Significance of macroscale peat flux for carbon export in upland fluvial systems

Fluvial peat material flux

- Transient rapidly transported in the active channel zone transported long distances
- Geomorphically significant erosion and sedimentation
- Important for instream habitat: short-term detrimental (fish kills); longer term new channel habitat and organic matter source
- Engineering problems 'management of flotation load' e.g. culvert blockage, reservoir sedimentation and water quality

Outline:

- Peat erosion and carbon
- Geomorphology of peat and upland sediment budgets
- In-channel transport and dynamics of eroded peat
 - Fine material transport
 - Peat block dynamics
- Preliminary results of a new project

Peat

Deposit of partially decomposed or undecomposed organic material derived from plants.

Accumulation > Decomposition

Waterlogged conditions

Peatlands cover 3 % of global land mass – mainly in higher lattitudes.

Contain 30% of global terrestrial carbon

Blanket mire – rain-fed peatland terrain (1-3 m deep)

Low density material

Extent of blanket peat in the British Isles

Source: Tallis et al. (1997)

Moor House, Northern England (SEDIBUD Test Site)

Moor House Carbon Budget

Arrows proportional to fluxes

Dissolved CO₂

DOC soil

STREAM SYSTEM

POC

Peatland Geomorphic System

Organic storage – Rough Sike (Moor House)

Loss on ignition values (%)

Percentage Particle Counts

Microscopic counts of suspended organic matter collected in the three mass flux drift samplers (Crowe and Warburton, 2007)

Peat Block Deposition Forms

Control of secondary and primary sedimentation

Rough Sike Long Profile

Flotation $(D_p < d)$

Saltation

Rolling $(d < D_p > d/2)$

Deposition $(D_p > d/2)$

Swelling and slaking

Abrasion and splitting

Weathering

Paet Block Transport Mechanisms

Mean flow depth = 0.24 m

New Project Monitoring Framework

Three scales:

Macro

Meso

Micro

18 month period

Aim: to determine the significance of peat block transport in the catchment material flux

Fine peat dynamics

Nether Hearth June 8 to 7 August 2008

Peat block dynamics - experiment: three-axis accelerometer

River reach 34 m (pool, riffle)

Slope 1.5°

Width 4-6 m

Depth 0.12 – 0.34 m

Discharge 0.9 m³ s⁻¹

Extremely rapid peat block abrasion – experimental studies

Conclusions

- 1. Peat erosion is an important process in many upland areas and is important for terrestrial carbon loss
- 2. Because of the special character of peat transport dynamics differ markedly from mineral sediments
- 3. In constructing sediment budgets this needs to be acknowledged and appropriate measurement techniques developed
- 4. Peat block transport (BOC) has not been fully measured in eroding peatlands and is not included in terrestrial upland carbon budgets
- 5. The preliminary results described here have the potential to evaluate the significance of this component and better understand its transport dynamics

Acknowledgements

Environment Agency

UK Environmental Change Network

Peat Characteristics

Geosystem properties

High water content

Permeability

Bulk density

Organic content

Micromorphology

Gas content

рН

Geotechnical properties

Index properties

Consolidation (Primary and Secondary)

Mechanical properties - organic matter

Flow properties

Creep

Shrinkage & desiccation

Thermal behaviour

These properties control the nature of physical processes

