MODES OF EXTENSIONAL FAULTING CONTROLLED BY SURFACE PROCESSES

Jean-Arthur Olive^{1,2}, Mark Behn², Luca Malatesta³

1 - MIT/WHOI, now LDEO, 2 - WHOI, 3 - Caltech

Feedbacks between tectonics and erosion

Diversity of (subaerial) normal fault styles

SHORT-LIVED FAULTS

LONG-LIVED DETACHMENTS

Baringo-Bogoria half-graben (Kenya) fault life span **East African Rift** - Eastern Branch

Diversity of (subaerial) normal fault styles

SHORT-LIVED FAULTS

LONG-LIVED DETACHMENTS

Diversity of (subaerial) normal fault styles

SHORT-LIVED FAULTS

LONG-LIVED DETACHMENTS

Northern Snake Range (Nevada)

fault life span

Normal faulting vs. surface processes

Surface processes redistribute mass and topographic loads on a growing fault. Can they affect fault life span?

Coupled geodynamics – surface model

Geodynamic model (visco-elastic-plastic flow with FD/PIC):

Strong brittle layer (thickness **H**) with seeded fault subjected to stretching at half-rate **V**. Fault evolution monitored as offset **h** increases.

Numerical simulations conducted with the **SiStER** code (**Simple Stokes** with **Exotic Rheologies**).

Coupled geodynamics – surface model

Surface evolution model (upper boundary condition):

Fault growth with erosion and sedimentation

Fault growth is accompanied by

- Flexure of the footwall and hanging wall
- Rapid rotation of the fault plane down to 30-45^o.
- Erosion of the footwall block, ridge migration, deposition in flexural basin.

Sequence of faulting with slow erosion

Extending a **15 km thick** layer at **2 mm/yr** (full rate). Ref. erosion rate = **0.05% of fault slip rate**.

total extension = 0.74857 km

Sequence of faulting with fast erosion

Extending a **15 km thick layer** at **2 mm/yr** (full rate). Ref. erosion rate = **35% of fault slip rate**.

total extension = 0.74856 km

Faster surface processes = longer-lived faults

Faster surface processes = longer-lived faults

Surface processes **further enhance** fault life span in **thinner** faulted layers for a given erosion / slip rate.

Layer Extension thickness rate $H = 15 \text{ km}, V = 1 \text{ mm.yr}^{-1}$ $H = 15 \text{ km}, V = 10 \text{ mm.yr}^{-1}$ $H = 25 \text{ km}, V = 1 \text{ mm.yr}^{-1}$

How to keep a normal fault active? [Forsyth, 1992]

How to keep a normal fault active? [Forsyth, 1992]

Supply extensional work

How to keep a normal fault active? [Forsyth, 1992]

Supply extensional work

Overcome frictional resistance on the fault

How to keep a normal fault active? [Forsyth, 1992]

Supply extensional work

Overcome frictional resistance on the fault

How to keep a normal fault active? [Forsyth, 1992]

Overcome frictional resistance on the fault

Topographic forcing on fault life span

Implications for the geometry of the 2nd fault

Topography build-up favors the formation of an **antithetic second fault** in the vicinity of the initial fault.

When surface processes suppress topography, internal bending controls the location and geometry of the 2nd fault.

Implications for rift dynamics

Surface processes enable the large offsets (10+ km) observed on major range-bounding normal faults.

(These would otherwise be difficult to achieve in 15 km-thick brittle upper crust)

Rwenzori Mountains (Uganda)

Future directions

Top-down vs. bottom-up controls on rift dynamics?

- Improved models of sediment deposition for load redistribution
- Model, meet data: mechanical vs. geomorphological observables