

Modeling the Critical Zone: Challenges and opportunities for network science

Lejo Flores Boise State University CSDMS Annual Meeting

Takeaways...

- Critical Zone Observatories (CZOs): a network of sites to advance fundamental critical zone understanding
- Models are critical tools for gaining insight into CZ processes
- CZO modeling efforts at present are robust, but fragmented
- Opportunities abound... (but maybe not money, yet)

What is the critical zone?

- From the bedrock to the top of the canopy
- Where rock meets life

Illustration modified from Chorover, J., R. Kretzschmar, F. Garcia-Pichel, and D. L. Sparks. 2007. Soil biogeochemical processes in the critical zone. Elements 3, 321-326. (artwork by R. Kindlimann).

© 2014 Boise State University

What is the critical zone?

 From the bedrock to the top of the canopy

- Where rock meets life
- Where rock *becomes* life

Illustration modified from Chorover, J., D. L. Sparks. 2007. Soil biogeochemica Elements 3, 321-326. (artwork by R. Kindilmann).

© 2014 Boise State University

A Network of Sites for CZ Science

- 10 CZOs established in 2 competitions
- Network office (Lou Derry, Tim White), data team (Anthony Aufdenkampe)
- International CZOs in Europe, Australia, China

The CZ as a central component to ESMs

CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries Deep-Sea Sediment Solar System Mapping Cores Landandice Continents & Topography Insolation (Milankovitch) tmospheric Physics / Dynami Climate Change Cloudines Radiation Dynamic Impacts Physical Albedo* Extent Leads Wind Stess", Heat Flux", Net Fresh Water" Precip', Tair', Insolation, n(CO₂) Sness', Heat Flux Eveporation', Heat Flux', Albedo, Dust Tair, Precip' Tropospheri Forcing* Albedo' 48 Clímate System Snev Sea Ice Photosynthesis Onen Oclean ce Moisture / Energy Balanc Ocean D SST*, Moe Upweling Transports Cloudiness n(CO₂) n(Greenhouse (Temperature Extrem Soil Mbisture*, GPF Vegetation sunt*. Type*. St φH2O)* φ(S, N...) Volcanism Meximum dt Marine Bioge strial Ecosystems Sustainabl Vield mpact Pr Human Solar/Space UY*, Partides Plant/Stand $I_z < 0$ Nutrient **ctiviti** Land Decombos Recycling Dynamics Uæ nen Oclear d/CFMa (€N2O) (€CH2) ¢03, NOy) ¢(CO2, №0, CH4, NH4) r(CO₂) (¢CO2),(¢(S,NH4) ¢(CO2) Cycles (CFMs) Human Tropospheric Chemistry Activities Cloud Processes Urban Boundary Layer **ģ**90_≫Νο_× Troposphere ŧ№20,00 Forsminifers.(Temperature) Polen (Vegetation) n(CO2) Seep-Se ke Bog/Lake Cores Sediment Cores Cores ' = on timescale of hours to days * = on timescale of months to seasons ϕ = flux n = concentration

Bretherton, 1985

© 2014 Boise State University

AND ALL

Some specific examples from Reynolds

- Background:
 - USDA ARS experimental watershed since the 1960s
 - Rich historical and contemporary datasets
- Key issues:
 - Large gradients in elevation, slope, aspect, vegetation cover
 - Land management activities (fire, grazing)
 - Significant warming in the last 50 years

The second s

Charge: Gain insight on how distribution of soil carbon changes under future scenarios of climate change, land management...

Geographic setting and context

Reynolds Creek: A CZO for soil carbon

Modeling framework

Deserved and the second s

WRF: 1 km; ParFlow 30 m

David and an all static land

WRF: 9 km; ParFlow 30 m

Research and Research In and

Ramifications for predicting SOC

In the second second second second second

© 2014 Boise State University

But it's not the only story...

The state of the s

Opportunities on the horizon

- Integration of models and data to advance understanding of cross-scale interactions
- Understanding of hillslope-scale controls on global water, energy, biogeochemical cycling
- Explicit representation of human dimensions of disturbance on the critical zone
- Modeling *frameworks* to facilitate network modeling efforts

Synthesis between models AND data

A MARKED STREET ST

Synthesis between models AND data

AVIRIS-NG acquisition in Reynolds

Medvigy, D. et al. 2009

and the second s

Hillslope-scale controls

M. J. Poulos, J. L. Pierce, A. N. Flores, and S. G. Benner, "Hillslope asymmetry maps reveal widespread, multi-scale organization," Geophys. Res. Lett., vol. 39, no. 6, p. L06406, Mar. 2012.

Mar Charles

Figure 3a Extent

Figure 3b Extent

Physiographic Provinces

[Fenneman and Johnson, 1946]

Steeper N-aspects

No N-S asymmetry

Steeper S-aspects

Market Barriel and Barra Philipping and Barra

© 2014 Boise State University

Human dimensions of CZ dynamics

Mean annual precipitation (mm)

- Land modification occurs against a climatic, lithologic, and geomorphic template
- At Reynolds Creek CZO: Grazing, fire, juniper removal

Human dimensions of CZ dynamics

To what degree are social and biophysical systems coupled? And does this coupling need to be explicitly included in models?

Human dimensions pervade CZOs

- IML CZO: Completely re-plumbed physical system, nutrient input
- Christina River CZO: Nonpoint source nutrient loading, urbanization
- Eel River CZO: Illegal marijuana farms and associated hydrologic modification
- Reynolds Creek CZO: Mixture of public/private land management activities (grazing, fire, etc.)

PIHM-X framework

Table 1. Models in use at the Susquehanna Shale Hills CZ Observatory.

Model name	Purpose	Responsible party	Timescale of simulations
PIHM ¹	Modelling hydrologic fluxes	C. Duffy	Minutes to decades
Flux-PIHM	Modelling water and energy fluxes	Y. Shi	Minutes to decades
Flux-PIHM-BGC	Modelling carbon and nitrogen fluxes	Y. Shi	Hours to decades
PIHM-SED	Modelling sediment transport	C. Duffy	Minutes to decades
RT-Flux-PIHM	Modelling reactive transport	L. Li	Minutes to decades
Regolith-RT-PIHM	Modelling reactive transport	L. Li	Minutes to millions of years
LE-PIHM	Modelling landscape evolution	R. Slingerland	Minutes to millions of years

¹Penn State Integrated Hydrologic Model

C. Duffy, Y. Shi, K. Davis, R. Slingerland, L. Li, P. L. Sullivan, Y. Goddéris, and S. L. Brantley, "Designing a Suite of Models to Explore Critical Zone Function," Procedia Earth and Planetary Science, vol. 10, pp. 7–15, 2014.

	Governing equations for rock and ref 1. Evolution of ground surface $\frac{\partial z}{\partial t} = \left(\frac{\sigma_{ro}}{\sigma_{re}} - 1\right) \sec\theta P_0 e^{-\alpha H} - \frac{\partial q_x}{\partial x}$ 2. Evolution of bedrock $\frac{\partial e}{\partial t} = -\sec\theta P_0 e^{-\alpha H} + U$ 3. Evolution of regolith $\frac{\partial h}{\partial t} = \frac{\partial z}{\partial t} - \frac{\partial e}{\partial t} = \frac{\sigma_{ro}}{\sigma_{re}} \sec\theta P_0 e^{-\alpha H} - \frac{\partial e}{\partial t}$ 4. General equation for downslope regonstrained to the second	golith + U $-\frac{\partial E}{\partial x}$		ition sketch
	$E = 4(\pi^* - \pi^*)^{\frac{3}{2}} / \frac{1}{D - D} D$	Parameters	Description	Unit
	$\mathbf{E} = 4(t_0 - t_c)^2 \sqrt{RgDD}$	\mathbf{P}_0	Bare bedrock weathering rate	m/yr
	Governing equations for hydrology	$\tau^*_{\ c}$	Sediment critical Shields stress	dimension
	1. Overland flow	\mathfrak{r}^*_0	Overland flow Shields stress	dimension
	$d0 = 1 (A)^{\frac{2}{2}} 1$	D	Grain diameter	m
	$\frac{dQ_w}{dw} = A - \left(\frac{A}{R}\right)^3 S^{\frac{1}{2}}$	Р	Channel wetted perimeter	m
	dt n(P)	S	Ground surface slope	dimensionless
	2. Unsaturated Flow	Ψ	Pressure head	m
	$C(\Psi) \frac{\partial \Psi}{\partial x} = \nabla \cdot (K_w(\Psi) \nabla (\Psi + z))$	σ_{ro}	Rock density	kg/m ³
_	ðt vir	σ_{re}	Regolith bulk density	kg/m ³
5,	3. Groundwater Flow	θ Slope angle		Degree
	$\partial \psi$ = (<i>u</i> , <i>u</i>) = (<i>u</i>)	R	Submerged specific gravity	dimensionless
	$L(\Psi) \frac{\partial t}{\partial t} = V \cdot (K_w(\Psi)V(\Psi + z))$	С	Specific moisture capacity	1/m

LandLab framework

Received and the second second

Some challenges

- There is no conceptual model of the CZ that community has developed and agrees upon
- Cross CZO communication among modelers limited (who needs another monthly telecon?)
- Network CZ modeling efforts were not something originally in scope
- A great opportunity for CSDMS and infrastructure to play a facilitative role

Thanks! Questions?

Post script:

- Chris Duffy, Scott Peckham, Adrian Harpold and I are working on a workshop proposal
- Outcomes:
 - A conceptual model of the CZ
 - Mapping of ongoing modeling activities to that conceptual model; identification of gaps, synergies, and opportunities
 - List of 5-7 science questions to enable network modeling
 - White paper, a move towards an RCN proposal