

Methods, challenges and uncertainty in modeling tectonic processes

<u>Coupling of Tectonic and Surface Processes Meeting</u> Boulder, Colorado (2018)

John Naliboff UC Davis, CIG

Acknowledgements: Louise Kellogg, Juliane Dannberg, Rene Gassmöeller, Lorraine Hwang

Computational Infrastructure for Geodynamics

Our Mission: advance Earth science by **developing and disseminating software** for geophysics and related fields.

33 codes

Primary Scientific domains:

- Geodynamo
- Mantle convection
- Long-term tectonics
- Seismology
- Short term crustal dynamics
- Computational science
- Fluid migration/multiphysics

Community

- •75+ institutional members: universities, government labs & agencies
- •900+ participants
- •20 countries

Software development

Educational Resources

Numerical Modeling of Earth Systems An introduction to computational methods with focus on solid Earth applications of continuum mechanics

Lecture notes for USC GEOL557, v. 1.2

Thorsten W. Becker Department of Earth Sciences, University of Southern California, Los Angeles CA, USA and

> Boris J. P. Kaus University of Mainz, Germany

> > April 16, 2016

Outline

- I. Overview and numerical methods
- 2. Challenges
 - Verification
 - Sensitivity Analysis
 - Validation
 - Resources
- Summary and Outlook

Long-Term Tectonic Processes

Crustal Deformation, Lithospheric Deformation, Mantle Convection

Spatial and temporal scales?

COMPUTATIONAL

C I I INFRASTRUCTURE for GEODYNAMICS

The challenge: modeling processes at vastly varying scales of space and time

Long-Term Tectonics

10⁴ to 10⁷ years, 10's to 1000's of km

<u>Conservation</u> equations for incompressible viscous flow

 $\nabla \bullet u = 0$ Mass

 $\nabla \bullet \sigma' - \nabla P + \rho g = 0$ Force Balance

$$\rho c \left(\frac{\partial T}{\partial t} + u \bullet \nabla T \right) = \nabla \bullet k \nabla T + H \quad \text{Energy}$$

Additional terms: adiabatic & viscous heating, phase changes

Constitutive behavior (rheology)

$$\sigma_{eff} = A^{-1/n} \dot{\varepsilon}^{1/n} d^{p/m} e^{\frac{Q+PV}{nRT}} \quad \text{Non-linear viscous flow}$$

$$\eta_{eff} = \frac{\eta \mu dt}{\eta + \mu dt} \quad \text{Viscoelasticity*}$$

 $\sigma_{eff} = P\sin\theta + C\cos\theta$

Brittle Failure (Plasticity)

Additional processes: strain-weakening, grain-size evolution, ...

Numerical Methods

General procedure example

- I. Choose a numerical method
- 2. Rewrite PDE's as algebraic eqns.
- 3. Specify boundary & initial conditions
- 4. Solve for velocity (non-linear iterations?)
- 5. Solver for temperature (+/- composition)
- 6. Advect free surface* and tracers

Results of numerical simulation (<u>continental</u> <u>extension</u>) with 1 km grid superimposed.

Simple Design	Complex Design	
100s lines Single file	>100,000 lines 10 - 1000's files Multiple packages	
Straightforward physical assumptions	Can model a wide range of physical behavior	
Small (2-D) simulations Basic numerical methods Runs in serial (single-cpu)	Small (2-D) or large (3-D) simulations Advanced numerical methods Serial or massively parallel simulations	
Interpreted Language (Python, Matlab) Compiled Language (C, C++, Fortran)	Compiled Language (C, C++, Fortran) Interpreted Language (Python) Use of Parallel Processing (MPI)	

ABAQUS **ASPECT*** COMSOL DOUAR DynEarthSol2D* DynEarthSol3D* ELEFANT **I2ELVIS/I3ELVIS**

<u>LaMEM</u>*

MVEP2* pTatin3D SLIM3D SiStER* **SNAC* SULEC** TerraFERMA* Underworld2*

Outline

- I. Overview and numerical methods
- 2. Challenges
 - Verification
 - Sensitivity Analysis
 - Validation
 - Resources
- Summary and Outlook

Verification

"The process of determining that a model implementation accurately represents the developer's conceptual description of the model and the solution to the model."

Validation

"The process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model."

Verification, Validation, and Predictive Capability in Computational Engineering and Physics (Oberkampf et al., 2003); CIG Webinar

How do you know your code is doing what you intended it to do?

- I. Numerical Implementation
- 2. Physics Implementation

Analytical Stokes solution for a sinking sphere (ASPECT manual)

How do you know your code is doing what you intended it to do?

3. Comparisons to other numerical models (replication) and analogue models

a) 1 cm shortening	b) 2 cm	c) 6 cm	d) 10 cm
ELFEN ~15000			
GALE 256x64 Q1P0	Ę		
I3VIS 350x60			
MILAMIN_VEP 350x60 Q1P0			
pTatin 256x64 Q2P1			
SDEM ~88000 ptcl		F	
Sdvig 350x70 Q2P1		R	
SOPALE 350x60 Q1P0			
Bern 2A			
GFZ@Bem			
IFP 2A			- Control
0 5 10 15 20 25 30 cm	0 5 10 15 20 25 30 cm	0 5 10 15 20 25 cm	0 5 10 15 20 cm

Benchmarking numerical models of brittle thrust wedges (Buiter et al., 2016)

How do you know your code is doing what you intended it to do?

4. Use open-source software and 'best practices' in code design!

'Best Practices':

- Version control (github, bitbucket)
- ✦Code review (<u>example</u>)
- Documentation (source code, manual, example problems)

More users (more testing, contributors & sustained innovation; 'bus factor')

✦Long-term support for most features

Reproducibility and replicability

"Typical" Numerical Setup

Challenges: Sensitivity Analysis

What parameters affect the solution?

Grid Resolution Particles-Per-Cell Time-Step Size Solver Convergence Settings

Model Geometry Initial Lithology Initial Temperature Boundary Conditions

Viscous Flow Law Brittle Yield Mechanism Brittle Parameters Strain-Weakening (magnitude, rate) Viscoelasticity

Solution: Lots of sensitivity tests (in 2D if possible).

*Please report these tests and all values used in your computations

- Challenges arise from ...
- I. Spatial and temporal scales
- 2. Rheological uncertainty
- 3. Solution uniqueness

a)

4. Comparison to natural results

Ductile shear zones at varying scales (1 mm - 200 m)

Observed variations in ... \checkmark Scales of heterogeneity

- ✓ Composition
- √ Grain-size
- ✓ Strength

Rheological Uncertainty & Numerical Issues

Bürgmann R, Dresen G. 2008.Annu. Rev. Earth Planet. Sci. 36:531–67.

<u>Rheology of the Lower Crust and Upper Mantle:</u> <u>Evidence from Rock Mechanics, Geodesy, and Field</u> <u>Observations</u>

Issues?

- I. Scaling of flow laws (experiments done at high strain-rates)
- 2. Choice of flow laws (wet verse dry, composition, diffusion verses dislocation, etc)
- 3. Applicability to the lithosphere? (bimineralic material, length-scales of heterogeneity)

Rheological Uncertainty & Numerical Issues (Brittle Failure)

<u>Issues?</u>

I. Resolution-dependent

2. <u>Convergence behavior</u>

2. Rates, magnitudes and mechanisms of brittle weakening?

3. Reasonable approximation of integrated seismicity?

Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation (Kaus 2010)

Rheological Numerical Issues (Resolution-

FIG. 13. Incremental deformation patterns for the medium and fine mesh (l = 0.02 m).

Solution: Introduce a characteristic length-scale!

Pamin and De Borst (1995), Archives of Mechanics 45, p. 353-377

The Dynamics of Plate Tectonics and Mantle Flow: From Local to Global Scales (Stadler et al., 2010)

Challenges: Validation

Uncertainty (Interpretation & Uniqueness)

Simulations <u>qualitatively</u> reproduce general observations. However,

Model criticisms

- ✓ Low-resolution (2.5 km)
- \checkmark Initial conditions play key role
- ✓ 'Simple' rheology
- \checkmark Simplified boundary conditions

Are these results relevant to lithospheric processes?

... requires quantitative comparisons to natural observations

Solution: Quantitative Comparisons to Natural

Solution: Quantitative Comparisons to Natural

Challenges: Validation

Baumman, Kaus & Popov:

Constraining effective rheology through parallel joint geodynamic inversion (2014)

Geodynamic inversion to constrain the non-linear rheology of the lithosphere (2015)

Challenges: Computational Resources CI C Computational Resources

High-resolution 3D simulations are computationally expensive

√One model can require 10⁴-10⁶ core hours

Solution: Parallelism and Efficient Solvers

Challenges: Computational Resources CI C Computational Resources

- High-resolution 3D simulations are computationally expensive
- \checkmark One model can require 10⁴-10⁶ core hours
- ✓ Data processing (visualization, analysis) can require HPC resources \checkmark Storage requirements: 10³-10⁶ Gigabytes

Solution: NSF Funded HPC Facilities (XSEDE)

- Obtain large allocations (computing time) through proposals
- Startup allocations provide time for initial testing; CIG Resources
- Short-term data storage and visualization (GPU nodes) are

available Long-term storage and hosting solutions? ... TBD

Conclusions and Outlook

- Multiple open-source and open-access software packages are capable of simulating non-linear lithospheric dynamics in highresolution 3D models. These models successfully reproduce many commonly observed features and processes.
- Challenges in <u>validating</u> the numerical models arise from uncertainty in rheological behavior and the scales (time & space) of geologic processes
- Solution: Quantitative comparisons between model results & observations
 - 3D and time-dependent comparisons are ideal
 - Multi-physics (e.g., surface, igneous & metamorphic processes) simulations enable more detailed comparisons, but also introduce additional uncertainty.