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Motivation
• Use sediment deposit to infer tsunami or storm 

surge flow depth, velocity.
• Risk estimation:  extend magnitude/frequency 

record of extreme events.

e.g., Jaffe and Gelfenbaum, 2007; Moore et al., 2007; 
Soulsby et al., 2007; Woodruff et al., 2008; Tang and 
Weiss, 2016 (arXiv); Naruse and Abe, 2017.

https://walrus.wr.usgs.gov/tsunami/itst.html
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Motivation
• Use sediment deposit to infer tsunami or storm 

surge flow depth, velocity.
• Risk estimation:  extend magnitude/frequency 

record of extreme events.

• Challenges:
• Field data: key variables underconstrained

(flow characteristics, source GSD).
• Therefore, difficult to evaluate inverse model 

accuracy and uncertainty.

https://walrus.wr.usgs.gov/tsunami/itst.html



• What factors control deposit GSD? 
• Source GSD proximally, sorting distally.
• Dispersion controls coarse and fine GSD tails.
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Goals 
• Experiments for model validation and benchmarking.
• Evaluate model accuracy, uncertainty.
• Understand the physics of non-equilibrium 

entrainment, transport, deposition. 



Flume:  32 m long, 0.8 m deep, 0.5 m wide.
• Lift gate, source dune, depth & velocity sensors.
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Flume:  32 m long, 0.8 m deep, 0.5 m wide.
• Lift gate, source dune, depth & velocity sensors.
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6 Experiments:
• Sand: ≈0.1 to 0.9 mm 
• Source GSDs:  3 finer 

expts, 3 coarser
• 3 ponded depths (0, 

8-10, 19 cm)
Data collected:
• Flow depth
• Velocity
• Deposit Thickness
• Deposit GSD



Experiment Ts6. 
• 8 cm initial 

ponded water 
depth.

• Field of view ~35 
cm (foreground).
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Reproducible flows.

• Average Fr≈1 for 
runs shown; Fr = 
0.74, 1.38 for 
other 
experiments.

Velocity

Flow depth

Froude number
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Predictions of bedload transport distance, f(shear velocity)
(Martin et al., 2012). 
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Bedload+Suspended Suspended

Predictions of bedload transport DISTANCE as fcn of shear velocity 
(Martin et al., 2012). 



Deposit:  downstream fining

D95

D50

D10

Transport distance Lxmeas (m)
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2006 Java (Moore et al., 2011)

Grain size trends, field vs flume
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Scaling (Geometric, Fr)
• Expts are ~1/10 to 1/100 

scale models.
Field conditions:
• ≈3-30 m deep.
• Velocity:  1.75 m/s expt

scales to 5.5-17.5 m/s field.
• Duration: ≈20 s expt scales 

to 1-4 minutes field.

• Fully suspendable: Rouse #   
0.9 to 1.9 for D95.



2006 Java (Moore et al., 2011)

Grain size trends, field vs flume
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Next:  Use deposit 
GSD trends to 
evaluate advection-
settling model.



Source

Velocity
Depth

Advection-Settling Model 
Moore et al. (2007); Woodruff et al. (2008) 

Assumptions: 
• Diameter, depth (h), velocity (U) control transport distance.
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Source

Velocity

Depth

Advection-Settling Model 
Moore et al. (2007); Woodruff et al. (2008) 

Assumptions: 
• Diameter, depth (h), velocity (U) control transport distance.

Advection length scale:

!" =
$ℎ
&''(

“Still water” settling 
velocity—no turbulence.
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Source

Velocity
Depth

Advection-Settling Model 
Moore et al. (2007); Woodruff et al. (2008) 

Assumptions: 
• Diameter, depth (h), velocity (U) control transport distance.

• Transport distance  Lxmeas = La .
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Source

Velocity

Depth

Advection-Settling Model 
Moore et al. (2007); Woodruff et al. (2008) 

Assumptions: 
• Diameter, depth (h), velocity (U) control transport distance.

• Transport distance  Lxmeas = La .
• 2 equations, 2 unknowns (U, h).

!" =
$ℎ
&''(

)* = $
+ℎ
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Advection-Settling Model 
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Assumptions: 
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Advection-Settling Model 
Moore et al. (2007); Woodruff et al. (2008) 

What GSD diameter should be used to calculate wssw? 

• Assumption to test: COARSEST grains from deposit 
GSD (≈D95) at a given transport distance should best 
predict U, h .

!" =
$ℎ
&''(

)* = $
+ℎ



Advection-Settling Model fits to Deposit D95

Experiment Ts6:
• Downstream:  D95

overpredicts flow depth, 
velocity by almost 2x.

• Downstream: D50 predicts 
depth, velocity accurately.

• Upstream:  model doesn’t 
match data (source GSD).

21
Transport distance Lxmeas (m)



GSD percentiles along flume that best predict U, h

Downstream:  
best-fit percentiles 
vary.

Next: Normalize 
transport distance 
(Lxmeas) by source 
D50 advection 
length scale (La).

Finer 
source 
GSDs: 
La≈34 m

Coarser 
source 
GSDs: 
La≈15 m
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GSD percentiles along flume that best predict U, h
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Transport 
distance > La

Interpretation:  
• Deposit GSDs for 

transport > La 
reflect sorting, 
sensitive to U, h.

• Deposit GSDs for  
transport < La
dominantly 
reflects source
GSD.

GSD percentiles along flume that best predict U, h
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Prediction uncertainties for 
different GSD percentiles:

• Uncertainties are fairly 
insensitive to exactly what 
intermediate GSD percentile is 
used.

• At 95% confidence, depth 
predictions within ±50% of 
“correct” experimental 
value.
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Prediction uncertainties for 
different GSD percentiles:

Next:  Why is D50 
better than D95 for 
predicting depth 
and velocity?



Source

Velocity
Depth

Add turbulence to conceptual model 

• Turbulence causes a distribution of settling velocities and 
transport distances.

• Lxmeas ≈ "# for intermediate diameters (≈D50), not coarsest grains.
• Intermediate diameters (≈D50) best represent mean U, h, settling.
• Coarse and fine tails of deposit GSDs reflect dispersion.

Advection length scale:

"# =
%ℎ
'(()
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Source

Velocity
Depth

Advection length scale:

!" =
$ℎ
&''(

Add turbulence to conceptual model 

• Turbulence causes a distribution of settling velocities and 
transport distances.

• Lxmeas ≈ !" for intermediate diameters (≈D50), not coarsest grains.
• Intermediate diameters (≈D50) best represent mean U, h, settling.
• Coarse and fine tails of deposit GSDs reflect dispersion.

Coarse
Fine Intermediate (≈D50)
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Advection length scale:

!" =
$ℎ
&''(

For a given grain size:
• La is constant.
• Dispersion causes distribution of 

transport distances (Lxmeas).

L xmea
s=L a
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For a given grain size:
• La is constant
• Dispersion causes distribution of 

transport distances (Lxmeas)

Testable prediction for dispersion:
• Finer GSD percentiles: Lxmeas < La 
• Coarser GSD percentiles: Lxmeas > La
• Intermediate percentiles: Lxmeas = La 

L xmea
s=L a
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Experimental data follows expected pattern for dispersion:
• Finer GSD percentiles: Lxmeas < La 
• Coarser GSD percentiles: Lxmeas > La
• Intermediate percentiles: Lxmeas ≈ La 

D10:  L xmeas
< L a 

D95:  Lxmeas > La 

D50:  L xmeas
≈ L a 
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Future work:  Compare expts to particle tracking model
w/ Mariela Perignon, Brandon McElroy, Suleyman Naqshband, Cristian Escauriaza

• Inverse model sensitivity to resuspension?  Bed load? Turbulent damping? 



Funding:
Thanks to Shannon Boesch, Peter Polito, Jim Buttles.

REU 
Program

Conclusions:
• Tsunami sediment transport experiments work great!  Flow & sediment scaling.  
• Benchmark/Validation data set for model evaluation (Tang and Weiss, 2016, 

arXiv)—use me! 
• Leaving dispersion out of advection-settling models was an oversimplification of 

the physics of transport and sorting.
• Transport ≥ 1 advection length scale is required for deposit GSD to reflect flow 

depth and velocity, rather than source GSD.
• Dispersion preferentially affects deposit GSD tails. 
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Experimental tsunami turbulence:  from expt Ts4.  Autocorrelation (using xcorr) shows <=0.2 s correlation.

--Turbulence velocities come from subtracting out 2 s moving avg from the velocity record (left plot).
1 stdev of the turbulence is 0.1174 m/s for 0-18 s, 0.1061 m/s for 2-18 s (removing bore), calling it 0.11 m/s avg to 
use for modeling.
Mean velocity 1.72 m/s for 9 cm depth, 1.85 m/s for 15 cm depth, calling it 1.75 m/s avg x vel.



Normplots—red line is a 
Gaussian.  

TOP ROW: experimental

BOTTOM ROW:  Gaussian, 
and smoothed Gaussian 
(smoothed over 21 pts, 
about same correlation as 
in experimental 
autocorrelation).

Point is that the 
experimental data are 
sufficiently Gaussian to 
justify using a smoothed 
Gaussian distribution as 
my synthetic turbulence 
timeseries.



Comparing different filters to try and 
approximate shape of autocorrelation 
dropoff of experimental data. 

I made one that works pretty well!  
My name—offset-inverse window:
>> w=1./(1:16);
>> w=([fliplr(w) w(2:16)]);
>> w=w-w(31);
>> w=w./sum(w);
This gives a 31 entry long filtering window,
Offset to zero at boundaries (so really 29 
entries long included in the averaging).



Closeup of 5 seconds of turbulence (x direction) from expt 4, calculated using a 2 s smoothing window subtracted to 
remove avg vel trend.

Red line is my synthetic turbulence, randn, filtered using custom offset-inverse window of length 31 points.  Std offset to 
be same for both signals.



Particles released from top of 
flow vs uniformly distributed 
throughout flow:  makes a big 
difference to the distribution.

Vertical distribution of mean 
velocity, and vertical distribution 
of turbulence, make measurable 
but much smaller differences.



The initial height of a particle in 
the flow at x=0 DOES has a big 
influence on the transport distance 
before settling to bed.

You see dispersion.  



Four Experimental Source Grain Size Distributions
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Source GSD D10 D50 D84 D95

µm µm µm µm

Fine 116 176 240 304

FinerBi 148 336 484 565

MedUni 166 285 422 612

MedBi 174 341 492 580
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Field and experimental geometric scaling:  depth, distance, duration

For field events 10-100 times deeper and longer:  Fr similarity suggests experiments scale to 
durations and velocities 10^0.5 to 100^0.5 times (3-10x) larger:

• Velocities:  1.75 m/s experiment scales to 5.5-17.5 m/s field.
• Durations of flow:  15-25 s experiment scales to 50 s to 4.2 minutes field.

43



44



2006 Java (Moore et al., 2011) 2004 Aceh (Moore et al., 2006)

Comparing normalized experimental and field grain size trends
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Deposit:  downstream thinning and fining
Ts1: Fine GSD, 
dry bed

Ts2: Fine GSD,
10 cm ponded

Ts3: Fine GSD,
19 cm

Ts4: Coarse1, 8 cm Ts5: 
Coarse2, 

8 cm

Ts6: 
Coarse3, 

8 cm
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Experiment # 
and name

Ponded 
water 
depth

Source 
GSD

Bore 
velocity

Water 
velocity, 

avg. ± 1 σ 

Flow depth, 
maximum

Flow depth, 
avg. ± 1 σ

Fr,
avg. ± 1 σ

cm m/s m/s cm cm
1,  

Ts1_Dry_Fine 0 Fine 3.04 2.07 ±
0.57 28.5 24.1 ± 3.2 1.38 ± 0.44

2,
Ts2_10_Fine 10 Fine 2.65 1.71 ±

0.24 35.5 31.3 ± 1.5 0.95 ± 0.12

3,
Ts3_19_Fine 19 Fine 3.03 1.44 ±

0.12 43.1 40.5 ± 1.2 0.74 ± 0.05

4,
Ts4_8_FinerBi 8 FinerBi 2.84 1.84 ±

0.36 34.6 32.0 ± 2.0 1.0 ± 0.20

5,
Ts5_8_MedUn

i
8 MedUn

i 3.00 1.75 ±0.38 33.7 29.7 ± 2.6 0.98 ± 0.18

6,
Ts6_8_MedBi 8 MedBi 2.98 1.70 ±0.31 35.4 32.0 ±1.6 0.96 ± 0.16
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Best-fit MEAN:  D53
±2 Standard error:  D27-D79

Advection-Settling Model:  What percentile best predicts flow depth? 
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Advection-Settling Model fits to Deposit D95

Experiment Ts2:
• Fine source GSD.
• Downstream:  D95 predicts 

flow depth, velocity well.

• Upstream:  Model predicts 
grain size should be MUCH 
larger.
• At short transport 

distances, source GSD 
limits deposit GSD.  

Source D95

Transport distance (m)
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