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Introduction
The river basins along the US West Coast are generally small, less than 15,000 km2, and
tend to flood immediately after rain events. The storm systems that deliver rain to the
West Coast margin are considerably larger than the river basins such that multiple river
basins receive rain within hours of each other. Subsequently, these proximal rivers likely
disperse fresh water and sediment to the coastal ocean at relatively the same time.
Therefore many conceptual and numerical models may underestimate sediment delivery,
dispersal, and burial, as well as buoyant circulation on shelves adjacent to small rivers
with mountainous catchments. This study quantifies how well river basin discharge 
correlates.

Discussion
Underestimation of freshwater and terrestrial material delivery to coastal ocean during a storm. 
could affect coastal circulation, transport, and deposition.
Other areas in the wold where this might occur:
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Methods
Identify USGS gauges of interest along the 
     U.S. West Coast. 
Data range from 10/1/1987 to 9/30/2007.
Created MATLAB scripts to process and 
     manipulate data.
Changed 15-min data into hourly data.  
Created partial duration series at 5% and 25%. 
Generated probability of exceedence curves. 
Ran pair-wise correlations for each station.
Accounted for lag and lead of -50 to +50 hours, although focus was on significant 
     correlations exceeding r=0.8 for hours -20 to +20 hours.
Second set of correlations calculated with time offsets commensurate to estimation 
     of flood travel time between the river gauge closest to the coast and the river mouth.
Flood travel time to the river mouth was calculated in two ways:
     1) Ran correlation for upstream and downstream flood records above 25% exceedence. 
     Temporal offset of maximum correlation was assumed to be travel time between stations.
     2) Attempting to use Mann equation to estimate travel time to river mouth for remainder of rivers.
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Fig. 1. Correlation R>0.9 between river gauge 
stations marked by a black circle.  Individual river 
basins outlined; those marked by the same color 
correlate.

25% Duration Series R > 0.90
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Fig. 3. Correlation R>0.8 between river gauge 
stations marked by a black circle.  Individual river 
basins outlined; those marked by the same color 
correlate.

25% Duration Series R >0.80
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Suspended 
sediment yield
t/km2/y

Storms with south (Marin) winds may cause several rivers along the Gulf of Lions to flood as 
well as influence sediment transport along the shelf.

Rivers in New Zealand have high sediment loads and yields. The discharge records (above 25%) 
from the Waiapu ad Waipaoa Rivers correlate, R = 0.63 for a 6 year record.

Hicks and Shankar

1) Several river gauge records above the 25% exceedence threshold correlated significantly with each other
above r =0.80 and r=0.90. Groups of rivers that discharged with hours of each other were identified.
2) Fewer groups correlated above the 5% exceedence threshold.
3) More groups of rivers were identified along the Washington and Oregon coasts than along the California 
coast. This is likely due to the relatively greater rainfall and higher frequency of floods to the north, whereas
 mid- to southern California river basins are more arid.
4) Although we were able to assess the flood travel time from USGS river gauge stations for a subset of
locations, we have yet to find a good way to extrapolate for those rivers that do not have alternate river gauges.

Future Work: Calculate the flood travel time from the USGS river gauge to the river mouth for all locationss.
Use the resuls to design numerical modeling experiments that investigate sediment transport and deposition.
 

Conclusions
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Fig. 5. Correlation R>0.8 between river gauge stations
marked by a black circle.  Individual river basins 
outlined; those marked by the same color correlate.

5% Duration Series R > 0.8
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Fig. 8. Correlation R>0.8 between river gauge stations
marked by a black circle.  Individual river basins outlined;
those marked by the same color correlate.
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all data
> 25%
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Fig. 2. Correlations between individual gauge 
stations for R > 0.90. Red indicates a lag./lead
relationship of 0-2 hours; blue represents 3-10 hours.

25% Duration Series R > 0.90
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Fig. 4. Correlations between individual gauge 
stations for R > 0.80. Red indicates a lag./lead 
relationship of 0-2 hours; blue represents 3-10 hours.

25% Duration Series R > 0.80

Fig. 6. Correlations between individual gauge 
stations for R > 0.80. Red indicates a lag./lead
relationship of 0-2 hours; blue represents 3-10 hours.
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5% Duration Series R > 0.8

Fig. 7.  Distance between river mouths suggest that river plumes may be
very close together during floods.

USGS river gauges significantly correlate with each other above R > 0.8 and 0.9
for both the 5 % and 25 % probability of exceedence thresholds

A subset of river gauge records were corrected for the estimated flood travel
time to the river mouth. Rivers discharged to the coastal ocean within hours 
of each other.

Milliman and Kao, 2008
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Eel River

Taiwan's rivers may flood in response to Typhoons, depositing hundreds of millions of tons 
of sediment over a few days.

Ou et al., 2002




