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Feedbacks between tectonics and erosion
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Diversity of (subaerial) normal fault styles
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Diversity of (subaerial) normal fault styles
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Diversity of (subaerial) normal fault styles
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Normal faulting vs. surface processes

Surface processes redistribute mass and topographic loads
on a growing fault. Can they affect fault life span ?
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Coupled geodynamics — surface model

Geodynamic model (visco-elastic-plastic flow with FD/PIC):

Strong brittle layer (thickness H) with seeded fault subjected
to stretching at half-rate V. Fault evolution monitored as offset h

increases.

Numerical simulations conducted with the SiStER code
(Simple Stokes with Exotic Rheologies).
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Coupled geodynamics — surface model

Surface evolution model (upper boundary condition):

Step 1: erode material Step 2: deposit material flat
¥ in corresponding watershed
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Fault growth with erosion and sedimentation

Fault growth is accompanied by

- 2000 m footwall ridge
1000 m
- 0 flexural basin i iU

50 km
hanging wall // footwall

e Flexure of the footwall and hanging wall

e Rapid rotation of the fault plane down to 30-45¢.

e Erosion of the footwall block, ridge migration,
deposition in flexural basin.



Sequence of faulting with slow erosion

Extending a 15 km thick layer at 2 mm/yr (full rate).
Ref. erosion rate = 0.05% of fault slip rate.

total extension = 0.74857 km
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Sequence of faulting with fast erosion

Extending a 15 km thick layer at 2 mm/yr (full rate).
Ref. erosion rate = 35% of fault slip rate.

total extension = 0.74856 km
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Faster surface processes = longer-lived faults

total horizontal extension = 22 km
ot >

E,,=0.015 mm.yr', E_ /slip rate = 0.0005

WX Gl

E,, =15 mm.yr', E  /slip rate =5.3

Increasing erosion rates




Faster surface processes = longer-lived faults

Surface processes further enhance fault life span
in thinner faulted layers for a given erosion / slip rate.
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Force balance on a growing normal fault

How to keep a normal fault active ? [Forsyth, 1992]
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Force balance on a growing normal fault

How to keep a normal fault active ? [Forsyth, 1992]

Supply extensional work Sustain the growth
of topography

Bend the faulted layer

Overcome frictional
resistance on the fault



Topographic forcing on fault life span
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Implications for the geometry of the 2"d fault

Topography build-up favors the formation of an antithetic
second fault in the vicinity of the initial fault.
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When surface processes suppress topography, internal
bending controls the location and geometry of the 29 fault.



Implications for rift dynamics

Surface processes enable the large offsets (10+ km)
observed on major range-bounding normal faults.

(These would otherwise
be difficult to achieve
in 15 km-thick

brittle upper crust)
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Future directions

e Top-down vs. bottom-up controls on rift dynamics ?

surface processes SNve
flexure (a)

next fault ? 7

"
"
"
N

K lower-crustal flow

e Improved models of sediment deposition for load redistribution

e Model, meet data: mechanical vs. geomorphological observables



