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Hillslope-fluvial geomorphologists have often taken climate
change to be synonymous with changes in
runoff/discharge/precipitation (i.e., driving shear stresses).
However, common vegetation cover changes lead to changes
in erosion rates and topography that are O(10) larger.
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NSF-sponsored workshop in Tucson
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* Geomorphic responses to veg cover is a key knowledge gap for all
process zones

* @Generating reliable forecasts for the future requires that models
be validated against the historical and geologic records over a
range of time scales

e Geomorphologists should collaborate more with ESMers



In SW US, forests were at 800 m a.s.l. at LGM and only
occur above 1800 m a.s.l. today. So, large areas have

fluctuated back and forth between shrubland/grassland
and forest during G-I cycles.
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Packrat middens: an elevation-specific paleoveg constraint




Modeling framework (transport-limited case):
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Example at ~10° yr: Walnut Gulch Experimental Watershed
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Long-term sediment fluxes well constrained: 30x higher in shrublands
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Drainage density is 4x higher in shrubland than grassland



At valley heads, the fluvial erosion rate exceeds the colluvial

deposition rate slightly (by an amount equal to the net erosion rate).

The model predicts drainage density as a function of veg cover and
time since the veg transition.
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Another example over ~10° yr

Fan deposits that grade to gullies in
Tsangpo V., Tibet, are late Holocene.
This constrains the cause to be
overgrazing.

Landscape responds with higher
drainage density and increased
channel concavity.

Numerical models with increase in
K reproduce this.
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Example at ~10* yr: timing of aggradation due to Pleistocene-
Holocene transition in SW US
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Model predicts timing of primary and secondary aggradation as a
function of upstream elevation, following the retreat of P-J. Primary
aggradation predicted to begin when 5% of source region undergoes
P-J-to-shrubland transition. Secondary aggradation begins when 50%
of source region has undergone P-J-to-shrubland transition.
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Model predictions vs. data (OSL ages low in Q3a stratigraphy)
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Conceptual model: Decrease in veg cover/Increase in % bare ground
triggers increase in drainage density, causing a pulse of sediment input

to fans and a complex response, i.e. multiple cycles of aggradation and
incision (Q3a and Q3b of Bull, 1991)
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Variable scale, feet

Unsolved problem:
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Wildfire is responsible for 99% of
all long-term erosion in some
forested landscapes, e.qg., Valles
Caldera (Orem and Pelletier, JGR,
2016)
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Example model over ~10° yr: Impact of ag on sediment yields
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More collaboration with Earth System Modelers:
* Soil/regolith thickness data (Pelletier et al., JAMES, 2016)
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Example model over ~103° yr: Evolution of cinder cones
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More colluvial erosion has occurred on
S-facing slopes, yet there is more
vegetation on N-facing slopes. BUT, veg
cover was reversed in glacial times (most
of the Quaternary). Data can only be explained by increase in D with V.
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Conclusions:

e Common vegetation changes can trigger O(10) increases in
erosion rates and topographic metrics

* In hillslope-fluvial systems, an increase in the fluvial
erodibility coefficient (K) reproduces the first-order behavior,
i.e. a transient increase in drainage density and channel
convexity, with a resulting pulse of aggradation on fans.

* More vegetation cover can increase colluvial sediment
transport rates, but this effect is of smaller magnitude, (O(1)).
* Global-scale ESM and dynamic vegetation models can be
used to determine future hotspots of geomorphic change.
Such models require better component models and input data
on geomorphology.



