Parameterizing Surface Processes and their Response to Tectonic and Climatic Forcings

Jean Braun^{1,2}, Xiaoping Yuan¹, Audrey Margirier¹, Eric Deal³, Kim Huppert¹, Igor Lisac¹, Frederic Herman⁴, Günther Prasicek⁴, Katerhine Kravitz¹ and Jiao Ruohong¹

¹Helmholtz Centre Potsdam, GFZ German Research Center for Geosciences, Potsdam, Germany ²Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany ³Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA ⁴Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland

Introduction

- Coupling surface processes (models) to geodynamics (models)
- Present basic parameterization of surface processes
- Assuming that they are a fair/usable representation of the natural world, derive consequences/behaviour that are relevant to coupling between tectonics, erosion and climate (and life?)

1. Response of surface processes to tectonic forcing

Howard, 1984 Jamieson and Beaumont, 1988

Steady-state

An orogen in "steady-state"

Southern Alps, New Zealand

Steady-state

Mouchene et al, 2017

A decaying orogen

The Pyrenees

An orogen in "steady-state"

Southern Alps, New Zealand

A decaying orogen

The Pyrenees

The Stream Power Law

Response time

$$\tau = \frac{h_0}{\rho' U}$$

Steady-
state height
$$h_0 = \frac{U^{1/n} L^{1-mp/n}}{K^{1/n} P^{m/n} k^{m/n} (1 - mp/n)}$$

Isostatic
rebound per
$$\rho' = \frac{\partial h}{\partial e} = 1 - \frac{\rho_s}{\rho_a + \frac{D}{g}(\frac{\pi}{2L})^4}$$

Ahnert, 1977

 $A = k(L - x)^p$ Hack's Law

Mean topography

$$\bar{h}_0 = h_0 \frac{3n - mp}{2n - mp}$$

Orogenic response times

	Te (km)	U (km/Myr)	h0 (m)	L (km)	T (Myr)	P (m/yr)
NZ west coast	1	8	2000	15	6	10.00
West Taiwan	14	3	3500	60	6	2.50
East Taiwan	14	5	3500	50	6	3.50
West Cascades	35	0.4	1000	75	10	4.00
East Cascades	35	0.15	1000	150	10	1.00
Apennines	17	0.7	800	35	5	1.40
Zagros	43	0.35	2200	150	12	0.20
Bolivian Andes	71	0.7	4500	200	12	1.00
Colombia East	30	1.7	2500	30	3	4.00
Colombia West	30	0.2	2000	50	15	1.20
Western Bhutan	25	2	5000	200	5	3.00
Eastern Buthan	25	1	5000	195	5	1.50
Sikkim	20	3	5500	130	10	2.00
Nepal	25	3	5000	80	10	2.50
Alaska (St Elias)	20	1.2	2300	75	12	1.30
Western Caucasus	40	1	3500	40	20	1.25

Non-linearity of SPL - option 1: best n value

Non-linearity of SPL - option 2: best *n* and *K* values

$$\tau = \frac{U^{1/n-1}L^{1-mp/n}}{\rho' K^{1/n} P^{m/n} k^{m/n} (1-mp/n)}$$

Optimum SPL expressions for coupling to a geodynamical model

(should give the right rate and topography to create and "average" or "Earth-like" mountain belt.

$$\frac{\partial e}{\partial t} = 6.1 \times 10^{-7} P^{0.8} A^{0.8} S^2$$

 $\frac{\partial e}{\partial t} = 4.22 \times 10^{-6} P^{0.54} A^{0.54} S^{1.35}$

Non-linearity matters

n = 1

n = 2

Time: 11.92 Ma

The Stream Power Law

Response time

$$\tau = \frac{h_0}{\rho' U}$$

Steady-
state height
$$h_0 = \frac{U^{1/n} L^{1-mp/n}}{K^{1/n} P^{m/n} k^{m/n} (1 - mp/n)}$$

Isostatic
rebound per
$$\rho' = \frac{\partial h}{\partial e} = 1 - \frac{\rho_s}{\rho_a + \frac{D}{g}(\frac{\pi}{2L})^4}$$

unit erosion

 $A = k(L - x)^p$ Hack's Law

Mean topography

$$\bar{h}_0 = h_0 \frac{3n - mp}{2n - mp}$$

The longevity of ancient mountain belts

Southeastern Australian Highlands

Isostasy and nonlinearity increase the topographic longevity of old orogenic areas

2. Response of surface processes to climatic forcing

Terra Nova

Debate Article

The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation

Jane K. Willenbring and Douglas J. Jerolmack

Department of Earth and Environmental Science, University of Pennsylvania, 240 South 33rd Street, Philadelphia, PA 19104-6316, USA

(C) Pacific Ocean - ¹⁰Be/⁹Be

Terra Nova

Debate Article

Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change

Frédéric Herman¹ and Jean-Daniel Champagnac² ¹*Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland;* ²*Free University of Leysin, Leysin, Switzerland*

3

2

Glacial erosion

$$rac{\partial h}{\partial t} = U - K_g u_s^l$$
 Hallet, 1981
Loc sliding velocity

$$\frac{\partial H}{\partial t} = A + \nabla \cdot \mathbf{q}$$

$$A = \min(\beta(h - E), c)$$
$$\bigvee_{E \sqcup A}$$
$$\mathbf{q} = H \mathbf{u}$$

 $\mathbf{u} = f_d H^{n+1} |\nabla h|^{n-1} \nabla h + f_s H^{n-1} |\nabla h|^{n-1} \nabla h$

Response time(s) to changes in ELA

$$au_i = L ig(rac{K_g}{U} ig)^{1/n}$$
 10 to 10,000 yrs

$$\tau_e = \frac{L^{1/n}}{K_g^{1/l} f_s^{1/n} A^{1-1/n} U^{1-1/l}} \quad \text{10 kyrs to 10 Myrs}$$

Response time(s) to periodic variations in ELA: the Gain function

Herman et al, JGR, 2018

Response to Late Cenozoic cooling

Herman et al, JGR, 2018

Analytical expressions for surface processes response to periodic climatic forcing

3. Response of surface processes to weather conditions

Erosion rate and rainfall

Von Blanckenburg, 2005

Climate variability matters...

Because surface processes depend on rainfall and are characterized by thresholds

- Bedrock incision
- Channel head initiation
- Fluvial transport of bed-load sediments
- Debris flows
- Shallow landsliding
- Solifluction
- Soil creep

Mean and variability

- Low variability systems are more clustered around the mean
- Erosion frequency is the probability of exceeding the erosional threshold

 -10°

 -10^{-1}

- 10⁻²

10-3

- Erosion efficiency = erosion rate/ mean forcing (precipitation)
- Erosion efficiency should depend on the value of the threshold
- It should depend on forcing (climate) variability
- It should depend on the tail of the forcing distribution
- It should depend on the nonlinearity of the erosional process
- (to the forcing)

Climate variability matters...

Deal, Botter and Braun, JGR, 2018

$$\begin{aligned} \frac{\partial h}{\partial t} &= U - \mu_{\epsilon} K \mu^{m_{c}} A^{m} & 10^{0} \\ \mu_{\epsilon} &= \int_{q_{c}^{*}}^{\infty} q_{*}^{\gamma} f_{Q^{*}}^{t} (q_{*} \stackrel{\text{op}}{=} 10^{-1} \\ \lambda_{\epsilon} &= \int_{q_{c}^{*}}^{\infty} f_{Q^{*}}^{t} (q_{*} | q_{r} \stackrel{\text{op}}{=} 10^{-2} \\ f_{Q^{*}}(q_{*}) &= Cq_{*}^{-b} \exp\left[-\omega\lambda\tau\left(\frac{q_{*}^{2}}{2 \cdot Q} \right) 10^{-3} \\ \nu &= \frac{\tau_{storm}}{\tau} = \frac{1}{\omega\lambda}; \\ \text{Variability} & \text{Hydrological response time scale} \end{aligned}$$

THE REAL PROPERTY OF

The effect of climate variability is independent of process

- High vs low variability systems diverge when the threshold is close to the mean
- This is almost independent on the erosion process law
- This is independent of the type of the forcing PDF (heavy-tailed vs lighttailed)
- Nonlinearity of erosional response to forcing matters slightly
- Our results confirm previous work by Tucker, 2004, Lague et al, 2005, Rossi et al 2016, etc. and generalizes it

Deal and Braun, subm

Relative threshold magnitude - $x_c^* = x_c/\bar{x}$

Relative threshold magnitude - $x_c^* = x_c/\bar{x}$

Sub-linear

Decreasing

Implications for the way surface processes respond to climate change

- Climate change affects both mean and variability of rainfall
- Regions with high rainfall or river discharge tend to exhibit low variability and vice-versa
- Intensity of rainstorms increases with increasing temperature
- Low thresholds systems will respond to changes in mean annual rainfall
- High thresholds systems will respond to changes in mean annual rain fall AND temperature
- Thresholds decease in high relief/ slope environments
- Steep landscapes are less sensitive to variability

4. Flexure, drainage basins, co-evolution of life and landforms

Micro-endemism in Madagascar

Flexure and watersheds form and evolution

Conclusions (1)

- Orogenic systems are complex systems
- They respond to changes in tectonic forcing and reach steadystate within a few million years
- If erosion rate is a non-linear function of height (slope, curvature, ...) their erosional decay lasts much longer than their growth
- The response of erosional systems to variations in climate depends on the nature of the process, the size and the state of the system (climate, uplift rate)
- We should not expect a synchronous response of all parts of the Earth's system

Conclusions (2)

- Climate variability matters in erosional systems where thresholds exist AND when the threshold is close to the mean forcing
- This is independent of the erosional process
- There is a link between basin geometry, size and evolution, and biodiversity (species endemism and richness)
- Isostasy and flexure exerts a strong control on the shape and evolution of watersheds

Thank you

 $\frac{\partial e}{\partial t} = KA^m \frac{\partial h^n}{\partial x} - \frac{G}{A} \int_{\Lambda} \left(U - \frac{1}{\rho'} \frac{\partial h}{\partial t} \right) dA$

where

 $\tau = \frac{h_0}{\rho' U'}$

Effect of sedimentation

U' = U(1 + G)

How important is isostasy?

Weathering model

Low uplift rate (U = 50 m/Myr, D=0.001 m²/yr)

High uplift rate (U = 500 m/Myr, D= $0.001 \text{ m}^2/\text{yr}$)

$$K(H - z + B)\frac{\partial H}{\partial x} + \int_{L}^{x} R \, dx' = \frac{\partial z}{\partial t} = K_{D}\frac{\partial^{2} z}{\partial x^{2}} + U_{0}$$
$$\frac{\partial B}{\partial t} = FK\frac{\partial H}{\partial x} + K_{D}\frac{\partial^{2} z}{\partial x^{2}}$$
$$F = \frac{K_{f}}{K}\frac{d}{h}\frac{C_{eq}V_{m}}{M_{p}}$$

$$\Omega = rac{F K ar{S}}{U_0}$$
 and $\Gamma = rac{K ar{S}^2}{P_0}$, where $ar{S}$

