At this phase, the positivity is as-
sured by submitting the fluxes F*% and G®* to a procedure of flux reduction
identical to the one implemented in the algorithm of Flux Corrected Transport (cf.
§ 2.1.1). Since we use a C grid to spatially discretize the different variables, this step
requires spatially-centered finite differences when we approximate the anti-diffusive
fluxes given by (54). So we can write :

FE2(i,) = guli) [P — 1,5) + 90,)]

G (i, 5) = o(i,)[4 (0§ — 1) + 4", 5)]
then :

oOF 1 o
9 - Az [FP(i+1,7) + F.(i,7)]
(57)
oG 1 L. o
y = Ay (GeP(i, 5 + 1) + GEP (i, 5)]

Putting DivF = 0F [0z + 0G /0y and setting f = 1, we then write :

. A
FEm = 2 Juli,)| 926,) — 4G~ 1,9)] - 5

1 u(i, j) [DivF (i — 1,7) + DivF (i, 7)]

(58)
G(Cmti — %|U(7;,j)| [d)uP(z,j) _ ¢“p(@,j — 1)] — %Q}(Z,j) [DM)F(Z,] — 1) + DZUJ:(LJ)]

3 ADVECTION-DIFFUSION : TSADVC.F 46

3.5.2 Usage

The usage of the third order numerical scheme for advection of heat and salt, based on the
work of SMOLARKIEWICZ & CLARK (1986) and SMOLARKIEWICZ & GRABOWSKI (1990), is
implemented in the subroutine :

subroutine advem (iord,fld,u,v,scal,scali,dt,fco,fc)

The transported variable is £1d. The arguments u and v represent the mass fluxes uAp and
vAp. Their numerical values come from solution of the continuity equation. The two arguments
fco and fc correspond to the two utility thicknesses hy and hy of the layer considered, as we
understood in §3.1.1. They are needed in the subroutine to be able to apply the form (40) and
therefore to determine "P from which we eventually calculate the finite-difference expressions
for the anti-diffusive fluxes. For iord=1, the numerical scheme returns a simple donor-cell. When
the transport variable £1d is worked out using the quantities uAp and vAp and not using the
characteristics 4 and v of the velocity field, the calculation of a divergence of the anti-diffusive
fluxes centered in time implies also storing the numerical values of the fluxes obtained by (58)
with the quantities of average thickness :

Ap = [hi(iyj,n — 1) + ho(iy j,n — 1) + hi (i, j,n) + ha(i, §,n)] /4 (59)

3.5.3 Order of operations

The algorithm includes a preliminary step which consists of determining one part, the local
extrema, and another part, the fluxes F*? and G"P according to the upstream method.

-—- compute low-order fluxes and maxima/minima to be used in flux clipping

o O 0

do 2 j=1,jj1

do 22 1=1,isp(j)
flx(ifp(j,1) ,j)=0.
f1x(ilp(j,1)+1,§)=0.

do 22 i=ifp(j,1),ilp(j,1)

ipl=min(i+1,ilp(j,1))

imi=max (i-1,ifp(j,1))

fmx (i, j)=max(£f1d(i,j),fld(iml,j),f1d(ipl,j))
22 fmn(i,j)=min(£1d(i,j),fld(im1,}),£1d(ip1,]))

do 2 1=1,isu(j)
do 2 i=ifu(j,1l),ilu(j,1)
if (u(i,j).ge.0.) then
q=f1d(i-1,3)
else
gq=fld(i ,j)
end if
2 flx(i,j)=u(di,j)*q

3 ADVECTION-DIFFUSION : TSADVC.F 47

do 3 i=1,iil

do 33 1=1,jsp(i)
fly(i,jfp(i,1))=0.
f1y(i,jlp(i,1)+1)=0.

do 33 j=jfp(i,1),jlp(i,1)

jpl=min(j+1,jlp(i,1))

jmi=max(j-1,jfp(i,1))

fmx (i, j)=max(fmx(i,j),fld(i,jml),f1d(di,jpl))
33 fmn(i,j)=min(fmn(i,j),f1d(i,jml),f1d(i,jpl))

do 3 1=1,jsv(i)
do 3 j=jfv(i,1),jlv(i,1)
if (v(i,j).ge.0.) then
q=f1d(i,j-1)
else
q=fld(i,j)
end if
3 fly(i,j)=v(i,j)*q

The following step returns an estimate of the divergence of the flux and enforces monotonicity.
In this first phase of inferring a new value of the variable £1d from the form (40), we introduce
the parameter € as defined in §3.1.2.

do 61 j=1,jj1
do 61 1=1,isp(j)
do 61 i=ifp(j,1),ilp(j,1)
flxdiv(di,j)=(f1x(i+1,j)-flx(i,j)+fly(i,j+1)-fly(i,j))*dt*scali(i)
cushn=.5*(.1*fco(i,j)-fc(i,j))
cushn=cushn+sqrt (tencm*tencm+cushn*cushn)
£14(i,j)=(£f1d(4i,j)*(cushn+fco(i,j))-flxdiv(i,j))
/(cushn+fc (i,j))
¢ ——— don’t let -fld- value go outside range of surrounding values
61 £1d(i,j)=max(fmn(i,j),min(£f1d(i,j),fmx(i,j)))

Next comes the calculation of the anti-diffusive fluxes with the evaluation of the fluxes F,*?
and G* from the expressions given by (56). We generate an estimation of the fluxes F¢"* and
G2 by (58). The results are stored in the arrays £1x(i,j) and £fly(i,j).

c
¢ ——— compute antidiffusive fluxes
c

3 ADVECTION-DIFFUSION : TSADVC.F

do 4 j=1,jj1

do 44 1=1,isp(j)

do 44 i=ifp(j,1),ilp(j,1)

ipl=min(i+1,ilp(j,1))

iml=max(i-1,ifp(j,1))

fmx (i,3)=max (fmx(i,j),fld(iml,j),£1d(ipl,j))
44 fmn(i,j)=min(fmn(i,j),f1d(im1,j),£f1d(ip1,j))

do 4 1=1,isu(j)
do 4 i=ifu(j,1),ilu(j,1)
4 f1x(i,j)=u(di,j)*.5*%(£1d(i-1,j)+f1d(i,j))

do 5 i=1,ii1l

do 55 1=1,jsp(i)

do 55 j=jfp(i,1),jlp(i,1)

jpl=min(j+1,jlp(i,1))

jmi=max(j-1,jfp(i,1))

fmx (i, j)=max(fmx(i,j),fld(i,jml),f1d (4, jpl))
55 fmn(i,j)=min(fmn(i,j),f1d(i,jml),f1d(i,jpl))

do 5 1=1,jsv(i)
do 5 j=jfv(i,1),jlv(i,1)
5 fly(i,j)=v(i,j)*.5%(£1d(i,j-1)+£1d(i,]))

do 66 j=1,jj1
do 66 1=1,isp(j)
do 66 i=ifp(j,1),ilp(j,1)

66 flxdiv(i,j)=(flx(i+1,j)-flx(i,j)+fly(i,j+1)-fly(i,j))*dt*scali(i)

do 8 j=1,jj1

do 7 1=1,isu(j)
do 7 i=ifu(j,1),ilu(j,1)
7 f1x(i,j)=.5*abs(u(i,j))*(f1d(i,j)-f1d(i-1,3))
-u(i,j)*(flxdiv(i,j)+flxdiv(i-1,j))
/(fco(i,j)+fco(i-1,j)+fc(i,j)+fc(i-1,j)+epsil)

do 8 1=1,isv(j)
do 8 i=ifv(j,1),ilv(j,1)
8 fly(i,j)=.5*abs(v(i,j))*(fld(i,j)-fld(i,j-1))
-v(i,j)*(flxdiv(i,j)+flxdiv(i,j-1))
/(fco(i,j)+fco(i,j-1)+fc(i,j)+fc(i,j-1)+epsil)

The numerical values obtained are then subjected to the flux reduction method.

48

3 ADVECTION-DIFFUSION : TSADVC.F

c
c—--- limit antidiffusive fluxes
c
do 16 j=1,3j1
do 16 1=1,isp(j)
do 16 i=ifp(j,1),ilp(j,1)
flp(i,j)=(fmx(i,j)-£f1d(i,j))*fc(i,j)*scal(i)/dt / (epsil
-min(0.,f1x(i+1,j))+max(0.,f1x(i,j))
-min(0.,fly(i,j+1))+max(0.,fly(i,j)))
fin(i,j)=(£1d(i,j)-fmn(i,j))*fc(i,j)*scal(i)/dt / (epsil
+max (0. ,f1x(i+1,j))-min(0.,f1x(i,j))
+max (0.,fly(i, j+1))-min(0.,fly(i,j)))
16 continue
c
do 18 j=1,jj1
c
do 17 1=1,isu(j)
do 17 i=ifu(j,1),ilu(j,1)
f1x(i,j)=max(0.,f1x(i,j))*min(1.,flp(i,j),fln(i-1,3))
+min(0.,f1x(i,j))*min(1.,flp(i-1,3),fln(i,j))
17 continue
c do 18 1=1,isv(j)
do 18 i=ifv(j,1),ilv(j,1)
fly(i,j)=max(0.,fly(i,j))*min(1l.,f1p(i,j),f1n(i,j-1))
+min(0.,fly(i,j))*min(1.,f1p(i,j-1),f1n(i,j))
18 continue
c

49

The last operation consists of calculating the divergence of these fluxes from which we ob-
tain the final value of the transported variable, taking into account, again, the expression (40).

¢ ——— don’t let -fld- value go outside range of surrounding values
62 f£1d(i,j)=max(fmn(i,j),min(f1d(i,j),fmx(i,j)))

do 62 j=1,jj1
do 62 1=1,isp(j)
do 62 i=ifp(j,1),ilp(j,1)

flxdiv(i,j)=(flx(i+1,j)-flx(i,j)+fly (i, j+1)-fly(i,j)) *dt*scali(i)

cushn=.5x*(.1*fco(i,j)-fc(i,j))

cushn=cushn+sqrt (tencm*tencm+cushn*cushn)

£14(i,j)=(£f1d(4i, j)*(cushn+fc(i,j))-flxdiv(i,j))
/(cushn+fc(i,j))

3 ADVECTION-DIFFUSION : TSADVC.F

Flowchart

3.5.4 Flowchart

{ Find local extrema }

{Calculate fluxes F"” and G“”}

[Calculate ¥"? and test monotonicity }

[Calculate anti-diffusive fluxes }

Flux reduction

{ Calculate v j 41 }

Figure 5: Order of horizontal transport calculations in MICOM 2.6

50

3 ADVECTION-DIFFUSION : TSADVC.F 51

3.5.5 Variables

Identification
Notation in the theory Notation in advem.f
T8 £1d(1,j)
€ cushn
hi, ho fco(i,j),fc(i,j)
F.G f1x(i,3),f1y(4i,7)
DivF flxdiv(i,j)
ulAp, vAp u(i,j),v(i,j)
1/Az scali(i)

Global variables

integer variables : ifp(j,m) ilp(j,m), ifu(j,m) ilu(j,m), isp(j), isu(j), isv(j),
jtp(3,m), jEv(j,m), jlp(j,m), j1v(j,m), jsp(j), jsv(j)

real variables : deltl, saln(i,j,k), scp2(i), scp2i(i), thmix(i,j,n),uflux(i,j),
utili(i,j), util2(i,j), velux (i, j),

The different arrays that store the intermediate results are introduced by the statement :

common/work/fmx (idm, jdm) ,fmn (idm, jdm) ,f1p(idm, jdm) ,f1n(idm, jdm) ,f1x(idm, jdm),
£1y (idm, jdm) ,f1xdiv(idm, jdm)

Local variables

cushn mass loss parameter

fco(i,j),fc(i,j) utility thicknesses

£1d(4i,j) constituent

fln(i,j),f1p(4i,]) flux reduction factors

f1x(i,j),fly(i,]j) flux of constituent in each direction x and y
fmn(i,j),fmx(i,j) extrema of £1d in a nearby neighborhood

iord order of approximation of the numerical scheme
ipl,imi intermediate indices

jpl,jml intermediate indices

q variable representing a constituent

3 ADVECTION-DIFFUSION : TSADVC.F

scal(i) Az for each calculational row
scali(i) inverse of Ax

u(i,j), v(di,j) components of mass flux at node (3, 5)

52

4 FORCING : MOMEQI1.F

4 Forcing : momeql.f

4.1

In an

with

Formalism and numerical techniques

isopycnic system, the momentum conservation equation is of the form :

Ou u? or
o bl - _ _ a2
at+v2+(c+f)k><u VM gap

(¢ : relative vorticity

k : vertical unit vector

M : Montgomery potential
7 : Reynolds stress

f : Coriolis parameter

93

The subroutine momeql computes the following forcing terms of the momentum equation (60) :

4.1.1

1) the Montgomery potential;
2) the surface wind effects;
3) the bottom drag.

Montgomery potential

P .
M, I v
P,

M, s
Py 1

=]

—_————

Py

P
by [

My ‘ T vk
Py H

M, . hn—1 H

N

Figure 6: Initial vertical distribution of pressure, density, and Montgomery potential

4 FORCING : MOMEQI1.F 54

To the initial distribution (figure 6), in MICOM 2.6, we add the surface condition p{"* = 0.
The portion of the ocean represented is at rest and we neglect the effects of the atmospheric
pressure gradient. If, theoretically, the Montgomery potential is expressed in the general form
M = p+ pgz, it is not self-explanatory. However, a clear physical interpretation comes from
letting I be the potential that represents, along the vertical, the pressure deficit caused by the
fact that the water column above the considered layer £ has a density that is different from the
one of this layer. We assume the hydrostatic hypothesis. Over the initial profile, for the layer
k, we then easily express the pressure deficit by the recurrence relation :

k
pg1 = g — glprrr — o) D_(he) (61)

=1

As an initial condition, we put Iy = 0. In the bottom layer, where the density goes to pn, we
obtain by this relation II.

When this stratified ocean is in motion, the height of the total column of water, not greater
than H, is D such that :

N
D =>"hy (62)
k=1

In the moving ocean, the Montgomery potential M is equivalent to the potential II established
by the initial state. So the Montgomery potential in layer k is given by the recurrence relation :

k
My = Myy1+ 9(ppsr — pr) Y (63)
i=1
As n is independent of the layer K, we also have :
k
My, = Myg1 + g(1 +) (prs1 — px) D I (64)
i=1

To connect the potential I, to the Montgomery potential M} present in the baroclinic momen-
tum equations (cf. § 5), we start at the bottom. We assume a homogeneous ocean of density py .
At rest, the bottom pressure is 7, = goyH. When the ocean is moving this pressure becomes
mp, = gpnD. Because of this movement, the ocean bottom experiences a pressure deficit which
is :

om, = —gpn(D — H) (65)

Since before we used the decomposition (1), the potential is therefore written :
5my = —gnpn H (66)

As the potential IIy reflects the pressure deficit at the bottom in an ocean where the density
evolves from p; in the surface layer to py in the bottom layer, to obtain the baroclinic Mont-
gomery potential at the bottom we must also take into account the pressure deficit at the bottom
which experiences a homogeneous ocean of instantaneous height D = (1 4+ n)H and of density
P1

§'my = —gnp1 H (67)

4 FORCING : MOMEQI1.F 95

We finally obtain the general form giving the Montgomery potential at the bottom :
My =TIy — gnH(pn + p1) (68)

Once we calculate the potential My, we apply the form (63) to obtain the potential My of each
layer up to the surface. In fact, in MICOM 2.6, the surface layer is a mixed layer where the
density ps varies with time. Now, in the preceding calculations, a constant value p; serves to
represent the surface density. To express the Montgomery potential for the mixed layer, we need
to account for this particularity. So, to free us from this problem, using the recurrence relation
(63), we write :

My = Ma + g(p2 — ps)ha (69)

Then : _
M{"™ = My + by [(ps — p1) — (p2 — p1)] (70)

For the other part, if we express the sum over the N layers of the decomposition (1) using the
form : p, = pj, + p) where :

N
Py =n>_ Ap} = npj, (71)
k=1
we can then calculate in time the new report of the perturbation 7 to the reference ocean by

the relation : "

Py
= — 72
n o (72)

4.1.2 Bottom drag
In MICOM 2.6, to model dissipation by bottom drag, we introduce the quadratic form :
Ty = Cp [Up| Ty (73)

Cp is a drag coefficient. In version 2.6 of MICOM, 1y represents the average velocity in a slice
of water of thickness §z situated just above the bottom. We set §z = 10 m. For the case when
the thickness of layer N is less than the fixed value ¢z, it is necessary to use an average (the
sum of the thicknesses of layers N, N —1,...,k) :

_ 1 (kK
u', = 5a (Z u'ihy + ulklah;cl> (74)
=N
with :
k
0z = Z hy + 6hj,_4 (75)
I=N
and we now put :
u,=u+u, (76)

So that the drag remains always significant, we introduce a residual velocity ¢ and finally, we

calculate the expression :
D;;=Cp (w/ag + 07 + E) (77)

4 FORCING : MOMEQI1.F o6

In MICOM 2.6, ¢ = 10 ¢m/s and Cp = 3 x 1073. We now calculate the vertical divergence of
the bottom-induced stress :

0T,
or op
Rl A (78)
o | om,
Op
Only the momentum in layers with indices N, N — 1, ...,k situated in the §z slice of water feels

the dissipation term. Moreover, we suppose that the drag stress varies linearly inside each layer.
So, if the bottom layer thickness is strictly equal to 0z :

0T, 1
(3]))i,j = §Ui,j,N (Di,j + Difl,j) /52 (79)

On the other hand, when the bottom layer thickness is greater than §z, we must account for the
fact that only a fraction of layer N feels the dissipation. We then simply write :

(97’1, >I <8Tb > (52
2} = (e 80
(W /i Ip /i AP 0

If the dissipation layer is made up of more layers, we apply similar reasoning to distribute the
dissipation over the Ny layers concerned.

4.1.3 Influence of the wind

In MICOM 2.6, to model the surface mechanical effect of the wind, we use the monthly clima-
tological files of wind stress T, interpolating the values during the simulation with the aid of
the coefficients w0, wl, w2, w3.

4.2 Usage

In MICOM 2.6, the numerical calculation of forcing terms in the momentum equations is realized
by the subprogram :

subroutine momeql (argument list)

4.2.1 Order of operations

The first step consists of calculating the Montgomery potential at the bottom. For this we
utilize the relation (68). The potential IIxy; is calculated from the field of initial conditions
(subroutine inicon). Once we have evaluated the coefficient (1 + 1) with the help of expression
(72), it is then possible to determine the Montgomery potential at the N interfaces above by
the relation (63).

do 13 j=1,jj1
do 13 1=1,isp(j)

4 FORCING : MOMEQI1.F o7

c
do 8 k=1,kk
do 8 i=ifp(j,1),ilp(j,1)
8 p(i,j,k+1)=p(i,j,k)+dp(i,j,k+mm)
c

do 80 i=ifp(j,1),ilp(j,1)
utili(i,j)=1.+pbavg(i,j,m)/p(i,j,kk+1)
80 montg(i,j,kk)=psikk(i,j)-pbavg(i,j,m)*(theta(kk)+thbase)*thref

do 81 k=kk-1,2,-1
do 81 i=ifp(j,1),ilp(j,1)
81 montg(i,j,k)=montg(i,j,k+1)
+p(i,j,k+1)*(theta(k+1)-theta (k)) *thref*utill (i, j)

do 13 i=ifp(j,1),ilp(j,1)
13 montg(i,j,1)=montg(i,j,2)
+p(i,j,2) *(theta(2)-thmix(i,j,m))*thref*utill (i, j)

Next, we estimate the invariant part (along the vertical) of the bottom drag by applying the
formula (77) introduced in Section (4.1.2).

c
¢ -—- bottom drag (standard bulk formula)
c

do 804 j=1,jj1

do 804 1=1,isp(j)
c

do 800 i=ifp(j,1),ilp(j,1)
util(i,j)=0.
800 util2(i,j)=0.

do 801 k=1,kk

kn=k+nn

do 801 i=ifp(j,1),ilp(j,1)

phi=max(p(i,j,k+1),p(i,j,kk+1)-tenm)

plo=max(p(i,j,k),p(i,j,kk+1)-tenm)

utill(i,j)=utilli(i,j)+(u(i,j,kn)+u(i+1l,j,kn))*(phi-plo)
801 util2(i,j)=util2(i,j)+(v(i,j,kn)+v(i,j+1,kn))*(phi-plo)

do 804 i=ifp(j,1),ilp(j,1)
ubot=ubavg(i,j,n)+ubavg(i+l,j,n)+utill(i,j)/tenm
vbot=vbavg(i,j,n)+vbavg(i,j+1,n)+util2(i,j)/tenm

804 drag(i,j)=.003*(.25*sqrt (ubot*ubot+vbot*vbot)+cbar)*g/tenm

For each of the two horizontal components, the following step does the following operations

4 FORCING : MOMEQI1.F o8

in order :

O 0O 0 0 0

1) Calculation of the spatial average of the barotropic vorticity originating from the
barotropic-baroclinic splitting (cf. § 5, system 81).

2) Time interpolation of the wind stress.
3) Determination of the wind forcing of the surface layer term, described in Sec-

tion 4.1.3 to which we adjoin the particular calculation of the Montgomery potential
gradient for the mixed layer.

-—- store r.h.s. of barotropic u/v eqn. in -ubrhs,vbrhs-
--- store layer 1 pressure gradient plus wind forcing in -gradx,grady-
—--— press.gradient is written in the form alpha * grad p + grad phi

th2=thref*(1.-thbase-theta(2))

do 69 j=1,jj1
do 69 1=1,isu(j)

do 89 i=ifu(j,1),ilu(j,1)

ubrhs(i,j)=
(vbavg(i ,j,m)*depthv(i ,j)+vbavg(i ,j+1,m)*depthv(i ,j+1)
+vbavg(i-1,j,m)*depthv(i-1,j)+vbavg(i-1,j+1,m)*depthv(i-1,j+1))
(pvtrop (i, j)+pvtrop(i,j+1)).125

stresx=((taux(i,j,10)+taux(i-1,j,10))*w0
+(taux(i,j,11)+taux(i-1,j,11))*wl
+(taux(i,j,12)+taux(i-1,j,12))*w2
+(taux(i,j,13)+taux(i-1,j,13))*w3)
*xg/(p(1,j,2)+p(i-1,3,2))

89 gradx(i,j)=-stresx*scu(i) + .5*((p(i,j,2)-p(i-1,j,2))*threfx*

(1.-thbase- (thmix(i,j,m)*p(i,j,2)+thmix(i-1,j,m)*p(i-1,7,2))
/Cp(i,j,2) +p(i-1,3,2)))

+(montg(i ,j,1)+montg(i ,j,2)-p(i ,j,2)*th2)
-(montg(i-1,j,1)+montg(i-1,j,2)-p(i-1,j,2)*th2))

do 69 k=1,kk
do 69 i=ifu(j,1),ilu(j,1)

69 pu(i,j,k+1)=pu(i,j,k)+dpu(i,j,k+mm)

do 70 i=1,ii1l
do 70 1=1,jsv(i)

do 90 j=jfv(i,1),jlv(i,1)

FORCING : MOMEQL.F

vbrhs(i,j)=

.—(ubavg(i,j ,m)*depthu(i,j)+ubavg(i+l,j ,m)*depthu(i+l,j)
+ubavg(i,j-1,m)*depthu(i,j-1)+ubavg(i+l,j-1,m)*depthu(i+1l,j-1))
(pvtrop (i, j)+pvtrop(i+l,j)).125

stresy=((tauy(i,j,10)+tauy(i,j-1,10))*w0
+(tauy(i,j,11)+tauy(i,j-1,11))*wl
+(tauy (i,j,12)+tauy (i, j-1,12))*w2
+(tauy(i,j,13)+tauy(i,j-1,13))*w3)
*xg/(p(1,j,2)+p(i,j-1,2))

90 grady(i,j)=-stresy*scv(i) + .5*((p(i,j,2)-p(i,j-1,2))*threfx*
(1.-thbase-(thmix(i,j,m)*p(i,j,2)+thmix(i,j-1,m)*p(i,j-1,2))
/Cp(i,j,2) +p(i,j-1,2)))
+(montg(i,j ,1)+montg(i,j ,2)-p(i,j ,2)*th2)
-(montg(i,j-1,1)+montg(i,j-1,2)-p(i,j-1,2)*th2))

do 70 k=1,kk
do 70 j=jfv(i,1),jlv(i,1)
70 pv(i,j,k+1)=pv(i,j,k)+dpv(i,j,k+mm)

99

4 FORCING : MOMEQI1.F

4.2.2 Flowchart

[Calculate Montgomery potential at the bottom}

[Determine Montgomery potential at N interfaces above J

{ Evaluate drag term over the bottom J

[Estimate wind stress J

{ Calculate surface layer forcing J

Figure 7: Order of the treatment of the forcing terms in the momentum equations

4.3 Variables
4.3.1 Identification

Notation in the theory Notation in momeql.f
D; ; drag(i,j)

M; j k montg(i,j,k)

Py = npy pbavg (i, j)

Uy, Up ubot (i,j),vbot(i,])

I j N1 psikk(i,j)

u'y, v’y utili(i,j),util2(i,j)
0z tenm

(u, (v ubrhs(i,j),vbrhs(i,j)
Pss Pk thmix(i,j,n), theta(k)

Tsus Tsy stresx,stresy

4 FORCING : MOMEQI1.F 61

4.3.2 Global variables

integer variables : ifp(j,m) ilp(j,m), ifv(j,m), ilv(j,m), isp(j), isu(j), isv(j),
kk
real variables : depthu(i,j), depthv(i,j), drag(i,j), gradx(i,j), grady(i,j),

depthu(i,j), depthv(i,j), dp(i,j,k), dpu(i,j,k), dpv(i,j,k),
montg(i,j,k), p(i,j,k), pbavg(i,j,n), pu(i,j,k), psikk(i,j),
pv(i,j,k), pvtrop(i,j), scu(i), scv(i), taux(i,j), tauy(i,j),
thbase, thmix (i, j,n),ubrhs(i,j),utill(i,j),util2(i,j), vbrhs(i,j),
vflux(i,j), vflx(i,j,k), wO,wl,w2,w3

4.3.3 Local Variables

ia,ib,ja,jb intermediate indices

phi,plo intermediate variables in the calculation of the average velocity near the
bottom

ubot,vbot components of velocity near the bottom

stresx,stresy components of the wind stress

th2 deviation of density between the two first reference layers

5 MOMENTUM : MOMEQ2.F 62

5 Momentum : momeq2.f

To use the barotropic-baroclinic splitting of motion given by the form (2), once we have estab-
lished the system (94) describing the behavior of the barotropic mode, by simple subtraction
with the general system (60), we finally obtain the baroclinic system (BARAILLE & FILATOFF,
1995) :

ouf, 19(ui +v}) , _ 0 1,1 ou
a T3 ar (Ce + floi — QT + pe [Mk - —r(ﬂpb)] = o
(81)
ol 10(u2 +v3) , _ 0 1,1 o
a T2 oy (Ce — fug — G+ 9 {Mk . (77101))] =5

The index ; represents the range of the isopycnic layer considered.

5.1 Formalism and numerical techniques
5.1.1 Numerical scheme

A leapfrog numerical scheme is used.

5.1.2 Turbulent viscosity

Though the nonlinear terms present in the momentum conservation equations of system (81) will
not be called to play a significant role in ocean-scale applications, the equations are expressed
in their complete form. The horizontal turbulent viscosity is defined by the relation :

ou Ov\? g ou\2]"’ 2
vy, = max {ugAz, A l<3_m - 3_y> + (3_$ + 8_y>] Az} (82)

uq is a bottom diffusion velocity and A a constant. In MICOM 2.6, we put : ug = 2 ¢m/s and
A=1.

5.1.3 Turbulent momentum flux

To the general equations given by the system (81), we add a diffusion term of the general form
(Ap) 'V - (vyApVu). Similarly to the flux term vy ApVT appearing in the heat conservation
equation (c¢f. § 3), the pressure increment Ap present in the momentum flux expression is
replaced by the harmonic average Ap = 2/ (Apz-il1 + Ap; 1Y (¢f. § 3.1.3). Moreover, writing
this term in finite differences necessitates taking into account the possible presence of elevated
bottom in neighboring cells. So, near partial boundaries, (0 < wy spw < 1, (¢f. § 5.1.5), the
turbulent flux results from the sum :

1) of flux pertaining to the portion of the cell boundary facing bathymetry; this flux
is subject to the boundary condition (s;, +1) ;

2) of flux relating to the open part of the cell.

5 MOMENTUM : MOMEQ2.F 63

5.1.4 Intersection with the bathymetry

When an isocline intersects the bathymetry, a computational point of the Montgomery potential
is then situated outside of the “wet” volume. In this case, in MICOM 2.6, the gradient of
the Montgomery potential is calculated by the weighted average values of four points of the
neighboring grid (7/,5") = (4 + 1,5), (4,5 £ 1) (BLECK & SMITH, 1990 :

OM . OM §
<%> = Z wi/,j,,k <%> . /Z wz-/,j/’k (83)
ik Lk gtk

The coefficients w; j » are defined by the formulae :

~ . ! /
Wit1, = min(Hy,Apy, o AP,)
(84)
~ . ! /
wl,]:l:l,k) = mln(Hl’Apbi,jil,k’Apsi,jil,k)
with :
Aph =g~k et Aph =pl — (85)
Po; jx = Pbi; — Pijk Ds;jx = Pijk+1 — Ps;;

H; is the thickness given by weighting (83) of the Montgomery potential. For ocean applica-
tions, we typically have Hy = 10 m. Writing the coefficients w; ; ; allows us to simultaneously
treat the problems of the intersection of interfaces with the bathymetry and that of the out-
cropping of interfaces with the surface. In fact, since MICOM 2.6 uses a surface mixed layer, it
requires us to model the mechanism of outcropping of isopycnic layers into the mixed layer. We
therefore put : pgi,j = p;,jg.

To avoid discontinuities, we introduce the following quantity :

oM OM B
- = || = Hi—w) | 222 I

5.1.5 Boundary conditions
In the presence of a solid boundary, we introduce two types of physical boundary conditions :

1) slip conditon : Qus/0m =0 ;

2) no-slip conditon : us = 0.

ug is the velocity component tangential to the boundary and 7 is the normal direction.
Suppose our domain is bounded by land to the East. In a point of (4, j, k) coordinates, to obtain
an indication of the presence of this solid boundary, we calculate the quantity :

Pijj1 ~ P
wg, ;, = max {O,min [1, s b+l] } (87)

/ /
max (pi,j,k+1 ~ Pijk 6)

€ is used in the denominator of this expression to avoid division by zero. Three cases arise (cf.
figure 9) :

5 MOMENTUM : MOMEQ2.F 64

1) wg = 1 if the layer k intersects the bathymetry ;

2) wg = 0 if it does not intersect the bathymetry ;

3) 0 < wg < 1 if only one part of the layer intersects the jump in the bathymetry
existing between the grid points (4, j) and (i, + 1).

Introducing the variable s, to represent the boundary condition chosen :

a) s, =1 :slip;
b) s, = —1 : no-slip

If a solid boundary is detected, it is then possible to express the particular behavior of the fluid
in the immediate surroundings of the boundary by establishing the auxiliary velocity :

U = (1= WE, 5,)ik + WE, ;Ui jkSL (88)
So if an Eastern boundary is detected (wg=1), we have :

a)if sy =1: UE; ;= Uigk
b) if S, = —1: U’Ei,j,k = —Ujjk

For each layer k and at each point (7, 7), we diagnose in this manner the presence of bound-
aries respectively to the North, South, East and then West of the domain by the calculation
of the four coefficients wy,ws,wg, wy which permit us to establish the auxiliary velocity
field un,us,ur, uy. This procedure remains valid as well for the case of a partial boundary
(0 <wg <1).

5.1.6 Vorticity

In the formalism of MICOM, the nonlinear terms and the Coriolis term are grouped to make
the vorticity appear as (¢ = 0v/dx — du/dy) :

u-Vu+fk><u:Vu72+(C+f)k><u (89)

To conserve entropy, the components of the vorticity term (¢ + f)k x u are written in the
difference forms :

—o(¢+f)=-V"Q"
(90)
u((+f)=-U"Q"

where we introduce the mass flux (U, V) = uAp®,vApY and the potential vorticity @ = (¢ +
f)/AD™Y. The operator () permits the recentering of differences of pressure at computational
points of the velocity components on a C grid. In an isopycnic shallow-water model, there is
no guarantee that the instantaneous thickness of the considered layer remains non-zero. To
address this problem, (BLECK & SMITH 1990, p 3283) developed a particular method. It is
called the “one-eighths rule” and remedies abnormal situations which arise when certain layer
thickness values vanish. So, before estimating the potential vorticity field Q; j, we calculate
for each layer, at each point, the sum of two larger values of the variable Ap among the 4 points

5 MOMENTUM : MOMEQ2.F

surrounding the point considered. We denote this sum : II; ;. The denominator which we use

in the vorticity expression then takes the value :

In the case where the two arguments of this collation are zero, we introduce a residual numerical

1
Appez = max {Apf,;ya g max (Hi,j, Hi—l,ja Hi-l—l,j, Hi,j—lv Hi,j-i-l)}

value dp. In MICOM 2.6, we use dp = 1072 m.

5.2 Usage

In MICOM 2.6, the numerical evolution of the baroclinic velocity components is realized by the

subprogram :

subroutine momeq2 (argument list)

5.2.1

Order of operations

The algorithm follows a treatment by layer.

The first step consists of calculating the total currents at times (n — 1)At and nAt and the
associated fluxes. Then, to determine the optimum value of the difference in pressure given by

the formula (91).

O 0O o0 0 0
|
|
1

802

807

803

store total (barotropic plus baroclinic) flow at old and mid time in
-utotn,vtotn- and -utotm,vtotm- respectively. store minimum thickness

values for use in pot.vort. calculation in -dpmx-.

do 802 j=1,jj1
do 802 1=1,isu(j)

do 802 i=ifu(j,1),ilu(j,1)

dpmx (i,j)=max(dpmx(i,j),dp(i,j,km)+dp(i-1,j,km))
uflux(i,j)=(u(i,j,km)+ubavg(i,j,m))*max(dpu(i,j,km),onecm)
utotm(i,j)=u(i,j,km)+ubavg(i,j,m)
utotn(i,j)=u(i,j,kn)+ubavg(i,j,n)

do 807 j=1,jjl
do 807 1=1,isu(j)

do 807 i=ifu(j,1l),ilu(j,1)

dpmx (i, j+1)=max(dpmx (i, j+1),dp(i,j,km)+dp(i-1,j,km))

do 803 i=1,ii1l

do 803 1=1,jsv(i)

do 803 j=jfv(i,1),jlv(i,1)

dpmx (i ,j)=max(dpmx(i ,j),dp(i,j,km)+dp(i,j-1,km))
vilux(i,j)=(v(i,j,km)+vbavg(i,j,m))*max(dpv(i,j,km),onecm)
vtotm(i,j)=v(i,j,km)+vbavg(i,j,m)
vtotn(i,j)=v(i,j,kn)+vbavg(i,j,n)

5 MOMENTUM : MOMEQ2.F 66

808

do 808 i=1,ii1l

do 808 1=1,jsv(i)

do 808 j=jfv(i,1),jlv(i,1)

dpmx (i+1,j)=max (dpmx (i+1,j) ,dp(i,j,km)+dp(i,j-1,km))

The next operation consists of calculating indicators of the presence of bottom topography
in neighboring cells by the method described in Section (5.1.5).

805

c —-—-

885

c ——

define auxiliary velocity fields (via,vib,uja,ujb) to implement
sidewall friction along near-vertical bottom slopes. wgtja,wgtjb,wgtia,
wgtib indicate the extent to which a sidewall is present.

do 885 j=1,jj1
if j=1, j-1 must point to zero-filled row (same for j+1 in case j=jj1)
jasmod (j-2+3j,35)+1
jb=j+1
do 805 1=1,isu(j)
do 805 i=ifu(j,1l),ilu(j,1)
wgtja(i,j)=max(0.,min(1., (pu(i,j,k+1)-depthu(i,ja))
/max (pu(i,j,k+1)-pu(i,j,k),epsil)))
wgtjb(i,j)=max(0.,min(1., (pu(i,j,k+1)-depthu(i,jb))
/max (pu(i,j,k+1)-pu(i,j,k),epsil)))
uja(i,j)=(1.-wgtja(i,j))*utotn(i,ja)+wgtja(i,j)*slip*utotn(i,j)
ujb(i,j)=(1.-wgtjb(i,j))*utotn(i,jb)+wgtjb(i,j)*slip*utotn(i,j)

vorticity, pot.vort., defor. at lateral boundary points
do 885 1=1,isv(j)

i=ifv(j,1)

vort(i ,j)= vtotm(i,j)*(1l.-slip)*scui(i)

potvor(i ,j)=(vort(i ,j)+corio(i ,j))

./ (max(4.*(dp(i,j,km)+dp(i,ja ,km)),dpmx(i,j),dpmx(i+1,j))*.125)

defor2(i ,j)=(vtotn(i,j)*(1.-slip))*x2
i=ilv(j,1)
vort(i+l,j)=-vtotm(i,j)*(1l.-slip)*scui(i)
potvor (i+1,j)=(vort(i+l,j)+corio(i+l,j))

./ (max(4.*(dp(i,j,km)+dp(i,ja ,km)) ,dpmx(i,j),dpmx(i+1,j))*.125)

defor2(i+1l,j)=(vtotn(i,j)*(1.-slip))**2

do 886 i=1,iil

if i=1, i-1 must point to zero-filled row (same for i+l in case i=iil)
ia=mod (i-2+ii,ii)+1

ib=1i+1

do 806 1=1,jsv(i)

do 806 j=jfv(i,1),jlv(i,1)

5 MOMENTUM : MOMEQ2.F 67

806
c
c ———
886
c
63
C
c ——-
64
c

wgtia(i, j)=max(0.,min(1.,(pv(i,j,k+1)-depthv(ia,j))

/max (pv(i,j,k+1)-pv(i,j,k),epsil)))
wgtib(i, j)=max(0.,min(1., (pv(i,j,k+1)-depthv(ib,j))

/max (pv(i,j,k+1)-pv(i,j,k),epsil)))
via(i,j)=(1.-wgtia(i,j))*vtotn(ia,j)+wgtia(i,j)*slip*vtotn(i,j)
vib(i,j)=(1.-wgtib(i,j))*vtotn(ib,j)+wgtib(i,j)*slip*vtotn(i,j)

vorticity, pot.vort., defor. at lateral boundary points
do 886 1=1,jsu(i)

j=jfu(i,l1)

vort(i,j J)=-utotm(i,j)*(1.-slip)*scui(i)

potvor(i,j)=(vort(i,j)+corio(i,j))

./ (max(4.*(dp(i,j,km)+dp(ia ,j,km)),dpmx(i,j),dpmx(i,j+1))*.125)

defor2(i,j)=(utotn(i,j)*(1.-slip))**2
j=jlu(i,1)

vort(i,j+1)= utotm(i,j)*(1l.-slip)*scui(i)
potvor(i,j+1)=(vort(i,j+1)+corio(i,j+1))

./ (max(4.*(dp(i,j,km)+dp(ia ,j,km)) ,dpmx(i,j),dpmx(i,j+1))*.125)

defor2(i,j+1)=(utotn(i,j)*(1.-slip))**2

do 63 j=1,3j1

do 63 1=1,isp(j)

do 63 i=ifp(j,1),ilp(j,1)

defor1(i,j)=((utotn(i+1,j)-utotn(i,j))
-(vtotn(i,j+1)-vtotn(i,j)))**2

vorticity, pot.vort., defor. at interior points (incl. promontories)

do 64 j=2,jj1

do 64 1=1,isq(j)

do 64 i=ifq(j,1),ilq(j,1)

vort(i,j)=(vtotm(i,j)*scv(i)-vtotm(i-1,j)*scv(i-1)
-utotm(i,j)*scu(i)+utotm(i,j-1)*scu(i))*scu2i(i)

potvor (i, j)=(vort(i,j)+corio(i,j))

./ (max(2.*(dp(i,j,km)+dp(i-1,j,km)+dp(i,j-1,km)+dp(i-1,j-1,km))
.,dpmx(i,j),dpmx(i-1,j),dpmx(i+1,j) ,dpmx(i,j-1),dpmx(i,j+1))*.125)

defor2(i,j)=(vtotn(i,j)-via(i,j)
+utotn(i,j)-uja(i,j))**2

In the next phase, we apply the relation (82) and we calculate the turbulent momentum fluxes by
the procedure mentioned in Section (5.1.3). Then comes the inference of the weighted gradient
of the Montgomery potential following the theory outlined in Section (5.1.4). If the layer con-
cerned includes drag dissipation, it is integrated following the steps described in Section (4.1.2).
We are then ready to proceed to the estimation of the new values of the velocity components.

c —-—-

u equation

5

O o0 o o0

MOMENTUM : MOMEQ2.F

47

37

824

deformation-dependent eddy viscosity coefficient

do 37 j=1,jj1
do 37 1=1,isu(j)

do 47 i=ifu(j,1),ilu(j,1)
visc(i,j)=scu(i)*max(veldff,viscos*
.sqrt (.5*%(deforl(i,j)+deforl(i-1,j)+defor2(i,j)+defor2(i,j+1))))

visc(ifu(j,1)-1,j)=visc(ifu(j,1),j)
visc(ilu(j,1)+1,j)=visc(ilu(j,1),3)

do 820 j=1,jj1
if j=1, j-1 must point to zero-filled row (same for j+1 in case j=jj1)
ja=mod (j-2+33,jj)+1

jb=j+1

do 820 1=1,isu(j)

longitudinal turb. momentum flux (at mass points)

do 824 i=ifu(j,1)-1,ilu(j,1)
uflux1(i,j)=.5%(visc(i,j)+visc(i+l,j))*(utotn(i,j)-utotn(i+1,j))
xharmon (max (dpu(i ,j,km),onemm),
max (dpu(i+1,j,km) ,onemm))

lateral turb. momentum flux (at vorticity points)
(left and right fluxes are evaluated separately because of sidewalls)

do 820 i=ifu(j,1l),ilu(j,1)

dpij=max(dpu(i,j ,km),onemm)

dpja=max(dpu(i, ja,km) ,onemm)

dpjb=max (dpu(i, jb,km) ,onemm)

if (iu(i,ja).eq.0) then

viscja=visc(i,j)

else

viscja=visc(i,ja)

end if

if (iu(i,jb).eq.0) then

viscjb=visc(i,j)

else

viscjb=visc(i,jb)

end if

uflux2(i,j)=.5%(visc(i,j)+viscja)*(uja(i,j)-utotn(i,j))
xharmon (dpja+wgtja(i,j)*(dpij-dpja),dpij)

uflux3(i,j)=.5%(visc(i,j)+viscjb)*(utotn(i,j)-ujb(i,j))

68

MOMENTUM : MOMEQ2.F

xharmon (dpjb+wgtjb(i,j)*(dpij-dpjb),dpij)

¢ —--- spatial weighting function for pressure gradient calculation:

O 0O 00

utill (i, j)=max(0.,min(depthu(i,j)-puli,j,k),
pu(i,j,k+1)-pu(i,j,2),h1))
820 pgfx(i,j)=(montg(i,j,k)-montg(i-1,j,k))*utill(i,j)

do 6 j=1,jj1
-—— if j=1, j-1 must point to zero-filled row (same for j+1 in case j=jj1)
jammod (j-2+j3,jj)+1
jb=j+1
do 6 1=1,isu(j)

if (k.gt.1) then

—--- pressure force in x direction
-—— (’scheme 2’ from appendix -a- in bleck-smith paper)

do 98 i=ifu(j,1),ilu(j,1)
98 gradx(i,j)=(pgfx(i,j)+(hl-utili(i,j))*
(pgfx (i-1,j)+pgfx (i+1,j)+pgfx (i,ja)+pgfx (i,jb))/
(util1i(i-1,j)+utill(i+1,j)+utili(i,ja)+utili(i,jb)+epsil))/hi

endif
c
do 6 i=ifu(j,1l),ilu(j,1)
c
ptopl=min(depthu(i,j),.5*(p(i,j,k)+p(i-1,j,k)))
pbotl=min(depthu(i,j),.5*(p(i,j,k+1)+p(i-1,j,k+1)))
¢ ———- bottom boundary layer stress
botstr(i,j)=-utotn(i,j)*.5*(drag(i,j)+drag(i-1,j))*
(max (depthu(i, j)-tenm, pbotl)
-max (depthu(i, j)-tenm,min(ptopl,pbotl-tenm)))
/max (dpu(i, j,km) ,tenm)
c
uold(i,j,k)=u(i,j,kn)
6 u(i,j,kn)=u(i,j,kn)+deltl*(-gradx(i,j)*scui(i)
.=.26%(utotm(i+1, j)**2+vtotm(i ,j)**2+vtotm(i ,j+1)**2
. -utotm(i-1,j)**2-vtotm(i-1,j)**2-vtotm(i-1,j+1)**2)*scui (i)
.+.126%x (vEflux (i ,j)+vflux(i ,j+1)+vflux(i-1,j)+vflux(i-1,j+1))
. *(potvor(i,j)+potvor(i,j+1)) - ubrhs(i,j) + botstr(i,j)
.=(uflux1(i,j)-uflux1(i-1,j)
+uflux3(i,j)-uflux2(i,j))/(scu2(i)*max(dpu(i,j,km) ,onemm)))
c
€ ——— ————————
Cc ——- v equation

69

5

O 0O 00

MOMENTUM : MOMEQ2.F

48

38

826

deformation-dependent eddy viscosity coefficient

do 38 i=1,iil
do 38 1=1,jsv(i)

do 48 j=jfv(i,1),jlv(i,1)
visc(i,j)=scv(i)*max(veldff,viscos*

.sqrt (.5*%(deforl(i,j)+deforl(i,j-1)+defor2(i,j)+defor2(i+1,j))))

visc(i,jfv(i,l)—1)=visc(i,jfv(i,l))
visc(i,jlv(i,1)+1)=visc(i,jlv(i,1))

do 821 i=1,iil

if i=1, i-1 must point to zero-filled row (same for i+l in case i=iil)
ia=mod(i-2+ii,ii)+1

ib=i+1

do 821 1=1,jsv(i)

longitudinal turb. momentum flux (at mass points)

do 826 j=jfv(i,1)-1,jlv(i,1)
vfluxl1(i,j)=.5*(visc(i,j)+visc(i,j+1))*(vtotn(i,j)-vtotn(i,j+1))
*harmon (max (dpv(i,j ,km),onemm),
max (dpv (i, j+1,km),onemm))

lateral turb. momentum flux (at vorticity points)
(left and right fluxes are evaluated separately because of sidewalls)

do 821 j=jfv(i,1),jlv(i,1)

dpij=max(dpv(i ,j,km),onemm)

dpia=max(dpv(ia,j,km) ,onemm)

dpib=max (dpv(ib, j,km) ,onemm)

if (iv(ia,j).eq.0) then

viscia=visc(i ,j)

else

viscia=visc(ia,j)

end if

if (iv(ib,j).eq.0) then

viscib=visc(i ,j)

else

viscib=visc(ib,j)

end if

viflux2(i,j)=.5*(visc(i,j)+viscia)*(via(i,j)-vtotn(i,j))
xharmon(dpia+wgtia(i,j)*(dpij-dpia),dpij)

vElux3(i,j)=.5*(visc(i,j)+viscib)*(vtotn(i,]j)-vib(i,j))
xharmon (dpib+wgtib (i, j)*(dpij-dpib),dpij)

70

O o o o0

MOMENTUM : MOMEQ2.F

821

99

spatial weighting function for pressure gradient calculation:

util2(i,j)=max(0.,min(depthv(i,j)-pv(i,j,k),
pv(i,j,k+1)-pv(i,j,2),hl))

pgfy(i,j)=(montg(i,j,k)-montg(i,j-1,k))*util2(i,j)

do 7 i=1,iil

if i=1, i-1 must point to zero-filled row (same for i+l in case i=iil)
ia=mod(i-2+ii,ii)+1

ib=1i+1

do 7 1=1,jsv(i)

if (k.gt.1) then

pressure force in y direction
(’scheme 2’ from appendix -a- in bleck-smith paper)

do 99 j=jfv(i,1),jlv(i,1)
grady(i,j)=(pgfy(i,j)+(hl-util2(i,j))*
(pgfy (ia ,j)+pgfy (ib ,j)+pgfy (i,j-1)+pgfy (i,j+1))/
(util2(ia ,j)+util2(ib ,j)+util2(i,j-1)+util2(i,j+1)+epsil))/ni
endif

do 7 j=jfv(i,1),jlv(i,1)

ptopl=min(depthv(i,j),.5*(p(i,j,k Y+p(i,j-1,k)))
pbotl=min(depthv(i,j),.5*(p(i,j,k+1)+p(i,j-1,k+1)))

bottom boundary layer stress
botstr(i,j)=-vtotn(i,j)*.5*%(drag(i,j)+drag(i,j-1))*
(max (depthv (i, j)-tenm, pbotl)
-max (depthv (i, j)-tenm,min(ptopl,pbotl-tenm)))
/max (dpv (i, j,km),tenm)

vold(i,j,k)=v(i,j,kn)
v(i,j,kn)=v(i,j,kn)+deltl*(-grady(i,j)*scvi(i)

.=.26x(vtotm(di, j+1)**2+utotm(i,j)**2+utotm(i+1l,j)*x2

-vtotm(i,j-1)**2-utotm(i,j-1)**2-utotm(i+1l,j-1)**2)*scvi(i)

.—.126% (uflux(i,j)+uflux(i+l,j)+uflux(i,j-1)+uflux(i+l,j-1))

*(potvor (i, j)+potvor(i+l,j)) - vbrhs(i,j) + botstr(i,j)

.~ (vflux1(i,j)-vflux1(i,j-1)

+vflux3(i,j)-vflux2(i,j))/(scv2(i)*max(dpv (i, j,km) ,onemm)))

71

5 MOMENTUM : MOMEQ2.F

5.2.2 Flowchart

{Calculate total current and momentum ﬂux}

{Determine “eighth-order modified” e]ements}

{Evaluate indices of solid boundary presence}

{ Estimate potential vorticity }

{ Estimate turbulent viscosity and momentum fluxes

[Calculate Montgomery potential j

[Establish drag dissipation J

{ Infer new velocity field }

Figure 8: Order of the treatment of the momentum equation

72

5 MOMENTUM : MOMEQ2.F

WE:1
P7
------- bijel
Pl e P
ijk ijk
P oo --- P.
ijk+l ijk+l
...... A

W =0

P P:
i b il

73

Figure 9: Schematic of the intersection of layers with solid boundaries

5 MOMENTUM : MOMEQ2.F 74

Apl? --------------------------- . Ap,
+v OQ +V
Ap3; ------------- Koo 0 Ap,
; U :
+V OQ +v
Apsi --------------------------- 0 Ap6

Figure 10: Distribution of variables used in the evaluation of the Coriolis term at the central
point u(i,)

5.3 Variables
5.3.1 Identification

Notation in the theory Notation in momeq2.f
f(z,y) corio(i,j)

H, h1

(aM/ax)i’,j’ ; (aM/ay)i’,j’ pgfx(i,j),pgfy(i,j)
(OM/ax)ﬁn,(aM/ay)ﬁ-n gradx(i,j),grady(i,j)
I1; 5 dpmx (i, j)

(ug — vy)? defori(i,j)

(Vg + uy)? defor2(i,j)

Uq veldff

U0, UE uja(i,j),ujb(i,j)

UN, VS via(i,j),vib(i,j)

wo, WE wgtja(i,j),wgtjb(di,j)
WN, WS wgtia(i,j) ,wgtib(d,j)

’LZ)Z'I,J'/ utili(i,j)

5 MOMENTUM : MOMEQ2.F 75

((z,y)

5.3.2 Global variables

integer variables :

real variables :

5.3.3 Local variables

vort(i,j)
viscos
visc(i,j)

epsil

ii,ii1, ifp(j,m),ifq(j,m), ilp(j,m),ilq(j,m),ifv(j,m), ilv(j,m),
isp(j), isq(j), isu(j), isv(j), iu(i,j), iv(i,), jfuli,l), jfv(i,1),
J1v(i,1), jlu(i,1), jsu(d), jsv(i), 33, i1, kk

corio(i,j),deforl1(i,j),defor2(i,j),depthu(i,j),depthv(i,j),
dpmx(i,j),dp(i,j,k), dpu(i,j,k),dpv(i,j,k),drag(i,j), gradx(i,j),
grady(i,j),montg(i,j,k),onecm, p(i,j,k),pgfx(i,j),pgfy(di,]),
potvor(i,j),puli,j,k),pv(i,j,k),scu(i), scv(i), slip, ubrhs(i,j),
uja,ujb,uold(i,j,k),utilli(i,j),util2(i,j), utotm(i,j), utotn(i,j),
vbrhs(i,j),uflux(i,j),uflux1(i,j), uflux2(i,j), uflux3(i,j),
vilux(i,j), vflux1(i,j), vflux2(i,j), vflux3(i,j), visc(di,j),
vold(i,j,k),vort(i,j), vtotm(i,j), vtotn(i,j) wgtia(i,j),wgtib(i,j),
wgtja(i,j), wgtjb(i,j)

botstr(i,j) drag dissipation

ia,ib,ja,jb intermediate indices

dpij,dpja,dpjb intermediate variables in the calculation of turbulent flux in the presence
of a boundary

ptopl,pbotl intermediate variables in the drag calculation

ubot,vbot velocity components near the bottom

viscja,viscjb intermediate variables in the calculation of turbulent flux in the presence
of a boundary

5.4 Procedures

Functions harmon

6 BAROTROPIC MODE : BAROTP.F 76

6 Barotropic mode : barotp.f

6.1 Formalism and numerical techniques

In introducing the decomposition (1) and summing over all layers of the general continuity
equation, we obtain the form :

onp;, —
S+ V- ((L+ myap] =0 (92)

To establish the corresponding equations of motion, we consider the average of the general form
(60) in the sense of (3). Next we introduce the decomposition (2), then the relations (4) and
(1). Finally, we obtain the system (BARAILLE & FILATOFF, 1995) :

R+ Q(n)

J . _, 19 ., _
gr B+ = (L) fot o mwp(1+m)] + e
(93)
d 19 R +Q'(n)
O +n)]+ 1+ + —— [mp(1+1)] + ———= =0
g P+ (L fas o [705 (1 +)] o
which we write more simply :
ow ., 19 , 0u
E—fv‘f‘;a_ﬂv(ﬂpb)—ﬁ
(94)
oo . 149, , o
aJrfUJr;a—y(npb)— ot

Q(n) and Q'(n) are expressions grouping the nonlinear terms. R and R’ represent the compo-
nents of pressure gradient induced by the stratification. The pseudo-velocity u*(w*,v*) assures
the property (4).

We denote Atpg, the time step of the external mode (barotropic) and At,, the time step of
the internal mode (baroclinic), such that :

Aty = NAtg (95)

The barotropic equations are therefore solved N times between two solutions of the baroclinic
equations.

6.1.1 Rescaling of variables

As the variables are distributed on a C grid, a tendency calculation at velocity points which uses
layer thicknesses obtained at height points by the application of formula (33) in the last step
of the continuity equation necessitates a rescaling of the variables. In fact, during initialization
(subroutine inicon), the depths at velocity points have been introduced by the relations :

up;)i,j = min (pgi_l,j,pgi,j) and vpgm, = min (pgi,j_l,pgi,j) (96)

6 BAROTROPIC MODE : BAROTP.F 77

To retain consistency with the initial definitions, at the point of the u component, we introduce
the average thickness :

U.Ap;,j,k = max {0,
min [upgi,j: 1/2 (up;',j,kJrl + uP;ij,kﬂ)]
— min [upgi,j, 1/2 (up;,j,k + up;—l,j,k)] } (97)

We use the equivalent formula at the point of the v component.

6.1.2 Rearrangement of the velocity profile

When the thickness of a layer is so small as to be considered numerically zero, it may still contain
momentum. When layer k£ “disappears”, we consider that, in terms of momentum, it still exists
and acquires the momentum of the layer above. To translate this mechanism, we introduce the
variable ¢ :

e p _J 0 it ,App > 06
q= 0 — min (uAplm 5) - { §— uAp;c if uAp;g < 5, (98)
which permits us to define the weighted value (ditto for the v component) :
1
U = 5 [u;c (uAp;c) + u%,1(5 - uAp;c)] (99)

In MICOM 2.6, we set 6 = 10~! m.

6.1.3 Filtering

In the same manner as in the advection step (cf. § 3), to fix the problems of dispersion caused
by the leapfrog scheme, we introduce Asselin filtering for the velocity. Take the component '’
of the baroclinic velocity for the layer & and the node (i,7). We then write

~

W& = [- amap gy (@&)] o)

We introduce a residual thickness e for which this form remains valid when uAp;-,j’k — 0. In
MICOM, ¢ is set to a numerical value of 1073 m. We have v = 0.25. The thickness of the layer
wAp; ; 1, is also filtered by the formula :

A" = (1—29)(AP™ + €) + (Z\p'” + Ap”+1> (101)

6.1.4 Continuity equation

The continuity equation (92) is treated with the simplification (1 + 1) ~ 1. As we already
indicated in Section 2, using this approximation does not perturb the property : dp, /0t = 0
(BARAILLE & FILATOFF, 1995). The treated variable is therefore py = np,. Combining forward
time-stepping

Pt = P — Atg V- (apy)" (102)

6 BAROTROPIC MODE : BAROTP.F 78

with Asselin time filtering we arrive at
P/t = (1 —w)P™ + wP™ ! — Atg(1 +w)V - (ap})™ (103)

and we set : w=10.125

6.1.5 Equations of motion

The equations of motion given by the system (94) call the reference density p, introduced to
represent the ocean of reference depth H. In MICOM 2.6, we make the identification p, = pg

(cf. § 12).

The vector 0u* /0t appearing in the right hand side of the equations of system (94) can then be
seen as a forcing term in the generation of the linear barotropic mode. The solution of this sys-
tem necessitates therefore the extraction of the component @*. In the preceding step (subroutine
momeq2), we calculate the baroclinic velocity profile expressed by the variable u} = uj, +a*. In
carrying out the sums :

N N
Sy = Z upAp), and S, = Z vy Apy, (104)
k=1 k=1
and in accounting for the property (4), we therefore see that :
S, S,
u' == and 7" == (105)
Dy Dy

We note that the pseudo-vector u* is not a variable of state in the system whose evolution we

seek. This is to say that in the preceding step (subroutine momeq2), we effectively inferred the
transition : W ; — (uj, + ﬁ*):”;rl Moreover, we also introduce the weighting W such that :

1y m+1
A = (1 — Wyl + W' — Atp(l+w) [—ag (%) + forg + it A | (106)

.. 5]
%)

The Coriolis term is expressed by the centered form :

Tt = 1/8(f1; + flj41) [(@oph)i + @uph)i-1,j + @uph)ijr1 + Top)i1,+1] (107)
with the barotropic potential vorticity f’ defined as
f
fl.=) (108)
W)

2,7

The continuity equation is solved first. The pressure gradient of the equation of motion (106)
uses the value of the state of perturbation 7 coming from this calculation. The combination of the
forward time-stepping in the continuity equation and backward time-stepping in the momentum
equations is called the forward-backward scheme.

6.2 Usage

In Micom 2.6, the numerical calculation of the evolution of the barotropic mode is performed in
the subprogram :

subroutine barotp (argument list)

6 BAROTROPIC MODE : BAROTP.F 79

6.2.1 Order of operations

The new values of the layer thicknesses coming from the continuity equation are introduced by
calculating the pressures at interfaces :

c
do 12 j=1,jj1
do 12 k=1,kk
do 12 1=1,isp(j)
do 12 i=ifp(j,1),ilp(j,1)
12 p(i,j,k+1)=p(i,j,k)+dp(i,j,k+nn)
c

Then, for each velocity component, the next step is to rescale, at each point, the thicknesses of
N layers by applying the procedure formulated in (97) and to effect the rearrangement of the
vertical velocity profile :

—--- compute new -dpu,dpv- field. save old -dpu,dpv- values in -pu,pv-.
-—- substitute depth-weighted averages for (u,v) at massless grid points.
--- (scan layers in top-down direction to save time.)

O o o0 o o0

do 14 j=1,jj1

do 13 1=1,isu(j)
do 13 k=1,kk
kn=k+nn

do 113 i=ifu(j,1),ilu(j,1)
pu(i,j,k+1)=dpu(i,j,kn)
113 dpu(i,j,kn)=max (0.,
min(depthu(i,j),.5*(p(i,j,k+1)+p(i-1,j,k+1)))-
min(depthu(i,j),.5*(p(i,j,k)+p(i-1,j,k))))

if (k.gt.1) then
do 123 i=ifu(j,1),ilu(j,1)
g=tencm-min(dpu(i,j,kn),tencm)
123 u(i,j,kn)=(u(i,j,kn)*dpu(i,j,kn)+u(i,j,kn-1)*q)/(dpu(i,j,kn)+q)

end if
c
13 continue
c
do 14 1=1,isv(j)
do 14 k=1,kk
kn=k+nn
c

do 114 i=ifv(j,1),ilv(j,1)

6 BAROTROPIC MODE : BAROTP.F 80

114

124

14

pv(i,j,k+1)=dpv(i,j,kn)

dpv(i,j,kn)=max (0.,
min(depthv(i,j),.5*(p(i,j,k+1)+p(i,j-1,k+1)))-
min(depthv(i,j),.5%(p(i,j,k)+p(i,j-1,k))))

if (k.gt.1) then

do 124 i=ifv(j,1),ilv(j,1)

g=tencm-min(dpv(i,j,kn),tencm)
v(i,j,kn)=(v(i,j,kn)*dpv(i,j,kn)+v(i,j,kn-1)*q)/(dpv(i,j,kn)+q)
end if

continue

From these profiles we extract the corresponding components of the pseudo-velocity u* by the
calculation of sums given by (104) :

c ——
c —-—-

32

33

31

34

35

30

extract barotropic velocities generated during most recent baroclinic
time step and use them to force barotropic flow field.

do 30 j=1,jj1
do 31 1=1,isu(j)

do 32 i=ifu(j,1),ilu(j,1)

utotn(i,j)=0.

do 33 k=1,kk

kn=k+nn

do 33 i=ifu(j,1),ilu(j,1)
utotn(i,j)=utotn(i,j)+u(i,j,kn)*dpu(i,j,kn)
do 31 i=ifu(j,1),ilu(j,1)
utotn(i,j)=utotn(i,j)/depthu(i,j)

do 30 1=1,isv(j)

do 34 i=ifv(j,1),ilv(j,1)

vtotn(i,j)=0.

do 35 k=1,kk

kn=k+nn

do 35 i=ifv(j,1),ilv(j,1)
vtotn(i,j)=vtotn(i,j)+v(i,j,kn)*dpv(i,j,kn)
do 30 i=ifv(j,1),ilv(j,1)
vtotn(i,j)=vtotn(i,j)/depthv(i,j)

6 BAROTROPIC MODE : BAROTP.F 81

The final operation consists of using the Asselin filtering on the baroclinic velocity compo-
nents u’ :

--- time smoothing of -u,v- fields

O o0 0

do 22 k=1,kk
km=k+mm
kn=k+nn

do 22 j=1,jj1

do 24 1=1,isu(j)
do 24 i=ifu(j,1),ilu(j,1)
u(i,j,kn)=u(i,j,kn)-utotn(i,j)
24 u(i,j,km)=(u(i,j,km)*(wuvli*dpu(i,j,km)+onemm)
+wuv2* (uold(i,j,k)*pu(i,j,k+1)+u(i,j,kn)*dpu(i,j,kn)))/
(wuvi*dpu(i,j,km)+onemm+wuv2* (pu(i,j,k+1)+dpu(i,j,kn)))

do 22 1=1,isv(j)
do 22 i=ifv(j,1),ilv(j,1)
v(i,j,kn)=v(i,j,kn)-vtotn(i,j)
22 v(i,j,km)=(v(i,j,km)*(wuvli*dpv(i,j,km)+onemm)
+wuv2* (vold(i,j,k)*pv(i,j,k+1)+v(i,j,kn)*dpv(i,j,kn)))/
(wuvi*dpv(i,j,km)+onemm+wuv2* (pv(i,j,k+1)+dpv(i,j,kn)))

In the step which follows, we perform the treatment of the equations of continuity and mo-
tion N times, as we described previously (¢f. § 6.1.4 and § 6.1.5). The new values of the
barotropic component u and of the state of perturbation n are calculated using the Asselin
weighting factor w :

do 867 j=1,jj1

do 865 1=1,isu(j)

do 865 i=ifu(j,1),ilu(j,1)

utotn(i,j)=utotn(i,j)/deltl
865 ubavg(i,j,n)=ubavg(i,j,m

do 866 1=1,isv(j)
do 866 i=ifv(j,1),ilv(j,1)
vtotn(i,j)=vtotn(i,j)/deltl

O o o0 o o0

[N e}

BAROTROPIC MODE : BAROTP.F

866

867

843

841

vbavg(i,j,n)=vbavg(i,j,m)

do 867 1=1,isp(j)
do 867 i=ifp(j,1),ilp(j,1)
pbavg(i,j,n)=pbavg(i,j,m)

ml=n
nl=3

explicit time integration of barotropic flow (forward-backward scheme)
in order to combine forward-backward scheme with leapfrog treatment of
coriolis term, v-eqn must be solved before u-eqn every other time step

do 840 111=1,1step
continuity equation

do 843 j=1,jj1

do 843 1=1,isp(j)

do 843 i=ifp(j,1),ilp(j,1)

use light time smoother in continuity equation

pbavg(i,j,nl)=(1.-wbaro)*pbavg(i,j,ml)+wbaro*pbavg(i,j,nl)
-(1.+wbaro)*dlt* (ubavg(i+1l,j,ml)*depthu(i+l,j)*scu(i+1l)
-ubavg(i ,j,ml)*depthu(i ,j)*scu(i)
+vbavg(i,j+1,ml)*depthv(i,j+1)*scv(i)
-vbavg(i,j ,ml)*depthv(i,j)*scv(i))*scp2i(i)

mn=ml

u momentum equation
do 841 j=1,jj1

do 841 1=1,isu(j)

do 841 i=ifu(j,1),ilu(j,1)
utndcy=-thref*(pbavg(i,j,nl)-pbavg(i-1,j,nl))*scui(i)

.+(vbavg(i ,j,mn)*depthv(i ,j)+vbavg(i ,j+1,mn)*depthv(i ,j+1)

+vbavg(i-1,j,mn)*depthv(i-1,j)+vbavg(i-1,j+1,m)*depthv(i-1,j+1))

(pvtrop (i, j)+pvtrop(i,j+1)).125
ubavg(i,j,nl)=(1.-wbaro)*ubavg(i,j,ml)+wbaro*ubavg(i,j,nl)

+(1.+wbaro)*dlt*(utndcy+utotn(i,j))

mn=nl
v momentum equation

do 842 i=1,iil
do 842 1=1,jsv(i)

82

6 BAROTROPIC MODE : BAROTP.F

do 842 j=jfv(i,1),jlv(i,1)

vtndcy=-thref#*(pbavg(i,j,nl)-pbavg(i,j-1,nl))*scvi(i)

.—(ubavg(i,j ,mn)*depthu(i,j)+ubavg(i+l,j ,mn)*depthu(i+l,j)
+ubavg(i,j-1,mn)*depthu(i,j-1)+ubavg(i+l,j-1,mn)*depthu(i+l,j-1))
(pvtrop (i, j)+pvtrop(i+l,j)).125

842 vbavg(i,j,nl)=(1.-wbaro)*vbavg(i,j,ml)+wbaro*vbavg(i,j,nl)
+(1.+wbaro)*dlt*(vtndcy+vtotn(i,j))

c
mn=nl
c
11=ml
ml=nl
nl=11
c

840 continue

83

6 BAROTROPIC MODE : BAROTP.F 84

6.2.2 Flowchart

‘ Rescale layer thicknesses Ap ‘

‘ Rearrange velocity profile ‘

‘ Extract pseudo-velocity

‘ Asselin filtering ‘

‘ Treat continuity equation ‘

‘ Treat equations of motion ‘

‘ Filter barotropic velocity ‘

Figure 11: Order of the barotropic mode calculation

6 BAROTROPIC MODE : BAROTP.F

6.3 Variables
6.3.1 Identification

Notation in the theory

Notation in barotp.f

Atp, Aty dlt,delt1l
fi’,j pvtrop(i,j)
v, (1 —27) wuv2,wuvl
N lstep

", poavg (i,)

! /
upmdaupmd

/ /
wlD j ko uli j b

depthu(i,j) ,depthv(i,j)

dpu(i,j,k),dpv(i,j,k)

85

Sy, Sy utotn(i,j),vtotn(i,j)
HZ]',EZ] ubavg(i,j,n),ubavg(i,j,n)
W wbaro

6.3.2 Global variables

ifp(j,m) ilp(j,m), ifv(j,m), ilv(j,m), isp(j), isu(j), isv(j),
jj1(j), kk, 1step

integer variables :

depthu(i,j), depthv(i,j), dpu(i,j,k), dpv(i,j,k), dp(i,j,k),

onemm, p(i,j,k),pbavg(i,j,n),puli,j,k),pv(i,j,k),pvtrop(i,j),
scu(i), scv(i), tencm,u(i,j,k), ubavg(i,j,n),uold(i,j,k), utotn(i,j, k),
v(i,j,k),vbavg(i,j,n), vold(i,j,k),vtotn(i,j,k),wbaro, wuvl,

wuv2,

real variables :

logical variables : vthenu

6.3.3 Local variables
i,j,k,1,111 loop counters
km,kn,ml,nl intermediate indices

utndcy,vtndcy tendency of the barotropic velocity components

7 CONVECTION : CONVEC.F 86

7 Convection : convec.f

In MICOM 2.6, the variations of mixed layer characteristics result from 2 principal steps :

1) explicitly taking into account ocean-atmosphere exchanges (c.f. § 9) ;

2) modeling advection with the velocity field (c.f. § 9).

Consequently, an inversion at the base of the mixed layer is not excluded. Phase 1) is optional.
When radiative exchanges and heat turbulence are not considered, the mechanical effect due to
the wind can always be treated through the surface Reynolds tension (c.f. § 4). The advection
step is systematically used. It can, by itself, generate a surface inversion.

7.1 Usage

In MICOM 2.6, within subroutine convec, for each point, we diagnose this possible inversion,
determine its vertical extension and address it by conserving the content of heat and salt in the
layers concerned.

7.1.1 Order of operations

The first step consists of traversing the vertical and testing the value of the density deviation
pr — p1- When it is negative, the situation is unstable and we address it by mixing layer k with
the layer above it, conserving heat and salt. Then we proceed to infer the density p} which
serves as a new reference to test for a possible inversion with layer k£ + 1.

do 3 k=2,kk
kn=k+nn
dthmin=999.

do 4 1=1,jsp(i)

do 4 j=jfp(i,1),jlp(i,1)
dthet=theta(k)-thmix(i,j,n)

if (dthet.lt.0..and.dp(i,j,kn).gt.0.) then

¢ ——— layer —k- contains mass less dense than mixed layer. entrain.
delp=dp(i,j,kln)+dp(i,j,kn)
saln(i,j,kin)=(saln(i,j,kin)*dp(i,j,kin)
+saln(i,j,kn)*dp(i,j,kn))/delp
temp(i,j,kin)=(temp(i,j,kin)*dp(i,j,kin)
+temp(i,j,kn)*dp(i,j,kn))/delp
thmix (i, j,n)=sig(temp(i,j,kln),saln(i,j,kin))-thbase
c
¢ --- mass in layer -k- transferred to mixed layer is stored in -dpold-
dp(i,j,kin)=delp
dpold(i,j,k)=dp(i,j,kn)
dp(i,j,kn)=0.
end if ! dthet < 0

7 CONVECTION : CONVEC.F

4 dthmin=min(dthmin,dthet)

if (dthmin.ge.0.) go to 1

3 kk1(i)=k

87

The second step consists of conserving the momentum by integrating it over the new surface

layer.
c

c ——

C

entrain -u- momentum
do 7 i=1,ii1l
do 5 1=1,jsu(i)

do 6 j=jfu(i,1),jlu(i,1)
util2(i,j)=min(.5*(dpold(i,j,1)+dpold(i-1,j,1)) ,depthu(i,j))

do 5 k=2,max(kk1(i),kk1(i-1))

kn=k+nn

do 5 j=jfu(i,1),jlu(i,l)

utili(i,j)=util2(i,j)

util2(i,j)=min(util2(i,j)+
.5x(dpold(i,j,k)+dpold(i-1,j,k)) ,depthu(i,j))

u(i,j,kin)=(u(i,j,kin)*util1(i,j)
+u(i,j,kn)*(util2(i,j)-utill (i, j)))/util2(i,j)

entrain -v- momentum
do 7 1=1,jsv(i)

do 8 j=jfv(i,1),jlv(i,1)
util2(i,j)=min(.5*(dpold(i,j,1)+dpold(i,j-1,1)),depthv(i,j))

do 7 k=2,kk1(i)

kn=k+nn

do 7 j=jfv(i,1),jlv(i,1)

utili(di,j)=util2(di,j)

util2(i,j)=min(util2(i,j)+
.5%(dpold(i,j,k)+dpold(i,j-1,k)),depthv(i,j))

v(i,j,kin)=(v(i,j,kin)*utill(4i,j)
+v(i,j,kn)*(util2(i,j)-utill(i,j)))/util2(i,j)

The final operation consists of storing this new vertical distribution.

7 CONVECTION : CONVEC.F 88

66 p(i,j,k+1)=p(i,j,k)+dp(i,j,k+nn)

C

do 66 j=1,jj1

do 66 k=1,kk

do 66 1=1,isp(j)

do 66 i=ifp(j,1),ilp(j,1)
C

7.2 Variables

7.2.1 Global variables

integer variables :

real variables :

ii1, jfp(i,1), jlp(i,1), jsp(i), jfu(i,1), jlu(i,l), jsu(di),
jfv(i,1), jlv(i,1), jsv(i), kk

depthu(i,j), depthv(i,j), dp(i,j,k), dpold(i,j,.k), p(i,j,k),
saln(i,j,n), theta(k), thmix(i,j,n), temp(i,j,n), u(i,j,k),
utilt(i,3), wtil2(i,j), v(i,j,k)

7.2.2 Local variables

ia,ib,ja,jb
delp
dthet

dthmin

kk1 (idm)

intermediate indices
intermediate value of the mixed layer thickness
density deviation between the tested layer and the surface layer

minimum value of the density deviation permitting the iterative calculation
over the vertical

value of the last layer concerned with the convection mechanism in the
computational row

8 DIAPYCNAL MIXING : DIAPFL.F 89

8 Diapycnal mixing : diapfl.f

8.1 Formalism and numerical techniques
8.1.1 Turbulent diffusion

Using 6 to represent the vertical distribution of density in the ocean, we use the standard concept
of turbulent diffusion to express the turbulent fluxes associated with this variable of state :

w0 = Ky00/0z (109)

where Ky is the diffusivity. w’ and 6’ represent the turbulent fluctuations in the vertical com-
ponent of velocity and in density in the Reynolds sense. With neither a source term, diffusion,
nor horizontal advection, the evolution equation of the variable @ at depth z is then written as :

(5) =5 (ki) (110)
ot), 0z 0z

The local tendency of the variable 6 then results simply from the divergence of vertical turbulent
flux associated with this parameter.

Set F' = Kg00/0z. Under the assumption that the turbulent flux is zero at the surface (Fy = 0)
and at the bottom (Fj = 0), integrating equation (110) over the vertical conserves the quantity
f in a column of water.

In the hypothetical case where the flux at the boundary is zero, since we don’t take into account
a source term such as solar radiation, the vertical component of the turbulent flux F' can result
only from the initial profile of the parameter 6. Over the profile at time ¢, this flux will cause
a vertical displacement of the isocline 6, situated at the the level z which is described by the

equation :
0z OF
<E>0 =% (111)

The variable 6 is assumed to be stepwise constant in the vertical :
0(z) =0 for z;_10 <z < 2pi1)0

The indices £ — 1/2 and k+ 1/2 are the positions of the interfaces above and below the layer
k.
In a layer configuration, we want to express the form (111) in centered finite differences consid-
ering that the vertical distribution of turbulent flux can also be represented by a succession of
layers of flux F}, centered at z;. We then have :

3F) (Fet1 — Fy)
—_xfrr R 112
(90) 4172 Or+1 — Ok (112)

The layer scheme therefore imposes the knowledge of the divergence of flux at successive inter-
faces. To calculate a vertical distribution of fluxes centered at z; we create an artificial gradient
on the interior of each layer k.

The diapycnic mixing algorithm implemented in MICOM is a simplified version of the algorithm
developed by Hu (1991).

8 DIAPYCNAL MIXING : DIAPFL.F 90

Hy =

@l [
" Zy, Fi
Hy

Z

Figure 12: [llustration of the calculation of turbulent flux Fj,.

8.1.2 Turbulent heat flux

To illustrate the mechanism of diapycnic mixing, we can imagine that the turbulent instability
due to the temperature discontinuity at the interface between two layers manifests itself in
the appearance of a thin intermediate mixed layer. At the upper limit of the layer k, at the
coordinate z;_y/p, the temperature of this micro-layer is posited to be the same as ngp such

that : .
oup = 5 (O + 0r—1) (113)

Then, we introduce the continuous function by breaking up :

1 Ok + 01
Zk41/2 = Zk—1/2 2

Or + 011
2

0'(2) = (Zhy1/2 — 2) + (z — 2k—1/2) (114)

for : z;_1/9 < 2 < 2441/2. The distribution 6'(2) linearly varies the influence of the boundary
conditions of the diapycnic mixing on the interior of layer k£ in such a manner that the influence
of the upper boundary condition is zero at the lower interface and vice versa. At the surface, we
represent the surface mixed layer by introducing the upper discontinuity : €'(z) = 6, for z < z3 /2-

We integrate the new distribution 6'(z) over two intervals of finite thickness Hy, situated re-
spectively above and below the middle point of layer k of depth z, = 1/2 (Zk_l/Q + zk+1/2). We
obtain the two new variables (figure 12):

—(_ 1 2
8- — [oa (115)
0 Zk.—HO
—(+) 1 /Zk+H0 ,
0 = — 0" dz 116
p o ., (116)
We then define the flux in & as
9(+) 9(*)
F, = Ky-* k (117)

8 DIAPYCNAL MIXING : DIAPFL.F 91

777777777777777777777777777 Zy_1 R/ S Y
o, o
: e’
%o 5 Zyt1y2 AM Zyi1)2
Zy @,(f)
(—)n‘
o ®h‘+|
777777777777777777777777777 Ziasp R
Z A

Figure 13: Illustration of the calculation of the divergence of the turbulent fluz Fj.

Note that for layers of thickness greater than 2H,, we have the relation :

Oky1 — Ok—1
2(2k+1/2 - Zk—1/2)

Fp, =Ky

8.1.3 Numerical implementation

During a time interval At, after having been identified with the relation (111), the form (112)
expresses that a column of water of thickness Az = (0z/0t) At is going to see its density change
from 641 to O (or vice-versa depending on the sign of 0F/00). In other words, in the deep
regime, during At, the diapycnic mixing causes a vertical transfer of the quantity Az of the layer
k to the layer k + 1. Numerically, this transfer can pose problems if Az exceeds the thickness of
layer k. This fact most concerns layers of small thickness. It can also appear during a transfer of
water from the mixed layer to the first layer below where the increment (6 —61) is often small.

Consider the case Fj, > Fj41. We want to do a mass transfer from layer £ + 1 to layer k.
To generalize the expression 112) HU (1991) substitutes 65, with the average expression (fig-
ure 13) :

—(4) _ 217220
@Hﬂ:zf/k/ 0 dz (118)
Zk+1/2

where we see the discrete distribution 6(z) reappear.

AM

8 DIAPYCNAL MIXING : DIAPFL.F

)
@/(:+1/2

Ok
Zy1pa
Ot
O
(—)H
Zipo
e AM
Zy K1/2
®H+l
Ot
Zy ('7)»;+2
Zrasps
Oy
VA4 Z

Zk—;%/z

Zr_1)2

Zit1p2

Zis3)2

Zyi5/2

92

Figure 14: [Ilustration of the generalization of HU (1991) in the case of an ascending mass

transfer.

In this case, the general form (112) becomes :

00 A
00 9k+1/2 — Oy

(8F> _ By —)
k+1/2

(119)

In identifying this last expression with the relation (111), it is clear that the displacement Az

of the interface k + 1/2 represents the thickness of a layer whose density evolves from 9,(;)1 /2 to

0. Only two alternatives are possible (figure 14) :

1) if layer k+1 is thicker than Zo, then 837, » = 6j41. Equation (119) takes the
form (112). More frequently, to carry out a transfer into the layer k, it is possible to

extract the ascending mass only from layer k£ 4 1 ;

2) if layer k + 1 is thinner than Zj, the approach of HU says that the layers k + 1,
k + 2,... contribute to the total displacement Az in the same proportions in which

they contribute to the integral (118).

Concerning the case where F < F1, the form (112) is then substituted with :

00 Ok+1 — 5]&1)1 /

where,
Zk4+1/2

<8F) _ (Fen—Fy)
k+1/2

2

0= %" / 0dz.

Zgy1/2— 20

(120)

(121)

8 DIAPYCNAL MIXING : DIAPFL.F 93

The mass of the column of water of thickness Az and of density 55;)1 /2 transferred from layer k
into layer k41 comes from layers k, k-1, k-2,... in the same proportions in which they contribute
to the integral (121).

8.2 Usage
In MICOM, the numerical calculation of diapycnic mixing is carried out by the subprogram :

subroutine diapfl (argument list)

8.2.1 Order of operations

For each point of the calculation, we determine the index of the first isopycnic layer of which the
specific volume is strictly larger than that of the mixed layer. The result is stored in the array
klist(i,j). Then, we evaluate an adequate integration thickness Hy. The result is stored in
the array dpmx(i,j). In the first step, the operation consists of finding two limiting values :
hOlo in the surface and hOhi from a fixed pressure delp. These values themselves are bounded
by 1/4 of the total water height. Between these two depths, the final value varies linearly.

do 17 i=ifp(j,1),ilp(j,1)
sgain(i,k)=saln(i,j,kn)*dp(i,j,kn)

¢ ——— store index of first isopycnic layer heavier than mix.layer in -klist-
if (theta(k).lt.thmix(i,j,n)) klist(i,j)=min(k+1,kk)

¢ ——— dpmx increases from -hOlo- to -hOhi- over depth range -delp-
delp=1000.*onem
hOlo=min(hO,.25*%p(i,j,kk+1))
hOhi=min(5.*h0, .25%p(i,j,kk+1))
wgt=max (0. ,min(1., (delp-p(i,j,k-1))/delp))
dpmx (i, j)=hOlo*wgt+hOhix(1.-wgt)

thup(i,k)=epsil*max(thmix(i,j,mn),theta(k-1))
thdn (i,k)=epsil*max (thmix(i,j,mn),theta(k))
thup(i,1)=thdn(i,k)
thdn(i,1)=thdn(i,k)
utili(i,j)=epsil
util2(i,j)=epsil
util3(i,j)=epsil
17 utila(i,j)=epsil

Then, we explore the part above in the column of water to find layers which will comprise

the interval Zy and we calculate 55;)1 /2 Over this slice of water. Next, we explore the part below
in the column of water to find the layers which will comprise the interval Zy and we calculate
5,(;)1 /2 OVer this slice of water. The results are stored in the arrays thup(i,k) and thdn(i,k).
The thickness Zj is also put to the initial value Hy. Similarly if it is small (10 meters for ocean

applications), it is possible that the instantaneous thickness of a layer be even smaller, or zero.

8 DIAPYCNAL MIXING : DIAPFL.F 94

The algorithm accounts for this.

¢ ——— find bulk theta value in slab of thickness -hO- above k-th interface
do 61 kp=1,k-1
do 61 i=ifp(j,1),ilp(j,1)
delp=max (0. ,min(p(i,j,k) ,p(i,j,kp+1))
-max(p(i,j,k)-h0,p(i,j,kp)))
thup(i,k)=thup(i,k)+max (thmix(i,j,mn),theta(kp))*delp
61 utill(i,j)=utili(i,j) +delp

¢ —-- find bulk theta value in slab of thickness -hO- below k-th interface
do 51 kp=k,kk
do 51 i=ifp(j,1),ilp(j,1)
delp=max(0.,min(p(i,j,k)+h0,p(i,j,kp+1))
-max(p(i,j,k) ,p(i,j,kp)))
thdn(i,k)=thdn(i,k)+max(thmix(i,j,mn),theta(kp))*delp
51 util2(i,j)=util2(i,j)
c

The next operation consists of determining the two temperatures 5(_) and 9,(:) defined by the
expressions (115) and (116). For this, we inspect the whole column of water to calculate a bulk
characteristic temperature of each of two slices of water situated respectively above and below
an interior point in layer k. The thickness dpmx (i, j) of each of the two intermediate layers is
limited by half of the vertical extension of the layer studied. It is also necessary to account for
the fact that a layer can have zero size.

do 36 i=ifp(j,1),ilp(j,1)

thk= max(thmix(i,j,mn),theta(kp))
thka=max (thmix (i, j,mn),theta(ka))
thkb=max (thmix (i, j,mn),theta(kb))
if (kp.eq.1) thkb= thk

if (kp.eq.kk) thkb=2.xthk-thka
thka=.5*(thk+thka)

thkb=.5* (thk+thkb)

¢ ——- find bulk theta value in slab of thickness -dpmx- above k-th mass point
pmid=.5%(p(i,j,k)+p(i,j,k+1))
pl=max (pmid-dpmx(i,j),p(i,j,kp))
p2=min(pmid ,p(i,j,kp+1))
delp=max(0.,p2-pl)
thup(i,1)=thup(i,1)+(thka*x(p(i,j,kp+1)-.5%(pl+p2))
-thkb* (p(i,j,kp)-.5*(p1+p2)))
/max (epsil,p(di,j,kp+1)-p(i,j,kp))*delp
util3(i,j)=util3(i,j) +delp

8 DIAPYCNAL MIXING : DIAPFL.F

C

¢ ——- find bulk theta value in slab of thickness -dpmx- below k-th mass point

¢ —-—- (achieve thdn => thup near sea floor by elevating -pmid-)
pmid=min(pmid,p(i,j,kk+1)-dpmx(i,j))
pl=max(pmid ,p(i,j,.kp))
p2=min(pmid+dpmx(i,j),p(i,j,kp+1))
delp=max(0.,p2-pl)
thdn(i,1)=thdn(i,1)+(thka*(p(i,j,kp+1)-.5%(p1l+p2))
-thkb* (p(i,j,kp)-.5*(p1+p2)))
/max (epsil,p(i,j,kp+1)-p(i,j,kp))*delp
36 util4(i,j)=util4(i,j)+delp

The corresponding flux is calculated by using the relation (117).

c
do 18 i=ifp(j,1),ilp(j,1)

c
thup(i,k)=thup(i,k)/utill(i,j)
thdn(i,k)=max(theta(k) ,thdn(i,k)/util2(i,j))
thup(i,1)=thup(i,1)/util3(i,j)
thdn(i,1)=thdn(i,1)/utild(i,j)

c

¢ --- store turbulent buoyancy fluxes in -dpold- (positive = downward)
dpold(i,j,k)=diapyc*sqrt(max(0.,thdn(i,1)-thup(i,1))

/ (thref*dpmx (i,j)))
18 if (k.lt.klist(i,j)) dpold(i,j,k)=0.
c

In the last step, we first use the generalization of Hu (1991) :
a) if Fy_i — Fy <0, we substitute 6, by 0), ;

b) if F,_; — Fj > 0, we substitute 6 by 5,(::)1/2

then, we calculate the corresponding vertical increment Az. The result is stored in the array
sdot(i,j). The maximal positive excursion of the lower interface is bounded by the ocean
depth. A negative displacement of the upper interface is limited by 90% of the initial immersion

of this interface.

c
do 58 i=ifp(j,1),ilp(j,1)
c
dif=dpold(i,j,k-1)-dpold(i,j,k)
¢ -—-- utill/util2: upper/lower theta values used in calculating flux div.

utill(i,j)=max(thmix(i,j,mn) ,theta(k-1))
if (dif.1t.0.) then
if (dif.1t.0.) then

8 DIAPYCNAL MIXING : DIAPFL.F 96

58

utili(i,j)=thup(i,k)

else

util2(i,j)=thdn(i,k)

end if

dthet=max (1.e-b*thref,util2(i,j)-utill(i,j))

sdot = coordinate surface displacement caused by diapyc. flux.div.
sdot (i,j)=baclin*mixfrq*onecm*dif/dthet

interfaces must not descend below sea floor. adjust fluxes accordingly
thkn=p(i,j,k+1)-p(i,j,k)

if (thkn.ge.0.) then

bound=p(i,j,kk+1)-p(i,j,k)

else

bound=thkn

end if

sdot (i, j)=min(bound,sdot (i,j))

interface must not ascend above sea surface
sdot (i,j)=max(-.9*p(i,j,k),sdot(i,j)) c
if (k.gt.klist(i,j))

.dpold(i,j,k-1)=dpold(i,j,k)+sdot(i,j)*dthet/(baclin*mixfrq*onecm)

continue

Finally, we extract the mass of the layers above or below so as to determine the new thick-
ness of each layer concerned.

[N e]

59

sdot < 0 -- extract mass (and salin.) from layers above k-th interface
do 59 kp=1,k-1

kpn=kp+mmnn

do 59 i=ifp(j,1),ilp(j,1)

delp=0.

if (sdot(i,j).1t.0.)

.delp=max(0.,min(p(i,j,k) ,p(i,j,kp+1))

-max(p(i,j,k)-h0,p(i,j,kp)))*(-sdot(i,j))/h0

dp(i,j,kpn)=dp(i,j,kpn)-delp
dp(i,j,kn)=dp(i,j,kn)+delp
saldp=saln(i, j,kpn)*delp
sgain(i,kp)=sgain(i,kp)-saldp
sgain(i,k)=sgain(i,k)+saldp

sdot > 0 -- extract mass (and salin.) from layers below k-th interface
do 60 kp=k,kk
kpn=kp+mmnn

8 DIAPYCNAL MIXING : DIAPFL.F 97

do 60 i=ifp(j,1),ilp(j,1)

delp=0.

if (sdot(i,j).ge.0.)

.delp=max(0.,min(p(i,j,k)+h0,p(i,j,kp+1))
-max(p(i,j,k) ,p(i,j,kp)))* sdot(i,j)
/max (epsil,min(p(i,j,kk+1)-p(i,j,k),h0))

dp(i,j,kpn)=dp(i,j,kpn)-delp
dp(i,j,kn-1)=dp(i,j,kn-1)+delp
saldp=saln(i, j,kpn)*delp
sgain(i,kp)=sgain(i,kp)-saldp
60 sgain(i,k-1)=sgain(i,k-1)+saldp

c
do 78 k=1,kk
kn=k+mmnn
c
do 78 i=ifp(j,1),ilp(j,1)
p(i,j,k+1)=p(i,j,k)+dp(di,j,kn)
c
¢ —-—- get new salinity from salinity integral stored in -sgain-

if (dp(i,j,kn).gt.onecm)
.saln(i,j,kn)=sgain(i,k)/dp(i,j,kn)
78 continue

To end, we calculate the interface pressures.

c

¢ --- water from ultra-thin layers (typically near bottom) may have repeatedly
¢ ——— been transferred to other layers, causing dp < 0. adjust.

c

do 79 k=kk,1,-1

do 79 i=ifp(j,1),ilp(j,1)

p(i,j,k)=max(0.,min(p(i,j,k),p(i,j,k+1)))
79 dp(i,j,k+mmnn)=p(i,j,k+1)-p(i,j,k)

8 DIAPYCNAL MIXING : DIAPFL.F

8.2.2 Flowchart

{ Calculate H, }

Calculate 9,(‘:)]/2 and @i.;)]/.z

Calculate ?,E.H and ?E:)

{Calculate flux F), and the excursion Az}

[Extract mass of neighboring layers }

‘ Calculate pressures at interfaces ‘

Figure 15: Order of the mized layer calculations in MICOM 2.6

98

8 DIAPYCNAL MIXING : DIAPFL.F 99
8.3 Variables
8.3.1 Identification
Notation in the theory of HU (1991) Notation in diapfl.f
Hy dpmx
Z delp
o) thup(i,1)
v thdn(i,1)
al(c:)l/2 thup (i,k)
AP thdn (i, k)
8.3.2 Global variables
integer variables : ifp(j,m), ilp(j,m), isp(j), klist(di,j)
real variables : baclin, mixfrq, diapyc, dp(i,j,k), dpmx(i,j),dpold(i,j), epsil,

hO, k1list(i,j), p(i,j,k), sdot(i,j), saln(i,j,k), sgain(i,k),
thdn(i,k), theta(i,k), thmix(i,j), thup(i,k),utill(i,j), util2(i,j),
util3(i,j), utild(i,j)

logical variables : thermo

8.3.3 Local variables

bound upper bound of the lower interface of a layer
delp integration thickness

dif divergence of heat flux

dthet density growth

hOhi,hO0lo integration thickness bounds

ka,kb,kn,kp indices of iterative sequences

pl,p2,pmid intermediate pressures

saldp salinity growth

thk,thka,thkb intermediate values of specific volume

wgt

weighting coefficient

9 OCEAN MIXED LAYER : MXLAYR.F 100

9 Ocean mixed layer : mxlayr.f

9.1 Formalism

To model the seasonal evolution of the thermal regime of the surface ocean implies including
the effects of forcing by the atmosphere, whose fundamental properties are totally different
from those of the ocean. The solar influence translates in part to a gain in radiative heat.
Moreover, we have known for a long time that the effect of the prevailing winds in the atmospheric
boundary layer manifests itself through turbulent transport of momentum in the surface layers.
To account explicitly for the processes connected to ocean-atmosphere exchanges in the context
of an isopycnic theory, MICOM uses an integral-type model whose development was initiated by
KRAUS & TURNER. (1967). In such a model of the surface layer behavior, the problem of closing
the turbulence equations is greatly simplified since we need simply to determine the turbulent
fluxes at the boundaries of the mixed layer. The progressive shrinking of the thickness h of the
surface layer by diapycnic mixing is counterbalanced by a mechanism increasing the thickness.
For this, we introduce an entrainment velocity w, at the base of the layer such that :

dh .. dh
we—E if E>0
(122)
dh
=0 if — <0
w 1 at =

The originality of this type of model is to express the vertical turbulent fluxes at the base of the
mixed layer by an equation of the general form :

— (W) o weAa (123)

where Ag depicts the discontinuity of the variable at the base of the layer. In this model, the
effect of the wind is represented by the surface stress 75(7s,,7s,).
9.1.1 Internal energy and turbulent kinetic energy

The evolution equation of the internal energy of a homogeneous layer of temperature 6, is then
given by :

s _ (g v 1 90
h _(ew)_h—(ow)OJrE(Ro—Rh)— [KH <$Hh (124)
with : — (W)o = % and — (W) L weAf. R, is the solar radiation at the depth z and

P the surface heat losses (infrared radiation, latent and sensible heat flux). Af represents the
temperature discontinuity at the base of the mixed layer. At the surface, we have, of course,
accounted for the flux [K H (%)]0. If the latter is null, we situate it in the upper limit of the

homogeneous layer.

The knowledge of the entrainment velocity necessitates a supplementary equation. In a ho-
mogeneous layer model, we carry out this calculation using the integrated equation of turbulent

9 OCEAN MIXED LAYER : MXLAYR.F 101

kinetic energy E/2 :

/0 8E (E—I—llw/)] _ (E—i-l,w/)] _/0 u'w'. (Ou/dz) dz—l—/o bw' dz — hep,
hat 2 po o 2 po o Izt L —~
b ¥ i :
(125)
with :

u(u,v) : horizontal velocity ;

b= g(po — p)/po : buoyancy ;
@ pressure ;
m : TKE average heat dissipated in the mixed layer.

In the complete form, this equation expresses therefore the equilibrium between :

[1] the TKE tendency contained in the mixed layer ;

[2] the TKE flux at the base of the mixed layer ;

[3] The TKE surface flux ;

[4] a production term from cutting the current ;

[5] a consumption term corresponding to the buoyancy of the homogeneous layer ;

[6] a heat dissipation term.

NILLER & KRAUS (1977) have shown that the TKE flux at the base of the mixed layer is
generally negligible. On the other hand, the TKE content of this layer is more often consid-
ered constant. Further, following KRAUS & TURNER (1967), the surface TKE flux originating
principally from the turbulent agitation at the surface (waves, swells, ...) is parametrized as :

E !
<_ n LU’)] — mou? (126)
0

where u, is the surface drag velocity such that :
ulx =T14/p (127)

As for the production term, we simply write :
0
/ w'w'. (0u/0z) dz = mzu? (128)
—h

In referring to a reference state with temperature Tp, salinity Sy, and in hydrostatic equilibrium,
let :
p = po[l —ar(T —Tp) + Bs(S — So)] (129)

with the expansion coefficients cv; and (B defined such that :

ore-3(3), « -2,

9 OCEAN MIXED LAYER : MXLAYR.F 102

We have : 0 .
/ Dl dz = — I (weAb+ B(B)) (131)
—h

B(h) then represents the sum of surface flux — (b’w’)0 and of the increase of buoyancy due to
the absorption of solar radiation :

B — (3o =z 132
(h) (bw)0+pcp (R0+Rh 2 [B (132)
The TKE conservation equation in the mixed layer can then finally be written as :
h
(mo 4+ m3)u? — 2 (B(h) — weAb) — hey, = 0 (133)

9.1.2 Parametrization of turbulent dissipation

To treat this "handicap’ and to address a generalization of the parametrization of the turbulent
dissipation €, GASPAR (1988) reintroduced the vertical dissipation scale of Kolmogorov [, such
that :

e=E3?/l, (134)
Let, then, over the mixed layer :

€m = us/l (135)

ue is a characteristic velocity scale of the turbulence in the mixed layer and [a dissipation length
which can be expressed formally as a function of diverse parameters :

| =F(h,L,\,La,Ly) (136)
with :

L =u3/B(h) : Monin-Obukov length

A =u,/f : Ekman length

La = (Au? + Av?)/Ab : relative scale at the entrainment zone

Ly = (EI/Q/N) L scale of stratification at the base of the mixed layer

N : Brunt-Vaisala frequency

9.1.3 A recent prediction model of the mixed layer

Since the dynamic instability present at the base of the mixed layer is typically of a time scale
on the order of the inertial period, GASPAR (1988) notes that this phenomenon can be neglected
in the seasonal studies. In a parallel way, we will be able to omit therefore the influence of the
TKE dissipation produced by this term : La does not enter in the determination (136) of [. On
the other hand, to introduce Ly will not have an important effect if AT is very weak. This is
rarely the case in the ocean. Finally, (135) can be expressed as :

hem = u>G(h/L,h/)\) (137)

G is a function of the stability parameter of Monin-Obukov h/L and of the rotation parameter
h/X. Realizing that setting ue = u, causes us to underestimate the turbulent velocity scale
causing convective deepening, GASPAR (1988) writes first of all :

1 h
uzzEm:—/ E dz (138)
h Jo

9 OCEAN MIXED LAYER : MXLAYR.F 103

From the earlier studies of the subject, it appears that the stability parameter can be expressed
by the relation :

G(h/L,h/\) = % = a1 + as max[1,h/(0.4\)] exp (h/L) (139)

Finally, the prediction of h is carried out using the expression (133), in which the turbulent
dissipation comes from the forms (137), (138) and (139) :

h
(mg 4 m3z)ud — 5 (B(h) —weAb) - (h/HE3? =0 (140)
Moreover, we introduce the turbulent vertical characteristic velocity scale such that :
[y —
ul = —/ w? dz =Wy, (141)
h Jo
Then, we write the TKE equation at the base of the mixed layer :
— 0 E 9 _
N V) _ Y = L] _ Tl _
(bw)ih = l(Q + powﬂh [uw.(au/az)]ih e (142)

In consideration of the relative values of each term of this relation, GASPAR puts it in the general
entrainment form :

hAbw, = mluzuw (143)

Finally, let :
hAbw, = my E,, W12 (144)

The equation giving W,, is obtained by integrating the tendency equation of w2 over the ho-
mogeneous layer. GASPAR obtains the form :

1 1
(— - @> hAbw, +hB(R)] = & (M _ 1) a2 mams 5 mah gy s,
2 3 3\l 1 3 Ly
I, is a characteristic length in the absence of rotation :
h
=W + az exp (h/L) (146)
P

The equations (140), (144) and (145) constitute the total system of the Oceanic Mixed Layer
model described in the article of GASPAR (1988). The entrainment velocity is calculated
numerically from the formula :

[(0.54, — Cp1S,)? + 2C4(h/1)2A,S,]"% — (054, + Cp1 S,)

hAbw, — 14
w Calh /2 = Coy (147)

With :
A, = Cpzul — CpuhB(h) (148)
S, = (ms + ma)ud — %hB(h) (149)
Cp1 = [2(1 —ms)(l, /1) + m4]/6 (150)
Cp3 = [ma(ma +m3) — (I,/1)(m2 + mz — msms3)]/3 (151)
Cy = 2mamy > (152)

9 OCEAN MIXED LAYER : MXLAYR.F 104

9.1.4 Entrainment condition

From equation (140), it is clear that entrainment does not manifest itself if the condition .S, > 0
is true. In the oceanic mixed layer, the TKE resulting from the production mechanisms less
the energy consumed to homogenize the heat gain due to thermal input (all solar radiation +
surface losses) should be positive.

On the other hand, the relation (144) implies :

W >0 (153)
In eliminating hAbw, of (140) and (145), we obtain :

2C,1 Csl _
Win = 2B, — —Lul B, 154
my m4hu* m (154)

where W, is expressed as a function of F,, and C5 is a positive constant :

Ca = [(3 — 2ms) (ma + m3) — msm3]/3 (155)
W, is cancelled by :
2/3
Col
Epmo = u? P 1

The entrainment condition (153) is therefore equivalent to :
Ep > Emo (157)

Entrainment does not appear if the TKE exceeds a minimum given by the form (156). After
having eliminated hAbw, of (140) and (144), E,, is given by the zero of the function :

1 h
F(E,,) = §m1EmW}n/2 + 7E2{2 -5, (158)

in which W,, depends on E,, by the intermediary of the relation (154). For E,, > Eo, F is a
strictly increasing function of E,,. The entrainment can not appear if :

F(Epp) <0 (159)

Entrainment can not exist therefore if the TKE balance S), is greater than the minimal dissipation
(i.e. the dissipation associated with F,,, the minimum value of E,,).
Writing
h
Ap - Sp - 7E3/2

m0

(160)

the necessary and sufficient condition for entrainment at the base of the mixed layer (w, > 0)
is :

A, > 0. (161)

In the case where this condition is not satisfied, the hypothesis is that h automatically adjusts
itself to maintain A, = 0. When the heat balance B(h) is not zero, this is equivalent to :
Cp3

h=—=L 162
& (162

9 OCEAN MIXED LAYER : MXLAYR.F 105

Following the theory of NIILER & KRAUS (1977), the equilibrium of the mixed layer is attained
by :

3
2mus

(—Bo)
By is the surface buoyancy flux. The authors assume that it varies linearly inside the mixed
layer and is zero at the base. The Monin-Obukov length is then expressed as L = u3/kBy. &

is the Von Karman constant (x ~ 0.4). To remain in accord with this definition, we have :
m = 1.25.

h =

(163)

9.1.5 Constants and numerical parameters

Referring to diverse earlier studies, GASPAR retains the following values by the different param-
eters introduced above : m; = 045 ; mo =26 ; m3 =19 ; mqy =23 ; ms = 0.6 ; a1 =
0.6 ; ao =0.3

9.2 Numerical techniques
9.2.1 Entrainment algorithm

During a time interval At, after having detected a deepening (entrainment) (w, > 0), the growth
of the thickness of the mixed layer can be written :
EAt

Ah= ———— 164
bmi:v - bsub ()

With :

EAt : TKE variation in the mixed layer
bmiz : buoyancy of the mixed layer of thickness h
bsyp : buoyancy of the adjacent isopycnic layer

The form (164) can not be incorporated directly in a numerical calculation (the denominator
can be zero). Moreover, this expression assumes that under the mixed layer exists a layer of
buoyancy bgyp of finite thickness. As there is no a priori reason for these two assumptions to be
true, BLECK et al. (1989) have developed a particular method for solving (164).

In MICOM, calculating EAt is optional. Option (1) uses the formulation of the TKE evolution
equation following the method of KRAUS & TURNER (1967) (m # 0 ; n =0.15; s =0). Option
(2) employs the relation (147).

Let b; and z; be the buoyancy and depth of the mixed layer at a point P of the domain.
We introduce the variables z; to represent the lower positions with respect to the sub-adjacent
isopycnic layers of buoyancy by. The potential energy (PE) of the column of water is expressed
as :

o 1 & 2 2
PE = / bz dz = 2> bz — zi_1) (165)
z0 2 k=1

with zg = 0. The same column of water, but mixed has the PE :

2
z
PEmi:v = bmi:v?N (166)

9 OCEAN MIXED LAYER : MXLAYR.F 106

with :
1 N
bizc = — bi(z, — zp— 167
. 1; k(2 — 2k—1) (167)
Also let :
ZN N
PEmic =~ > bilzk — zk-1) (168)
k=1

In remarking that the kinetic energy used to mix the heat acquired by radiation in the surface
layer is the same as the difference (168)-(165) over the depth h, we obtain :

2EAt + G(I — 1) — bz}
_ () —bizp (169)
F(l -].) - blzl_l
with : F(I) = Yh_y br(zx — 2x—1) and G(I) = Y k_; be(27 — 27). Note that the calculation of
h by such a formulation implies knowledge of the number [of the concerned layers.

9.2.2 Detrainment algorithm

Consider the situation after a time interval At in the case where the term EFAt becomes negative.
The index (); always serves to identify the mixed layer. Suppose the buoyancy b, lies between
the two discrete values by and bi_; of the chosen initial distribution. In this case, the Monin-
Obukov length satisfies the condition L < z;.

In principle, we could describe the buoyancy transfer by the conservation equation :

(bll - bl)L = (b1 - bk)(zl - L) (170)
But then, we must satisfy the following two conditions :

condition A : b} < bpgy where by, is the buoyancy which a fictitious mixed layer
of thickness L would acquire during a time interval At under the influence of By. It
is a threshold procedure. Its usage permits avoiding surface reheating of the ocean
caused by errors in the ocean-atmosphere flux which serve to force the model. byqz
is given by the expression :

1 1
bmas = bt — BoAt (— - —> (171)
L Z1
If the value of b} evaluated by (170) exceeds byqz, this threshold is translated into
the new mixed layer thickness :
by — by
2 =2 172

! bma:L‘ - bk ()
condition B : b} < by_1. If this condition B is true, it will be necessary to partition
the buoyancy transfer over the layers k£ and k£ — 1. This provision handles well the
non-isopycnic behavior of the mixed layer between discrete values by and bg_1. For
by > bi_1, it is possible to distribute a part of the buoyancy over a layer of density
pr—1 and of thickness 2] — L such that :

’ b1 - bk: bmaw - bk—l

2. 1=z — L 173
BT e — by br—1 — by (173)

9 OCEAN MIXED LAYER : MXLAYR.F 107

T Tew T T

21 L

AT

2k

1S3

Figure 16: Conservation of heat during detrainment of the mized layer.

If condition B is not satisfied, the mixed-layer detrainment mechanism therefore leads to inflation
of two sub-surface layers. We can decompose the process in three steps (figure 16) :

1. formation of the new mixed layer of thickness equal to the Monin-Obukov length and of
buoyancy b,qz ;

2. inflation of an intermediate layer (k — 1) ;

3. adjustment of the old sub-adjacent layer (k) to the mixed layer.

In fact, the application of relation (173) (i.e. creating an intermediate layer of density oj_1)
is not possible if the buoyancy is not a function of only one variable. Taking into account the
joint effects of salinity and temperature introduces a degree of supplementary freedom. In this
case, it is necessary to extract from the layer k a quantity of heat equal to the sum of the heat
required to match the buoyancy value of the part above the slice of water entrained and of the
heat corresponding to the increment (b} — b1) of the mixed layer. In this framework, BLECK et
al. (1992) have developed a particular method to schematize these transfers. Assume a surface
layer of temperature 77, of salinity S7 and of thickness z;. Let Tj, Sk, 2z be the corresponding
characteristics for the layer k. If (21 — L) > 0, the procedure transfers the excess of the heat
contained in a layer of thickness (z; — L) to the layer k. Since we are in isopycnic coordinates,
this transfer will be paired with a heat transfer of this ascending layer to the mixed layer. Let
AT be the maximum allowed growth of the temperature of the mixed layer allowed during

9 OCEAN MIXED LAYER : MXLAYR.F 108

a time step. We note by z the thickness of the fraction of the intermediate layer of vertical
extension (z; — L) which allows an augmentation of temperature AT. Since the mixed layer has
a buoyancy greater than that of layer k, the problem becomes one of determining z. The heat
transfer to layer k leads to a temperature T),e, such that (figure 16) :

Tz + Tz, — AT (21 — 2) + Thew(z + 2k) (174)
bet T\ + AT)z — ATz + T,
Ty = (T +)z — 21+ g2y (175)
Z+ zi
and the salinity :
S S
Snew = 12 Ok (176)
z+ zy

These two characteristics must satisfy o(Thew, Snew) = 0. In assuming an equation of state of
third degree :
U(T, S) =c1 + T + ¢35+ C4T2 + TS + 06T3 + C7TZS (177)

and in expressing Tpey and Spey, through the forms (az +b)/(cz +d) and (ez + f)/(cz + d), the
conservation of o requires solving the polynomial equation :

asz> + a2’ +a1z+ag =0 (178)

The expressions for coefficients ag, a1, a2, a3 are given in appendix E of BLECK et al. (1992).
Moreover, the introduction of a supplementary layer o;_; implies also the restoration of motion
parameters. Now, the MICOM theory assumes that the exchanges of momentum occur imme-
diately after the mass transfers between the mixed layer and sub-adjacent layers (BLECK et al.
1989). For a given layer, the momentum remains constant during the process of rearranging the
sub-surface layers concerned in the evolution algorithm of the mixed layer.

9.3 Usage

In the MICOM code, the numerical calculation of the evolution of the surface mixed layer is
carried out by the subroutine :

subroutine mxlayr (argument list)

9.3.1 Order of operations

Recall that, while deepening the mixed layer is relatively easy to model, to reproduce its recession
is more complex. Assume a surface layer of characteristics 71, S1, z1. In the original detrainment
algorithm developed by BLECK et al. (1989) for one variable of state, later adapted by BLECK
et al. (1992) for the two variables T' and S, the heat acquired by the ocean surface during a time
step is not distributed over a slice of water of thickness equal to the Monin-Obukov length L.
In fact, we introduce the thickness h given by the relation (162) proposed by GASPAR (1988).
So, the old mixed layer is divided into a new surface layer of characteristics 77, S1, h and a fossil
layer of thickness (z; — h). This last layer is also partitioned into two sub-layers :

1) a slice of water of density equal to that of the sub-adjacent layer o and of salinity
St

2) an intermediate layer of temperature 7] and of salinity Sj.

9 OCEAN MIXED LAYER : MXLAYR.F 109

The option of parametrization of dissipation actually used in version 2.6 of MICOM is the for-
mulation of GASPAR (1988). The lines of code of option 1 based on the method of KrAauUS &
TURNER (1967) are still available but commented out.

c
¢ —-—- determine turb.kin.energy generation due to wind stirring (ustar3) and

¢ —--- diabatic forcing (buoyfl). ustar3,buoyfl are computed in subr. -thermf-
c

€ = = = e e e e e e e e e e e e m M e M — M mm - -

c

c ———option1 : kraus-turmner mixed-layer t.k.e. closure

c

ccc em=0.8*exp(-p(i,j,2)/(50.%onem)) ! hadley centre choice (orig.: 1.25)

ccc en=0.15 ! hadley centre choice (orig.: 0.4)

ccc thermg=.5%((en+1.)*buoyfl(i,j)+(en-1.)*abs(buoyfl(i,j)))
ccc turgen(i,j)=deltl*(2.*em*gxustar3/thref+thknss*thermg)/thref
c

¢ --- find monin-obukhov length in case of receding mixed layer (turgen < 0).
¢ ——— the monin-obukhov length is found by stipulating turgen = 0.

¢ --- store temporarily in ’sdot’.

c

ccc if (turgen(i,j).1lt.0.) then

ccc sdot(i,j)=-2.*em*gxustar3/min(-epsil,thref*thermg)

ccc else

ccc sdot(i,j)=thknss

ccc end if

c

¢ ——— option 2 : g a s p a r mixed-layer t.k.e. closure

c
dpth=thknss/onecm
ekminv=abs(corio(i,j))/max(epsil,ustar(i,j))
obuinv=-buoyfl(i,j)/max(epsil,ustar3)
ex=exp(min(50. ,dpth*obuinv))
alfil=eal+ea2+max(1l.,2.5*dpth*ekminv) *ex
alf2=eal+ea2*ex
cpl=((1.-em5)*(alf1/alf2)+.5%emd)*athird
cp3=(em4* (em2+em3)-(alf1/alf2)* (em2+em3-em3*emb)) *athird
ape=cp3*ustar3/thref+cpl*dpth*buoyfl(i,j)

Once we have calculated A, with relation (148), we carry out the test :

if A, > 0, the TKE variation (EAt) of the mixed layer during a time step is pos-
itive. To maintain the equilibrium formulated by the equation (140), this growth
represents the TKE that will be consumed by entrainment into the mixed layer. It
is calculated from the form (147). A first inference of the new thickness z] of the
mixed layer is given by z1;

9 OCEAN MIXED LAYER : MXLAYR.F 110

if A, <0, the TKE variation is negative. The TKE contained in the mixed layer will
therefore diminish by a quantity EAt = A,. A first inference of the new thickness
2z} of the mixed layer is given by the relation (162) under the condition that it be
less than 7.

if(ape.1t.0.) then ldetrainment
turgen(i,j)=(g*deltl/thref)*ape
sdot (i,j)=min(thknss,g*cp3/(cpl*max(epsil,obuinv)))

else 'entrainment

cc4=2.*xem4/(eml*eml) * alflxalfl

spe=(em2+em3) *ustar3/thref+0.5*dpth*xbuoyfl(i,j)

turgen(i,j)=(g*deltl/thref)*(sqrt((.5*ape-cpl*spe)**2
+2.*ccd*ape*spe) - (.5*ape+cpl*spe))/(ccéd-cpl)

sdot (i,j)=thknss

end if

Then, we calculate the form (169) iterating over k as long as the value of h obtained remains

greater than that of the upper interface of the ith layer situated at the position zx_;. When
this condition is no longer true, we obtain the order [of the relation (169) and as a consequence,
a second inference of z{.

C
C
C
C

O o0 o0 o0

- utill,util2 are used to evaluate pot.energy changes during entrainment

utill (i, j)=thmix(i,j,n)*thknss

86 util2(i,j)=thmix(i,j,n)*thknss**2

- find pnew in case of mixed layer deepening (turgen > 0). store in ’sdot’.
- entrain as many layers as needed to deplete -turgen-.

do 85 k=2,kk

kn=k+nn

do 85 i=ifp(j,1l),ilp(j,1)

pnew=(2.*turgen(i,j)+theta(k)*p(i,j,k)**2-util2(i,j))/
max (epsil,theta(k)*p(i,j,k) -utili(i,j))

- stop iterating for ’pnew’ as soon as pnew < k-th interface pressure

if (pnew.lt.p(i,j,k)) pnew=sdot(i,j)

- substitute ’pnew’ for monin-obukhov length if mixed layer is deepening

if (turgen(i,j).ge.0.) sdot(i,j)=pnew

utili(i,j)=utili(i,j)+theta(k)*dp(i,j,kn)

85 util2(i,j)=util2(i,j)+theta(k)*(p(i,j,k+1)**2-p(i,j,k)**2)

9 OCEAN MIXED LAYER : MXLAYR.F 111

Before validating this first result, we require the numerical value which will be retained to
be located between the bottom and a minimum thickness value of the mixed layer.

c
do 42 i=ifp(j,1),ilp(j,1)

¢ ——— store (pnew - pold) in ’sdot’.

¢ ——— don’t allow mixed layer to get too deep or too shallow.
sdot(i,j)=min(p(i,j,kk+1) ,max(thkmin*onem,sdot(i,j)))

-dp(i,j,kin)
klist(i,j)=2
tdp(i,j)=0.
42 sdp(i,j)=0.

c
thknss=dp(i,j,kln)
pnew=thknss+sdot (i, j)

c

After this, the sign of the variation Az = 2| — 21 is used as a test :

if Az > 0, we confirm the result hs = z] and we calculate the new values of temper-
ature, salinity, and density of the mixed layer ;

c

¢ --- (mixed layer d e e p e n s)

c
saln(i,j,kin)=(saln(i, j,kin)*thknss+sdp(i,j))/pnew
temp(i,j,kin)=(temp(i,j,kin)*thknss+tdp(i,j))/pnew
dp(i,j,kin)=pnew
thmix(i,j,n)=sig(temp(i,j,kin),saln(i,j,kin))-thbase

c

if Az < 0, we proceed in two steps :

1) from the general equation of internal energy (124), we determine the
growth of temperature AT undergone by a fictitious layer of thickness 2|
given by the relation (162) from the theory of GASPAR (1988).

2) for the mixed layer to maintain this thickness z], we conserve the
salt content (see figure 18). Then, we apply the relation of state giv-
ing the temperature T}y, as a function of o (which is conserved) and of
salinity Sy, which we want to calculate. The growth Az of the thickness
of the sub-adjacent layer involves a heat transfer in the fictitious surface
layer which should be positive. (see figure 19).

9 OCEAN MIXED LAYER : MXLAYR.F

O 0O 0O 0 0 0 00

O O o0 0

At this stage, it is therefore possible to compare this heat gain taken to 2z} (which
translates to an increase of the surface temperature d7T') with the temperature growth

k=klist(i,j)

kn=k+nn

dpkn=max (dp(i,j,kn),0.)
skn=saln(i,j,kn)
tkn=temp(i,j,kn)
sknl=saln(i,j,kin)
tknl=temp(i,j,kln)

assume that incoming heat is distributed over Monin-Obukhov depth 1.
’dtemp’ is the resulting mixed-layer temperature increment.
mixed layer below 1 into one part of depth z cooled and detrained
into layer k, and a part heated to match temperature rise above 1.
to balance thermal energy while maintaining reference density in
layer k, z must satisfy cc3*z**3 + cc2xz**2 + ccl*z + ccO = 0.

dtemp=surflx(i,j)*deltl*sdot(i,j)*g/(spcifh*thknss*pnew)

compare dtemp with heating rate ’dtmx’ resulting
from 100% detrainment

snew=(skn*dpkn-sknl*sdot(i,j))/(dpkn-sdot(i,j))
tnew=tofsig(theta(k)+thbase, snew)
dtmx=((tkn-tnew) *dpkn- (tknl-tnew) *sdot (i,j))/pnew

AT found before :

a) if dT' < AT, in this configuration, 100% detrainment is possible. We
attribute the new values Ty and Speq to layer k then, concerning the
mixed layer, we put T{ = T} + dT and 2’1 = 21 + Az. In operating this
way we guard against the non-representative surface heating because, un-
less we have obtained exactly dT' = AT, the depth of the mixed layer
which we fix is greater than what it should be. In all cases, it should be
greater than the threshold value which was fixed by the run. The surface
density becomes o} = o(T7, S1)

C

¢ --- 100% detrainment possible

c
dp(i,j,kin)=pnew

dp(i,j,kn) =dpkn-sdot(i,j)
temp(i,j,kin)=tknl+dtmx

temp(i,j,kn)=tnew
saln(i,j,kn)=snew

112

9 OCEAN MIXED LAYER : MXLAYR.F 113

b) if T > AT, we distribute the heat over a surface layer of temperature
T/ =Ty + dT and of thickness 2| such that 2} > 2] (see figure 20). The
sub-adjacent layer £ is also going to thicken and the new characteristics
Thew and Sy,ey, of this layer should also satisfy :

U(Tnewa Snew) = Ok (179)

In keeping with the preceding case, partial detrainment is now possible.
The density of the mixed layer now becomes of = o(T}',S1). The new
characteristics of layer k£ have particular forms given by appendix E of
BLECK et al. (1992), the conservation of o) comes from the solution of
a polynomial of the form (178).

(el e}

--- partial detrainment only.
--- new (t,s) in layer k will be t=(a*z+b)/(z+d), s=(e*z+f)/(z+d).
a=tknl+dtemp
b=(tkn*dpkn-dtemp*thknss)/onem
d=dpkn/onem
e=sknl
f=skn*dpkn/onem

O

clmsig=cl-1.e3*(theta(k)+thbase)

ccO=dx*d* (d*clmsig+b*c2+f*c3)+bx (d*f*c5+b* (d*xc4+b*xc6+f*c7))

cc3= (clmsig+axc2+exc3)+a*x(excb+a*x(cd+axcb+e*cT))

ccl=d*(3. *dxclmsig+(2.*b +axd)*c2+(2. x*f+d*e)*c3)+b*x((2.*axd
+b)*c4+3.*axb*xc6+(2.*xa*xf+bke)*c7)+(a*xd*f+bk(d*xe+ f))*ch

cc2= (3. xd*clmsig+(2.*a*xd+b)*c2+(2.*d*e+ f)*c3)+ax((2.%b
+axd) *c4+3. *axbxc6+(2.*bxe+axf)*xc7)+(b *xe+ax(f+d*e))*ch

if (ccubq(x)**3+ccubr(x)**2.gt.0.) then
c —-— one real root

num=1

z=root (x)

else
¢ ——— three real roots

num=3

z=root1(x)

end if

¢ ——— does root fall into appropriate range?
if (z.1t.-.001.o0r..99*z*onem.gt.-sdot(i,j)) then
work(1)=z
if (num.eq.3) then
work (2)=root2(x)
work(3)=root3(x)

9 OCEAN MIXED LAYER : MXLAYR.F 114

end if

¢ —--- detrain amount ’z’ into layer k c
sdot (i,j)=max(sdot(i,j),-z*onem)
dp(i,j,k1ln)=thknss+sdot(i,j)
dp(i,j,kn) =dpkn -sdot(i,j)
temp(i,j,kin)=tknl+dtemp
temp (i, j,kn)=(a*z+b)/(z+d)
saln(i,j,kn)=(exz+f)/(z+d)

The specific volume of the surface layer is given by the equation of state.

thmix (i, j,n)=sig(temp(i,j,kln),sknl)-thbase c

The following operation consists of accounting for the thickness variation of the surface layer.

c
¢ --- store ’0ld’ interface pressures in -pu,pv-—
do 882 k=2,kk+1
do 882 j=1,jj1
c

do 881 1=1,isu(j)
do 881 i=ifu(j,1),ilu(j,1)
881 pu(i,j,k)=min(depthu(i,j),.5*(p(i,j,k)+p(i-1,j,k)))

do 882 1=1,isv(j)
do 882 i=ifv(j,1),ilv(j,1)
882 pv(i,j,k)=min(depthv(i,j),.5%(p(i,j,k)+p(i,j-1,k)))

¢ --- store ’new’ layer thicknesses in -dpu,dpv-

do 883 j=1,jjl
do 883 k=1,kk
do 883 1=1,isp(j)
do 883 i=ifp(j,1),ilp(j,1)

883 p(i,j,k+1)=p(i,j,k)+dp(i,j,k+nn)

c
do 834 k=1,kk
kn=k+nn
do 834 j=1,jj1
c

do 831 1=1,isu(j)
do 831 i=ifu(j,1),ilu(j,1)

9 OCEAN MIXED LAYER : MXLAYR.F

831 dpu(i,j,kn)=max(0.,
min(depthu(i,j),.5*%(p(i,j,k+1)+p(i-1,j,k+1)))-
min(depthu(i,j),.5*%(p(i,j,k)+p(i-1,j,k))))

do 834 1=1,isv(j)
do 834 i=ifv(j,1),ilv(j,1)
834 dpv(i,j,kn)=max(0.,
min(depthv(i,j),.5*(p(i,j,k+1)+p(i,j-1,k+1)))-
min(depthv(i,j),.5*(p(i,j,k)+p(i,j-1,k))))

115

The last step of the calculation consists of the redistribution of momentum over the water
column, accounting for the possibility of momentum mixing by diffusion.

C
C
C
C
C

—--- redistribute momentum in the vertical.
—--- homogenize (u,v) over depth range defined in -utill,util2-

-—— thk>0 activates momentum diffusion across mixed-layer interface
thk=vertmx*onecmkdeltl

do 97 j=1,jj1
do 83 1=1,isu(j)

do 822 i=ifu(j,1),ilu(j,1)
utill (i, j)=max(dpu(i,j,kln),pu(i,j,2)+thk)
uflux(i,j)=0.

822 util3(i,j)=0.

do 82 k=1,kk
do 82 i=ifu(j,1),ilu(j,1)
delp=max(0.,min(util1(i,j),pu(i,j,k+1))
-min(utill(i,j),pu(d,j,k)))
uflux(i,j)=uflux(i,j)+u(i,j,k+nn)*delp
82 util3d(i,j)=util3(i,j) +delp

do 83 i=ifu(j,1),ilu(j,1)
83 u(i,j,kin)=uflux(i,j)/utild(i,j)

do 84 1=1,isv(j)

do 844 i=ifv(j,1),ilv(j,1)
util2(i, j)=max(dpv(i,j,kin),pv(i,j,2)+thk)
vflux(i,j)=0.

844 utila(i,j)=0.

9 OCEAN MIXED LAYER : MXLAYR.F

80

84

96

97

do 80 k=1,kk

do 80 i=ifv(j,1),ilv(j,1)

delp=max(0.,min(util2(i,j),pv(i,j,k+1))
-min(util2(i,j),pv(i,j,k)))

vflux(i,j)=vflux(i,j)+v(i,j,k+nn)*delp

util4(i,j)=utild(i,j) +delp

do 84 i=ifv(j,1),ilv(j,1)
v(i,j,kln)=vflux(i,j)/utild(i,j)

do 97 k=2,kk
kn=k+nn

do 96 1=1,isu(j)

do 96 i=ifu(j,1),ilu(j,1)
pu(i,j,k)=pu(i,j,k-1)+dpu(i,j,kn-1)

q=max(0.,min(1., (util1(i,j)-pu(i,j,k))/(dpu(i,j,kn)+epsil)))
u(i,j,kn)=u(i,j,kin)*q+u(i,j,kn)*(1.-q)

do 97 1=1,isv(j)

do 97 i=ifv(j,1),ilv(j,1)
pv(i,j,k)=pv(i,j,k-1)+dpv(i,j,kn-1)
pv(i,j,k)=pv(i,j,k-1)+dpv(i,j,kn-1)

q=max(0.,min(1., (util2(i,j)-pv(i,j,k))/(dpv(i,j,kn)+epsil)))
v(i,j,kn)=v(i,j,kin)*q+v(i,j,kn)*(1.-q)

116

9 OCEAN MIXED LAYER : MXLAYR.F 117

9.3.2 Flowchart

{ Calculate A, }

/ \

A, <0 A, >0

Calculate EAt Calculate EAt

s s
Initialize 2} Initialize 2

N ~

{ Calculate [and h J
|

{ 2 < thkmin? }
|

{ Calculate Ah J

~ N

R
\

Calculate T,,.,, Spew

o~ { Calculate T, S, and o} }
dl' < AT dl' > AT
\ \
{Calculate Ti, N’l} [Calculate T, =/ }
N /

‘ Turbulent diffusion at the base of the layer ‘

‘ Momentum redistribution ‘

Figure 17: Flowchart of the calculation of the mized layer evolution in MICOM 2.6

9 OCEAN MIXED LAYER : MXLAYR.F 118

Sl Snew Sk Sk+ 1 S
>
Z) | —
20 |
2 - -
Z
v

Figure 18: Conservation of salt in updating the mized layer.

9 OCEAN MIXED LAYER : MXLAYR.F 119

Tyx+1 Tx Thew T, T T
<-->
dT S
oo oo oo >
AT
2y |
Zx
z
v

Figure 19: Illustration of the mechanism of updating the mized layer in the case when 100%
detrainment is possible.

9 OCEAN MIXED LAYER : MXLAYR.F 120

Ty41 T, T

AT

Figure 20: [lustration of the mechanism of updating the mized layer in the case when partial
detrainment is possible.

9 OCEAN MIXED LAYER : MXLAYR.F 121

9.4 Variables
9.4.1 Identification

Notation in the theory of GASPAR (1988)

Notation in mxlayr.f

h/l alfi

h/l, alf2

Ap, Sy ape,cpe

B buoyfl(i,j)
Cy ccd

Cp1,Cp3 cpl,cp3

h dpth

ai,a eal,ea?2

/A ekminv

my, ..., Ms eml,...,emb
exp (h/L) ex

1/L obuinv

EAt turgen(i,j)
U ustar(i,j)

Notation in the theory of BLECK et al. (1992) Notation in mxlayr.f

a,b,c,d,e,f a,b,c,d,e,f

ap, a1,02, a3 ccO,ccl,cc2,cc3

C1,C2,C3,C4,Cs5, Ce, C7 cl,c2,c3,c4,chb,c7

d(c1 — o) clmsig

9.4.2 Global variables

integer variables : klist(i,j)

real variables : buoyfl(i,j), deltl, depthu(i,j), depthv(i,j), dp(i,j,k),
dpu(i,j,k),dpv(i,j,k), g, onecm, p(i,j,k),puli,j,k),pv(i,j,k),
saln(i,j,k), sdot(i,j), tdp(i,j), temp(i,j,k), thkmin,

thmix (i, j,k), tracer(i,j,k), turgen(i,j),u(i,j,k),v(i,j,k),
uflux(i,j), vflux(i,j),ustar(i,j) utill(i,j),util2(i,j),

util3(i,j), utild(i,j), vertmx

logical variables : thermo, trcout

9 OCEAN MIXED LAYER : MXLAYR.F 122

9.4.3 Local variables

a,b,c,d,e,f
alfi

alf2

ape

ccd

cpl,cp3

clmsig

delp

dpth

dtemp

dtmx

dpkn
ekminv
eml,...,emb
ex

num
obuinv
pnew

a
skn,sknl
snew

spe

thk
thknss
tkn,tknl

tnew

coefficients in the expressions of new characteristics 7' and S of layer k
stability parameter h/[

stability parameter in the absence of rotation h/l,

term in the expression of entrainment

intermediate coefficient parametrizing turbulent effects

coefficients in the expression of the entrainment

coefficient in the calculation of zeroes of the polynomial giving the new
characteristics of the layer sub-adjacent to the mixed layer

pressure variation at interfaces

transformation of the pressure difference in the mixed layer in thickness
units (em)

variation AT of temperature in the mixed layer

temperature increment d1' corresponding to the buoyancy transfer con-
tained in the slice of water of thickness Az

mixed layer thickness

inverse of the Ekman length

coefficients of the turbulent effects parametrization
exponential of the Monin-Obukov stability parameter h/L
number of real roots

inverse of the Monin-Obukov length

mixed layer thickness (cm)

relative variation of momentum in the mixed layer due to its deepening
salinity of the mixed layer at two consecutive instants
salinity of the mixed layer

term in the expression of the entrainment

augmentation of mixed layer thickness by turbulent diffusion
pressure difference in the mixed layer (mb) at t = nAt (s)
temperatures of the mixed layer at two consecutive instants

temperature of the mixed layer

9 OCEAN MIXED LAYER : MXLAYR.F 123

ustar3 ustar(i,j)**3
work (3) temporary storage array
z real root of the polynomial

9.5 Procedures

Functions harmon, ccubqg, ccubr, ccubqr, ccubsl, ccubs2, root, ccubrl, ccubim,
rootl, root2, root3

Subroutines prtij, advem

10 OCEAN-ATMOSPHERE EXCHANGES : THERMF.F 124

10 Ocean-atmosphere exchanges : thermf.f

In MICOM 2.6, the ocean-atmosphere exchanges considered are of three types :

e The radiative exchanges R : balance of incident solar radiation and radiation emitted by
the sea surface.

e Turbulent heat transfers

1. A latent heat transfer £ due to evaporation of seawater ;

2. A sensible heat transfer 7 which is established by convection when a significant
difference exists between the temperature of the sea surface and that of the air.

e Mechanical energy transfers : essentially the effect of wind

10.1 Formalism and numerical techniques

In the field of applications of MICOM 2.6, the atmospheric forcings are integrated at each point
via the following files of thermodynamic climatological parameters :

. radiation : radflx(i,j,1) ;

. wind at the sea surface (10m) : wndspd(i,j,1) ;
. air temperature : airtmp(i,j,1) ;

. water vapor content : vapmix(i,j,1) ;

. precipitation : precip(i,j,1).

The numerical values furnished at times [A7 where AT is the sampling period are interpolated
to the simulation’s timestep, nAt, using the coefficients wy, wy, wo, ws.
10.1.1 Heat balance

In MICOM 2.6, the effect of ocean-atmosphere exchanges (except the mechanical effect of the
wind) on the mixed layer is summed in the calculation of thermal balance :

B=R+H+E (180)

A positive (i.e., upward) flux of sensible heat corresponds to a loss, a contribution of energy by
the sea following the sign of the difference between the sea and the atmospheric boundary layer :

H=0Cp,,, Ex (Ts — Tu) (181)
E, is an exchange coefficient such that : E; = p,CrW

pq + mass/volume of the air

C'r : heat transfer coefficient

Cp,; + specific heat of the air

T : sea surface temperature

T, : temperature in the atmospheric boundary layer
W : wind velocity

10 OCEAN-ATMOSPHERE EXCHANGES : THERMF.F 125

Responsible for important quantities of heat exchanged between the sea and atmosphere by
evaporation, the latent heat flux always induces a heat loss by the ocean. To formulate this
term in the balance estimation, in MICOM 2.6, we use the expression :

E=E,L(H,—E,) (182)
With :

L : latent heat of vaporization
H, : specific humidity
E, : evaporation

Moreover, we account for the precipitation-evaporation balance in the evolution of the salinity
(therefore the density) of the mixed layer by prescribing the precipitation.

10.1.2 Mechanical energy transfers

A wind representable by the vector W(¢) induces on the surface a wind stress 74(¢) which can
be well-expressed by a quadratic expression of type :

Ts = po Cp [WIW (183)

Cp is a coefficient realizing sea surface drag. We put Cp ~ 1073. The expression of the drag
velocity at the surface u, is obtained by the relation :

w2 x = 74/ po (184)
At the point z, we more often use the classic parametrization of the concept of turbulent diffu-
sion :

B
r(2) = p Ku a—‘z‘ (185)

with :

x : horizontal unit vector
Ky : coefficient of turbulent momentum diffusion

10.2 Usage
10.2.1 Order of operations

First, we interpolate the values of thermodynamic parameters (radiation, wind, etc) at an instant
in the simulation. From there, it is possible to determine the flux of latent and sensible heat
as well as the velocity drag at the surface. The following step accounts for the thermal balance
by proceeding to the inference of new values of temperature, salinity, and density of the mixed
layer. During the last phase, we calculate the buoyancy growth necessary to establish the Monin-
Obukov length which is the reference in the step of modeling the evolution of the surface layer

(cf. §9).

10 OCEAN-ATMOSPHERE EXCHANGES : THERMF.F 126

10.2.2 Flowchart

{ Interpolate climatological forcing parameter fields J

{ Establish latent and sensible heat fluxes }

{ Calculate new characteristics of the mixed layer }

{ Determine buoyancy growth at the surface }

Figure 21: Order of the thermal balance calculation in the mized layer in MICOM 2.6

10.3 Variables
10.3.1 Identification

Notation in the theory Notation in thermf.f
B surflx(i,j)
Chair csubp
Chuater spcifh

Cr ct

E, exchng

B, vpmx

& evap

H, gsatur

L evaplh

R radflx

Uy ustar

w wind

Pa airdns

10 OCEAN-ATMOSPHERE EXCHANGES : THERMF.F 127

10.3.2 Global variables
integer variables : ifp(i,1), i1lp(i,1), jj1

real variables : buoyfl(i,j),deltl, dp(i,j,k),saln(i,j,k),surflx(i,j), temp(i,j,k,
thmix (i, j,n), thref, ustar(i,j)

logical variables : diagno

10.3.3 Local variables

airt air temperature

emnp evaporation-precipitation balance
empcum cumulative balance of evaporation-precipitation
evap evaporation balance

exchng coefficient of heat transfer

j,1 intermediate indices

prcp precipitation

radfl radiative flux

thknss mixed layer thickness

vpmx evaporation

watts cumulative flux

wind wind

10.4 Procedures

Functions dsigds, dsigdt, gsatur

11 CALCULATIONAL GRID 128

11 Calculational grid

y
@ + ® e 3 -1
EeEEEEE.
¢ 4 ' """" A . '
| R N X
T
j1 J j+1
x
® =M,p, Ap,H, T, S X =u + =v 0=Q

Variables contained in arrays with indices i and j

Boundaries of the cell (4,)

Figure 22: Distribution of variables on an Arakawa C grid

12 EQUATION OF STATE 129

12 Equation of state

Rather than do the numerical calculations as a function of density, which comes into the analytic
formulations by its inverse, we introduce the specific volume « such that :

a=-=- (186)

If on the other hand, we consider the variable ¢ such that :

P
oc=—-—1 187
0 ()

we then obtain : 1 1
a=————~—(1—0 188
o t0) " T (188)

The system of units used in MICOM is the CGS system. Consider a layer of density p, =
1.025 g/cm?. Using a reference py = 1 g/ecm?, we then have o ~ 0,025. In the code, the
authors have introduced notations in comments in the file blkdat.f. :

c alpha=1/rho=thref*(1.-theta(k))

and we use thref=1. The numerical values of the variable theta(k) correspond therefore
(by a factor near 1072) to those we habitually use to describe a field of oceanic density through
the variable o which we introduce by the relation :

d=1+10"30r (189)

and where we then have d ~ 1. Moreover, it is then possible to express the variables representing
the density by a polynomial function of the temperature (t in °C) and of the salinity (s in
°/00). In MICOM, we use the equation advocated by FRIEDRICH & LEvVITUS (1972) :

sig(t,s)=(cl+c3*s+t*(c2+ch*s+t* (cd+cT7*s+c6*t)))*1.e-3

with : ¢l = —7.2169 1072 ; ¢2 = 4.9762 1072 ; ¢3 = 8.0560 107" ; ¢4 = 7.5911 1073 ;
¢5 = —3.0063 1073 ; ¢6 = 3.5187 10~ and ¢7 = 3.7297 10~°. The partial derivatives of this
expression with respect to the temperature and the salinity give the relations :

dsigdt(t,s)=(c2+cbxs+2.*t*(c4+cT7*s+1.5%c6*t))*1.e-3
dsigds(t,s)=(c3+t*(cb+t*c7))*1.e-3

The temperature as a function of specific volume (r) and of the salinity are then given by the
formula, :

tofsig(r,s)=-cubrl(r,s)+sqrt(3.)*cubim(r,s)-athird*a2(s)

with the internal functions :

12 EQUATION OF STATE 130

cubrl(r,s)=sqrt(-cubq(s))*cos(cuban(r,s))
cubq(s)=athird*al(s)-(athird*a2(s))**2

cuban(r,s)=athird*atan2(sqrt (amax1(0.,-(cubq(s)**3+cubr(r,s)**2))),cubr(r,s))
cubr(r,s)=athird*(.5%al(s)*a2(s)-1.5%(a0(s)-1.e3*r/c6))-(athird*a2(s))**3
cubim(r,s)=sqrt(-cubq(s))*sin(cuban(r,s))

a0(s)=(cl+c3*s)/c6

al(s)=(c2+chb*s)/c6

a2(s)=(c4+cT*s)/c6

and the parameter : athird=1./3.

Note : All modification of the preceding expression of the equation of state imply changing
the internal functions declared in the head of the sub-program mxlayr

13 SUB-PROGRAMS 131

13 Sub-programs
13.1 Functions
Calculation of the harmonic average of two variables a and b :

harmon(a,b)=2.*axb/(a+b)

Calculation of the latitude alat as a function of the distance dist1 to the equator and of the
size of the mesh grid in degrees of latitude :

alat(distl,grid)=(2.*atan(exp(disti*grid/radian))-pi/2.)

Calculation of the distance dist to the equator as a function of the latitude alat and of the
size of the mesh grid in degrees of latitude :

dist(alatl,grid)=alog(tan((2.*alatl+pi)/4.))*radian/grid
Determination of the depth at calculational points u and v :

uvdep(a,b)=min(a,b)

13.2 Subroutines

subroutine prtij (imid,jmid,k,u,scu,v,scv,dp,scp,t,sct,s,scs)

From a given layer k, this subroutine prints a window of 5 x5 mesh points around a point which
has coordinates identified by the first two arguments : imid and jmid. The concerned variables
are successively : u,v,dp,t and s. The output values are integers. The appropriate scaling factors
scu, scv, scp, sct and scs should therefore be specified as input arguments.

14 MICOM NOTES 132

14 MICOM notes

(1) The real-basin version of the Miami Isopycnic Coordinate Ocean Model (originally called
ATLMIX, but now referred to as MICOM) contains a Kraus- Turner mixed layer, accommodates
2 independent thermodynamic variables (T,S), and supports variable bathymetry and irregular
coastlines. The model is documented in BLECK/RooTH/Hu/SmITH (1992) (BRHS). The di-
apycnic mixing scheme, which didn’t make it into that paper, is documented in a LaTeX file
called DIAPYC.TEX.

(2) Model versions 1.x are snapshots taken at various stages of model development as bugs
were discovered and loose ends were tied up. In versions 1.x, temperature and salinity are ad-
vected and diffused independently throughout the domain. Model versions 2.x treat temperature
as a diagnostic variable in isopycnic layers (but not in the mixed layer). This cuts advection
time in half and eliminates the need for a coordinate maintenance (”cabbeling”) algorithm. De-
trainment is patterned after Appendix E in BRHS. Versions 2.2 and higher include diapycnal
mixing of buoyancy and salinity, with temperature in isopycnic layers inferred from the equation
of state. Starting with version 2.3, the thermal forcing functions “T-hat” and Bowen ratio used
in older versions are replaced by actual atmospheric temperature and humidity.

(3) Horizontal array dimensions are uniformly set to (IDM,JDM), even though most fields do
not make use of the full allotted space due to horizontal staggering considerations (Arakawa C
grid). Specifically, there are only (IDM-1)x(JDM-1) mass points, (IDM)x(JDM-1) U-velocity
points and (IDM-1)x (JDM) V-velocity points. U and V points addressed as (I,J) are actually
located at grid locations (I-1/2,J) and (I,J-1/2), respectively, relative to mass point (I,J). Vor-
ticity and Coriolis parameter addressed as (I,J) are at (I-1/2,J-1/2). The distribution of water
and land within the rectangle spanned by (IDM-1,JDM-1) is defined by the DEPTHS array. A
zero depth means land.

(4) The two time slots required for all prognostic and some diagnostic variables are incorporated
into the third (vertical) array dimension. The vertical grid index KM [as in TEMP(I,J, KM)]
stands for model level K, time level M (as in “mid” time). Letter N [as in TEMP(I,J,KN)]
indicates the “new” and “old” time level.

(5) We recommend that the code be compiled with all variables preset to negative-indefinite. On
Cray machines, this is accomplished by compiling with the “-ei” option and loading with the “-f
indef” option. Grid values whose use in the various finite-difference operators is anticipated (and
only those) are set to zero during model initialization. This provides some safeguard against

contamination by “spurious” land data in case of unforeseen complexities in coastline shape.

(6) If compiled with the “-ei” compiler option, model version 1 will crash upon encountering
single-grid-interval coastal inlets or channels. Versions 2.1 - 2.3 contain code (16 lines starting
with statement label 16 in subroutine BIGRID) to detect and fill in such features in the DEPTHS
array. Version 2.4 does away with this restriction, i.e., allows single-point inlets (provided the
above-mentioned 16 lines in BIGRID are removed). Single-point promontories and islands are
okay.

(7) There are no restrictions regarding the number of islands, but the parameter MS must

14 MICOM NOTES 133

be adjusted to the maximum number of “interruptions” of any grid row or column by land.
Specifically, MS-1 interruptions are allowed. Interruptions in the diagonal direction (of interest
to the Poisson solver) are governed by the parameter MSD. If MS and/or MSD are chosen too
small, the program will stop in one of the routines BIGRID,INDXI,INDXJ during the initializa-
tion phase with an error message.

(8) Loops extending over the horizontal grid domain are triply nested to suspend arithmetic
operations wherever a grid row crosses land. Innermost loop bounds are stored in arrays with
names like IFP,ILP,IFU,ILU,JFV,JLV where the letters F and L stand for first and last grid
point in a segment (segments are defined as contiguous 1-dimensional sets of “water” points),
the letters P,U,V indicate whether the loop goes over mass (P) or velocity (U,V) points, and
the letters I,J indicate whether the inner loop index is I or J. The middle loop extends over the
number of segments in the grid row defined in the outer loop; this number is given in arrays
named ISP,JSV, etc.

(9) The model does not use a rigid lid; instead, it advances the barotropic and baroclinic
solutions using a split-explicit scheme. The barotropic streamfunction is therefore computed
for diagnostic purposes alone. If the iteration count in the Poisson solver is set too low for the
solution to converge, the model run itself will not be affected. No attempt is presently made to
determine the correct streamfunction value along island boundaries. We suggest the following
quick fix to prevent the Poisson solver from setting the streamfunction to zero along island
boundaries (which it presently does) :

(a) Change the name of the GINDEX Common block in Subr. POISND to GINDX1.

(b) Make a copy of Subr. BIGRID (named, say, BIGRD1) in which the name of the
GINDEX common block is changed to GINDXI1.

(c) Make a version of the DEPTHS array (named DEPTHI) in which you change
zero depth values indicating islands into small nonzero numbers in the 0.001 0.01

m range.

(d) In the initialization part of the model, insert the statement CALL BIGRD1(DEPTH1)
after CALL BIGRID(DEPTHS).

The solution produced by the above procedure, which amounts to covering islands with a thin
sheet of water, should be sufficiently accurate for most display purposes. It is implemented in
our model output processor MICOMPROC.

(10) Numerous diagnostic messages in the code are presently commented out by the letters
CDIAG but can be activated as needed. Many of these messages refer to a specific grid point
(ITEST,JTEST) which the user must define in a DATA statement in BLKDAT. Subroutine
PRTIJ prints clusters of 5x5 grid variables centered on ITEST,JTEST in their proper spatial
context. (PRTIJ may not work near the coast if the code is compiled with -ei.)

(11) The model equations are solved on a regular grid overlying a Mercator projection of the
earth’s surface; this is to assure isotropy in grid resolution. Provisions for rotating the poles 90
degrees, i.e., defining a true meridian as the “equator” of the map projection, are made. Sub-
routine NEWOLD/OLDNEW gives the location of (rotated) model grid points in relation to a
lat/lon grid and vice versa. However, interpolation routines for translating fields of variables
back and forth are the responsibility of the user.

14 MICOM NOTES 134

(12) Versions 1.3 and up read 2-degree North Atlantic basin depths from an ASCII file named
DEPTH.51x56 and 7 sets of monthly forcing fields. Forcing fields for version 2.3 and up are
in ASCII files named FORCING.TAU_X, FORCING.TAU.Y, FORCING.WINDSPD, FORC-
ING.RADFLX, FORCING.PRECIP, FORCING .Q_STAR, and FORCING.T_STAR. These form
a complete set of boundary conditions that can be used to test-run the model. Initial conditions
— based on zonally averaged Levitus climatology — are generated internally by routine POFLAT.
(A batch submit file for machines running under Unix is given in DEMORUN_2.5. Results from
a 10-day test run on a 32-bit workstation (DEC-5000) are in DEMOOUT_2.5.)

(13) During the upgrade of model version 1.3 to 2.0, a bug was introduced into the mixed-
layer buoyancy calculation [BUOYFL(I,J)=...] which was not discovered until 17 October 1992.
The mod file 1IPT3_TO_2PT0.MODS was corrected on that day; this led to a set of altered
source files for versions 2.0 - 2.2 which are marked with the suffix “BUGFIX”.

(14) A FORTRAN-90 version of MICOM level 2.5 suitable for running on a Connection Ma-
chine (CM-5) is kept as a tar file in ftp subdirectory ANONYMOUS .BLECK.MASSIVE on
nutmeg.rsmas.miami.edu . This particular version is based on 127 x 127 horizontal points with
a mesh size of 0.9 deg. longitude. Forcing functions and a 127 x 127 point depth array are
provided in the same subdirectory.

(15) Starting with version 2.4, the previously monolithic 2500-line main program has been split
into approximately 10 subroutines. The fragmented code, which runs 10fragments more easily),
requires the UNIX ’tar’ utility for unpacking. The most recent version of the code is found
in MICOM_2.5_TAR. It is being updated occasionally, mainly for cosmetic reasons. Users are
advised to use the UNIX ’diff” utility to keep track of differences between their version and the
latest version of MICOM.

(16) The major differences between versions 2.5 and 2.4 are as follows:

(a) mixed-layer dissipation is formulated according to Gaspar;

(b) the convective-adjustment algorithm in CONVEC.f entrains both momentum
and mass into the mixed layer (it used to entrain only mass);

(c) thermal surface forcing is no longer part of MXLAYR.f but has been moved to a
separate routine THERMF .f;

(d) time smoothing of u,v fields is done in a layer thickness-weighted fashion (anal-
ogous to the smoothing of mass field variables in TSADVC.f);

(e) the “physics” routines CONVEC, THERMF ,MXLAYR are now called after the
“dynamics” routines to remove inconsistencies in the definition and treatment of
“old” and “new” fields.

(17) We are presently trying to improve the efficiency of the model by switching from leapfrog
to forward-backward time differencing with Adams- Bashforth treatment of the inertial terms
in the baroclinic momentum equations. Also planned is a generalization of the mixed-layer de-
trainment algorithm to allow downward salinity transfer within the fossil mixed layer in analogy
to the presently occurring upward heat transfer. This is expected to speed up mixed-layer de-
trainment in polar regions.

14 MICOM NOTES 135

(18) Setting horizontal array dimensions IDM,JDM to powers of 2 may cause slowdowns on
some computers due to cache or memory bank conflicts. Since the scope of do-loops in the
model is defined in terms of the variables II, JJ, model performance can be optimized without
changing the physical basin configuration by altering IDM and/or JDM but not II,JJ. (Needless
to say, IDM,JDM may not be smaller than II,JJ respectively.)

These NOTES by :
Rainer Bleck (rbleck@rsmas.miami.edu)
13 April 1994

14 MICOM NOTES 136

References

BARAILLE R., FILATOFF N., 1995 : Modele Shallow-water Muticouches Isopcynal de Miami.
Rapport d’Etude CMO/RE No 003/95

BLECK R., 1978 : Finite Difference Equations in General Vertical Coordinates. Contrib. Atmos.
Phys, 51, 360-372

BLECK R., BoubprA D.B., 1986 : Wind-driven Spin-up in Eddy-resolving Ocean Models For-
mulated in Isopycnic and Isobaric Coordinates. J. Geophys. Res., 91(C), 7611-7621

BLEck R., HAnsoN H.H., Hu D., Kraus E.B., 1989 : Mixed Layer-Thermocline Interaction
in a 3D Isopycnic Coordinate Model. J. Phys. Oceanogr., 19, 1417-1439

BrEck R., SMITH L.T., 1990 : A Wind-driven Isopycnic Coordinate Model of the North and
Equatorial Atlantic Ocean. I- Model Development and Supporting Experiments. J. Geophys.
Res., 95(C), 3273-3285

BLEck R., RootH C., Hu D., SmiTH L.T., 1992 : Salinity-driven Thermocline Transients
in a Wind- and Thermohaline-forced Isopycnic Coordinate Model of the North Atlantic. J.
Phys. Oceanogr., 22, 1486-1505

CUSHMAN-ROISIN B., 1994 : Introduction to Geophysical Fluid Dynamics. Prentice Hall,
New-Jersey.

FRrIEDRICH H., LEVITUS S., 1972 : An Approximation to the Equation of State for Sea Water,
Suitable for Numerical Ocean Models. J. Phys. Oceanogr., 2, 514-517

GASPAR P., 1988 : Modelling the Seasonal Cycle of the Upper Ocean. J. Phys. Oceanogr., 18,
161-180

Hu D., 1991 : A Joint Mixed Layer/Isopycnic Coordinate Numerical Model of Wind- and
Thermohaline- driven Ocean General Circulation with Model Sensitive Study. Ph.D., Uni-
versity of Miami, Florida, 220 pp

KrAUs E.B., TURNER J.S, 1967 : A One-dimensional Model of the Seasonal Thermocline.
Part II : The General Theory and its Consequences. Tellus, 19, 98-105

NuLER P.P., KrAaus E.B., 1977 : A One-dimensional Model of the Upper Ocean. In Modelling
and Prediction of the Upper Layers of the Ocean. Pergamon Press.

SMOLARKIEWICZ P.K. 1984 : A Fully Multidimensional Positive Definite Advection Transport
with Small Implicit Diffusion. J. Comput. Phys., 54, 325-362

SMOLARKIEWICZ P.K., CLARK T.L., 1986 : The Multidimensional Positive Definite Advection
Transport Algorithm : Further Development and Applications. J. Comput. Phys., 67, 396-
438

SMOLARKIEWICZ P.K., GRABOWSKI W.W., 1990 : The Multidimensional Positive Definite
Advection Transport Algorithm : Non-oscillatory Options. J. Comput. Phys., 86, 355-375

SUN S., BLECK R., CHASSIGNET E.P., 1993 : Layer Outcropping in Numerical Models of
Stratified Flows. J. Phys. Oceanogr., 23, 1877-1884

ZALESAK, S., 1979 : Fully Multidimensional Flux-corrected Transport Algorithms for Fluids.
J. Comput. Phys., 31, 335-362.

