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Science Highlights

Mechanisms of Climate Variations on Decadal to 
Century timescale

Graphic courtesy of Steve Ghan and DOE Graphics team

The Community Earth System Model: A Framework for Collaborative Research
J.W. Hurrell, M.M. Holland, P.R. Gent, S. Ghan, J.E. Kay, P.J. Kushner, J.-F. Lamarque, W.G. Large, D. Lawrence, K. Lindsay, W.H. 
Lipscomb, M.C. Long, N. Mahowald, D.R. Marsh, R.B. Neale, P. Rasch, S. Vavrus, M. Vertenstein, D. Bader, W. D. Collins, J.J. Hack, J. 
Kiehl, S. Marshall, Bulletin American Meteorological Society, 2013.
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others. Some models have evolved strongly from CMIP3 to
CMIP5, whereas in other centers much of the effort has gone
into additional components. Shared code or concepts may
lead to similarity of the output, but the degree depends of
course on what effect the shared code has on the simulated
field and less on the amount of code. For example, a shared
atmosphere produces more similarity than a shared ocean
when looking at a precipitation field. Similarity may also
arise from “fitting” to common data sets (see below). Shared
code and data sets reduce the effective degrees of freedom in
a multimodel ensemble.
[10] The detailed steps from one model version to the

next are often not obvious. Exceptions are the MIROC
model [Watanabe et al., 2012] and the evolution from
the NCAR CCSM4 (CAM4) to CESM1 (CAM5), which
is documented in detail by Gettelman et al. [2012] and
illustrates steps between CESM with two different versions
of the atmosphere model: CAM4 and CAM5. Gettelman
et al. [2012] created an ensemble of different experiments to
step from CAM4 to CAM5, by sequentially adding new
microphysics (micro), macrophysics (macro), radiation (rad),

aerosols (aero), planetary boundary layer (pbl), and finally
the shallow convection scheme to reach CAM5 (all runs
labeled CAM5). As discussed by Gettelman et al. [2012], the
biggest change in climate sensitivity results from the change
to the shallow convection scheme, which increases shortwave
cloud feedbacks. As is clear from the tree shown in Figure 2a,
the CAM5 experiments cluster together, with three single
perturbation experiments similar to the base CAM5 experi-
ment. The sequential changes between CAM4 and CAM5 also
cluster together (with macro, rad, aero, and pbl added in that
order). The micro1–3 series represent different tuning adjust-
ments to get a better radiation balance (micro3 is in approxi-
mate balance). The same is true for the pbl1–2 experiments.
Experiment CAM4_2 was run with different sea ice albedo
specified at the surface, which may partially explain the
separation. Thus, the CAM5 experiments cluster, and there
is a break point in the differences. The perturbation experi-
ments also cluster, with some of the single perturbation
(tuning) experiments closest together. In general, the CAM
models with the most similar physics packages cluster clos-
est together.
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Figure 3. Normalized distance from observations in the CMIP2, CMIP3, and CMIP5 models. The distance metric is
calculated as the root mean square of the surface temperature and precipitation distance as in Figure 1 but relative to
observations (NCEP, ERA40, and MERRA for temperature; GPCP and CMAP for precipitation, see MK11). Mean and
medians for the different ensembles are indicated by red solid and dashed lines, respectively. Note that most models in
CMIP2 (including HadCM2, but not HadCM3) used flux corrections.
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Community	Earth	System	Model	(CESM1)
• 0.25o, 1o , 2o resolutions, +regional-refinement 

• 30 minute time step (for 1o and 2o)

• 32 atmosphere levels (72 for WACCM)

• 60 ocean levels (0.1o or 1o)

• 25 ground layers

• ~5 million grid boxes at 1o resolution

• >1.5 million lines of computer code 

• Data archived (monthly, daily, hourly) for hundreds of 
geophysical fields 

• Utilized by hundreds of scientists all around the world
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CESM2	will	be	released	in	December	2016



Complexity

Resolution
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Slide	from	C.	Deser
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Internal	variability	and	ensemble
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Internal	variability	and	ensemble
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IPCC	AR5	Ch.6

Carbon	cycle	in	the	Earth	System
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Air-sea	exchange	of	CO2
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• Variable-resolution CAM-SE (CAM5) 
simulations -> dramatically improved 
tropical cyclone representation at regional 
scale

• 0.25° nest produces realistic storm 
counts/intensities in North Atlantic at 1/6th

compute cost of globally-uniform 0.25°
mesh

• Challenges: Streamlining generation of new 
grids; Ensuring that physics 
parameterizations work across resolutions

Uniform 1° 1° with 0.25° nest

Uniform 1°

1° with 0.25° nest

Obs

Tropical cyclone tracks, 1980-2002

Courtesy: Colin Zarzycki, U. Mich.

High res: Regionally refined grids



CO2 over	historical	period	in	CESM1
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Mauna	Loa

Keppel-Aleks et	al.,	
2013



Impact	of	CLM4.5	model	changes	on	
historical	global	terrestrial	 carbon	 trajectory	

GCP estimate 
for land C sink

Koven et al., 2013

In CLM4.5, land is a C 
sink over latter half of 
20thC, as observed
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Land	biogeochemistry	feedbacks:	CESM1	to	CESM2

Arneth et	al.,	2010



Improvement	in	ozone	deposition	and	stomatal	resistance

Lombardozzi et	al.,	2015

Val	Martin	et	al.,	2015



Summary

• CESM	is	a	versatile	tool	to	explore	complex	
interactions	and	feedbacks	within	and	across	
elements	of	the	Earth	system

• Strong	emphasis	is	placed	on	continual	
improvement	in	process	representation

• This	can	only	be	achieved	through	numerous	
collaborations	across	disciplines	and	scales
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