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Takeaways...

e Critical Zone Observatories (CZ0Os): a network
of sites to advance fundamental critical zone
understanding

* Models are critical tools for gaining insight
Into CZ processes

 CZ0O modeling efforts at present are robust,
but fragmented

e Opportunities abound... (but maybe not
money, yet)
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What is the critical zone?

"« From the bedrock to the
top of the canopy

Organisims

& soi e Where rock meets life

lllustration modified from Chorover, J., R. Kretzschmar, F. Garcia-Pichel, and
D. L. Sparks. 2007. Soil biogeochemical processes in the critical zone.
Elements 3, 321-326. (artwork by R. Kindlimann).
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What is the critical zone?

"« From the bedrock to the
top of the canopy

e Where rock meets life
e Where rock becomes life

Organisims

llustration modified from Chorover, J. }
D. L. Sparks. 2007. Soil biogeochemica
Elements 3, 321-326. (artwork by R. Kindlima
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A Network of Sites for CZ Science
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e 10 CZOs established in 2 competitions

 Network office (Lou Derry, Tim White), data team
(Anthony Aufdenkampe)

* International CZOs in Europe, Australia, China
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The CZ as a central component to ESMs

CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries
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Some specific examples from Reynolds

* Background:

— USDA ARS experimental
watershed since the 1960s

— Rich historical and
contemporary datasets
* Key issues:
— Large gradients in elevation,
slope, aspect, vegetation cover
— Land management activities
(fire, grazing)

— Significant warming in the last
50 years

Charge: Gain insight on how distribution of soil carbon changes
under future scenarios of climate change, land management...
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Geographic setting and context
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Reynolds Creek: A CZO for soil carbon
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Modeling framework
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WRF: 1 km; ParFlow 30 m
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WRF: 9 km; ParFlow 30 m
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Ramifications for predicting SOC
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But it’s not the only story...
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Figure 10. AT RIGHT: i
Distributed spin-up simulation !
soil C estimates. Black dots
indicate locations of field
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Figure 9. ABOVE: Modeled vs.

observed SOC (top 30 cm).
RMSE (low C) = 0.864 kgCm=2
RMSE (all) =3.125 kgCm
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Opportunities on the horizon

* Integration of models and data to advance
understanding of cross-scale interactions

* Understanding of hillslope-scale controls on
global water, energy, biogeochemical cycling

* Explicit representation of human dimensions
of disturbance on the critical zone

* Modeling frameworks to facilitate network
modeling efforts
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Synthesis between models AND data
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Synthesis between models AND data
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Hillslope-scale controls
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Human dimensions of CZ dynamics
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* Land modification occurs against a climatic,
lithologic, and geomorphic template

e At Reynolds Creek CZO: Grazing, fire, juniper
removal
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Human dimensions of CZ dynamics

To what degree are social and biophysical systems
coupled? And does this coupling need to be explicitly

included in models?

Ecosystem Services:
Provisioning of water,
food, fiber, timber,
medicine, biodiversity
etc.

Complex Natural Systems:
Global, Regional Climate
Hydrology
Vegetation Dynamics
Biogeochemical cycling

Complex Human Systems:
Water law
Environmental law
Land management policy
Perceptions

Intervention:
Silviculture, grazing,
fire, hydrologic
modification

© 2014 Boise State University

Climate change projections: Select CMIPS RCP scenarios and models

Input downscaled CMIP5
forcings to Envision

Input CMIP5 GCM output to

WRF

v

Landscape transitions

Engagement stakeholders
(USFS, USDA)

v

Hydroclimate transitions

. Translate and input

Envision output to WRF

Simulate regional

hydroclimate (WRF)

Simulate regional
hydrology (WRF-Hydro)

2. Identify alternative
management scenarios

3. Formulate associated
policies within Envision

4. Simulate landscape
transitions (Envision)

5. Output vegetation and

disturbance variables

. Output and analyze

regional hydroclimate
variables: precipitation,
snow storage, streamflow,
soil moisture




Human dimensions pervade CZOs

* ML CZO: Completely re-plumbed physical
system, nutrient input

* Christina River CZO: Nonpoint source nutrient
loading, urbanization

* Eel River CZO: lllegal marijuana farms and
associated hydrologic modification

* Reynolds Creek CZO: Mixture of public/private
land management activities (grazing, fire, etc.)
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PIHM-X framework

Table 1. Models in use at the Susquehanna Shale Hills CZ Observatory.

BOISE STATE UNIVERSITY

Model name Purpose Responsible Timescale of
party simulations
PIHM' Modelling hydrologic fluxes C. Duffy Minutes to
decades
Flux-PITHM Modelling water and energy fluxes Y. Shi Minutes to
decades
Flux-PIHM-BGC Modelling carbon and nitrogen fluxes Y. Shi Hours to decades
PIHM-SED Modelling sediment transport C. Duffy Minutes to
decades
RT-Flux-PIHM Modelling reactive transport L.Li Minutes to
decades
Regolith-RT-PIHM  Modelling reactive transport L.Li Minutes to

LE-PIHM

Modelling landscape evolution

R. Slingerland

millions of years

Minutes to
millions of years

'Penn State Integrated Hydrologic Model

C. Duffy, Y. Shi, K. Davis, R. Slingerland, L. Li, P. L.
Sullivan, Y. Goddéris, and S. L. Brantley, “Designing a
Suite of Models to Explore Critical Zone Function,”

Procedia Earth and Planetary Science, vol. 10, pp. 7-15,

2014.
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Governing equations for rock and regolith

1.Evolution of ground surface
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2. Evolution of bedrock
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4. General equation for downslope regolith flux

qyx = K;tan0 + K,sinBcos0+K3sinO
5. Downslope sediment transport

3 Parameters
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| Definition sketch

Description
Bare bedrock weathering rate

Sediment critical Shields stress
Overland flow Shields stress
Grain diameter

Channel wetted perimeter
Ground surface slope

Pressure head

Rock density

Regolith bulk density

Slope angle

Submerged specific gravity

Specific moisture capacity

Unit
m/yr
dimension

dimension

m
m
dimensionless
m
kg/m®
kg/m®
Degree
dimensionless
1/m




BOISE STATE UNIVERSITY

LandLab framework
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Some challenges

 There is no conceptual model of the CZ that
community has developed and agrees upon

* Cross CZO communication among modelers
limited (who needs another monthly telecon?)

* Network CZ modeling efforts were not
something originally in scope

e A great opportunity for CSDMS and
infrastructure to play a facilitative role
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Thanks! Questions?

Post script:

e Chris Duffy, Scott Peckham, Adrian Harpold and |
are working on a workshop proposal

* Qutcomes:
— A conceptual model of the CZ

— Mapping of ongoing modeling activities to that
conceptual model; identification of gaps, synergies,
and opportunities

— List of 5-7 science questions to enable network
modeling

— White paper, a move towards an RCN proposal
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