The Evolution of Process and Scale Coupling in Coastal Ocean Hydrodynamic Modeling

Joannes Westerink¹, Rick Luettich², Clint Dawson³, Dam Wirasaet¹, Andrew Kennedy¹

¹University of Notre Dame, ²University of North Carolina at Chapel Hill, ³University of Texas at Austin

> Geoprocesses, Geohazards – CSDMS 2018 May 22-24, 2018

The hydrodynamics of the coastal ocean and floodplain

Understanding coastal sustainability and risk means understanding water levels, currents, and wind waves from the shelf to the inland floodplain

Coastal flooding

Wave forces

Wetland degradation

Coastal dead zones

Marine larval transport

Global Ocean Circulation

Navier Stokes Equations (1822)

Mass & momentum conservation Describes all processes Solve for 10³⁴ unknowns per day of real time

Waves

Rainfall Runoff

Process & Scale Separation

Waves

Boussinesq equations

Boussinesq 1872 Peregrine 1967

Process & Scale Separation

Kinematic wave equation Dynamic wave equation

Lighthill 1955

Rainfall Runoff

Process & Scale Separation

Global Ocean Circulation

Prognostic ocean circulation equations

Kirk Bryan 1969

Global Ocean Circulation

Process Separation

Domain & Resolution Separation

Provide affordable resolution for domain size and alias the rest

Nesting

Data assim<mark>ilate</mark> for missing physics and scales

Waves

Rainfall Runoff

Evolution of coastal ocean hydrodynamics models – the past

The GOOD

- More component interaction
- Unstructured grids focusing on localized resolution
- Better resolution
- Better algorithms
- Better physics of sub-grid scale
- Improving parallelism

The BAD

- Largely siloed development with disparate communities
- Sub-optimal grids
- Largely second order or lower
- Often inefficient parallel processing

Evolution of coastal ocean hydrodynamics models – the past

Evolution of coastal ocean hydrodynamics models – the past

- ADCIRC solves the shallow water equations in 2D and 3D
- ADCIRC applies Galerkin FEM using highly unstructured linear finite element grids over large ocean domains
- ADCIRC usage highlights in U.S.
 - USACE: Design Metropolitan New Orleans levees post Katrina; Post Sandy flood risk study along East and Texas coasts
 - NOAA: Extra-tropical real time forecasting models (ESTOFS)
 - FEMA: Flood Insurance Studies for U.S. Gulf, East and Great Lakes coasts
 - NRC: Nuclear power station risk evaluation

- SWAN solves the wave action density and is a non-phase resolving wave model with wave energy represented by a spectrum
- SWAN has been implemented as an unstructured grid model with the degrees of freedom at triangle vertices
- ADCIRC and SWAN interact
 - Water levels and currents affect waves
 - Wave breaking forces water level setup and currents

HPC: MPI Based Domain Decomposition – Overlapping Element Layer Node to Node Communication

HPC: Parallel Performance

SL16v18 model bathymetry and topography and unstructured mesh

Dietrich et al., *Monthly Weather Review*, **139**, 2488-2522, 2011. Kennedy et al., *Geophysical Research Letters*, **38**, L08608, 2011. Kerr et al., *Journal of Waterway, Port, Coastal, and Ocean Engineering*, **139**, 326-335, 2013.

Martyr et al., *Journal of Hydraulic Engineering*, **139**, 5, 492-501, 2013. Hope et al., *Journal of Geophysical Research: Oceans*, **118**, 4424-4460, 2013. Kerr et al., *Journal of Geophysical Research: Oceans*, **118**, 5129–5172, 2013.

SL16v18 model bathymetry & topography in SE Louisiana

Models: SL16v18 mesh size in SE Louisiana

Hurricane Gustav: 2008 / 09 / 01 / 0200 UTC

Winds (m/s)

Waves (m)

Water Elevations (m)

Hurricane Gustav: 2008 / 09 / 01 / 0800 UTC

Winds (m/s)

Waves (m)

Water Elevations (m)

Hurricane Gustav: 2008 / 09 / 01 / 1100 UTC

Winds (m/s)

Waves (m)

Water Elevations (m)

Dietrich et al., *Monthly Weather Review*, **139**, 2488-2522, 2011.

Hurricane Gustav: 2008 / 09 / 01 / 1400 UTC

Winds (m/s)

Waves (m)

Water Elevations (m)

Dietrich et al., *Monthly Weather Review*, **139**, 2488-2522, 2011.

Hurricane Gustav: 2008 / 09 / 01 / 1700 UTC

Winds (m/s)

Waves (m)

Water Elevations (m)

Dietrich et al., *Monthly Weather Review*, **139**, 2488-2522, 2011.

Hurricane Gustav: 2008 / 09 / 02 / 0200 UTC

Winds (m/s)

Waves (m)

Water Elevations (m)

Dietrich et al., *Monthly Weather Review*, **139**, 2488-2522, 2011.

Evolution of coastal ocean hydrodynamic models – the present

The GOOD

- Advancing heterogeneous model integration and interleafing component interactions
- Advancing higher and more targeted resolution
- High order algorithms using Discontinuous Galerkin non-conforming algorithmic frameworks

The BAD

- Still largely static grids that are costly to generate
- Static physics
- Poor load balance on component computations
- Falling peak processor performance

Evolution of coastal ocean hydrodynamic models – the present

Evolution of coastal ocean hydrodynamic models – the present

Jan

Jan 2012

2012

Evolution of coastal ocean hydrodynamic models – the future

Vision

- Fully dynamic computations that during the simulation select
 - Physics
 - Grid resolution
 - Order of interpolants
 - Load balance

Focus areas

- Develop frameworks that allow dynamic and coupled physics
- Dynamic grid optimization for multi-physics
- High order methods
- Advance engines for load balancing

Advance coupling of multi-physics models

Multi-physics interfacing heterogeneous models over a unified domain

Dynamic coupling of ADCIRC, WAVEWATCH III, HYCOM and CICE Interleafing over a unified domain on heterogeneous grids communicating through ESMF/NUOPC

and boundary based two-way coupling to WRF-Hydro through ESMF/NUOPC

CFSv2 Global Atmospheric Model ADCIRC-DG Circulation 2D SWE 2D SWE + Pressure Poisson Solver 3D SWE 3D SWE + Pressure Poisson Solver

WAVEWATCH III Wave Energy

HYCOM 3D Global Circulation Model

CICE Global Sea Ice Model

WRF Hydro National Water Model

Multi-physics within a single algorithmic framework dynamically selecting physics

Dynamic equation selection within *ADCIRC-DG* to accommodate Boussinesq type solutions (in shallow water)

WWIII, HYCOM, CICE interleafing WRF-Hydro interfacing

Donahue et al., Coastal Engineering, 114, 61-74, 2016.

CFSv2 Global Atmospheric Model

ADCIRC-DG Circulation

2D SWE 2D SWE + Pressure Poisson Solver 3D SWE 3D SWE + Pressure Poisson Solver

WAVEWATCH III Wave Energy

HYCOM 3D Global Circulation Model

CICE Global Sea Ice Model

WRF Hydro National Water Model

Multi-physics within a single algorithmic framework dynamically selecting physics

Pressure Poisson solvers

CFSv2 Global Atmospheric Model

ADCIRC-DG Circulation

2D SWE 2D SWE + Pressure Poisson Solver 3D SWE 3D SWE + Pressure Poisson Solver

WAVEWATCH III Wave Energy

HYCOM 3D Global Circulation Model

CICE Global Sea Ice Model

WRF Hydro National Water Model

Multi-physics within a single algorithmic framework dynamically selecting physics

SWE

Pressure Poisson solvers

SWE & PPS

Pressure-Poisson based simulations

- Extend Shallow Water Equations to include non-hydrostatic terms using Pressure-Poissontype (PP) perturbation solutions
 - Manipulate error terms using asymptotic rearrangement to improve properties
 - From the class of Boussinesq wave models
- This gives increased accuracy for phaseresolving simulations of wave propagation and runup in the nearshore
 - But need to resolve ~15 points/wavelength: only over a small region
- End goal is to embed PP solutions into largerscale models using the same general solvers and grids

Donahue et al., *Ocean Modeling*, 86, 36-57, 2016. Donahue et al., *Coastal Engineering*, 114, 61-74, 2016.

Frequency Dispersion (top); and Shoaling (bottom) accuracy for PP-models compared to linear analytical solutions

Pressure-Poisson based simulations

- Can simulate highly nonlinear waves approaching the coastline, and through to the shoreline
 - Only in finite depths
- Different levels of model can provide different levels of accuracy, with corresponding cost increases
- Remaining hurdles are largely implementational rather than theoretical
 - Coding and testing for operational-type problems have not yet been implemented

CFSv2 Global Atmospheric Model

ADCIRC-DG Circulation

2D/3D SWE 2D/3D SWE + PPS 3D SWE 2D Kinematic wave model 2D Dynamic wave model

WAVEWATCH III Wave Energy

HYCOM 3D Global Circulation Model

CICE Global Sea Ice Model

WRF Hydro National Water Model

Multi-physics within a single algorithmic framework dynamically selecting physics

Dynamic equation selection within ADCIRC-DG to accommodate Boussinesq type solutions as well as the Kinematic and Dynamic Wave Equations solution

WWIII, HYCOM, CICE interleafing WRF-Hydro interfacing

Develop dynamic high order interpolation (*p***-adaptive) frameworks**

High order interpolants

High order interpolants

• Discontinuous Galerkin (DG) allows for non-conforming h-p dynamic adaptation

Runs 4 x faster

Poor solutions

Wirasaet et al., *Journal of Computational Physics, 299*,, 579-612, 2015. Brus et al., *Journal of Scientific Computing*, **70**, 210-242, 2017.

Develop adaptive gridding (h-adaptive) frameworks

Dynamic grid optimization for evolving physics

Lower energy tides

High energy storm driven circulation

Dynamic grid optimization for evolving physics

Lower energy tides

High energy storm driven circulation

Dynamic load balancing: MPI/Zoltan

Dynamic load balancing: MPI/Zoltan

Dynamically redistributing dry elements improves parallel efficiency 45% for 50% average dry nodes

Dynamic load balancing: HPX – load balancing beyond MPI

- Motivation: Exa-scale, heterogeneous architectures, post Moore's Law computing
- General purpose C++ runtime system for parallel and distributed applications
- **Exposes C++11 standard conforming API** ۲
- Innovative mixture of: •
 - A global system-wide address space (AGAS)
 - Fine-grain parallelism and lightweight synchronization ۲
 - Implicit, work queue based, message driven computation

HPX task scheduling is more expensive on KNL.

