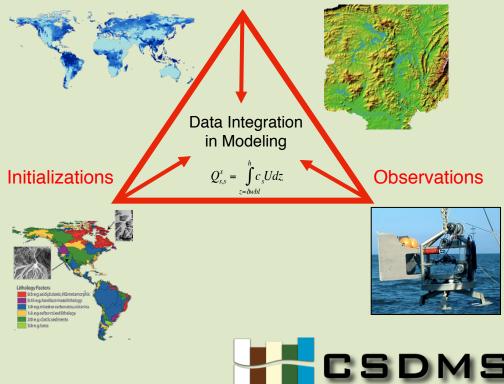
CSDMS 2011 ANNUAL Meeting Impact of time and process scales

October 28-30th, Boulder Colorado, USA

Day 1-3: Mornings: keynote addresses on concepts and models Day 1-3: Hour lunch

- Day 1-3: Early Afternoons: Clinics (models, generic)
- Day 1-2: Later Afternoons: Posters with Refreshments
- Day 3: Later Afternoon: Working Group or FRG meetings
- Day 2: Banquet: Poster Award; Lifetime Achievement Award
- Day 4: Morning: ExCom Meeting & Steering Committee Meeting

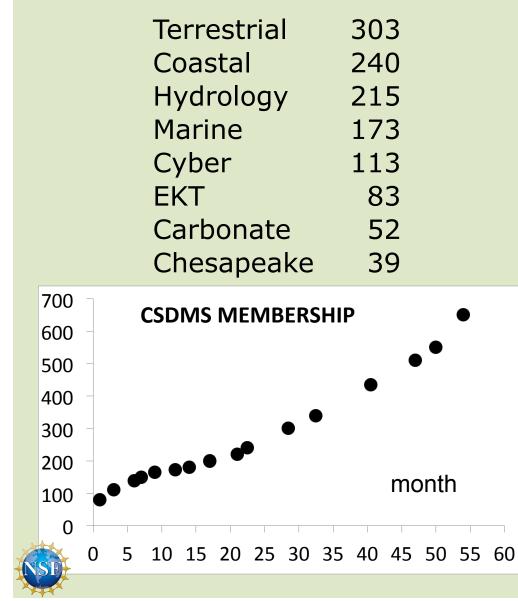


CSDMS Model Domain:

Glacier, Iceberg Models, Transport or Flux Models, Ocean & Weather Circulation Models, Morphodynamics Models, Landscape or Seascape Evolution Models, Stratigraphic Models

Boundary Conditions

OMMUNITY SURFACE DYNAMICS MODELING S


CSDMS offers

- 1. Development & Support of an International ESD Community
- 2. A Model Repository
- 3. Model Coupling & Model Reuse Middleware
- 4. High Performance Computing Support
- 5. Education & Knowledge Products
- 6. Model Support Services
 - Data Repository
 - Modeling Tools
 - Model Metadata & Info

CSDMS offers a community of communities to promote the modeling of earth-surface processes 650 Members contribute to 8 Working or Focus Research Groups

•

CSDMS partners with:

- >125 U.S. institutions (>95 universities, 12 private corp., 19 gov't. labs or agencies)
- >125 non-US institutions from 40 countries (>85 universities, 3 private, 27 gov't agencies)
 - Argentina, Australia, Austria,
 Bangladesh, Belgium, Bolivia, Brazil,
 Canada, Chile, China, Cuba, Denmark,
 France, Germany, Greece, Hungary,
 India, Indonesia, Ireland, Italy, Japan,
 Korea, Malaysia, Myanmar, New
 Zealand, Nigeria, Norway, Peru, Poland,
 Portugal, Scotland, Singapore, Spain,
 Sweden, Switzerland, The Netherlands,
 UK, Uruguay, USA, Venezuela)


CSDMS Community and Activities (2007-11)

Annual Student award

Annual Lifetime Achievement award

120 workshops, symposia & meetings

11 CSDMS Short Courses (U.S.A., Germany, Korea, New Zealand)

190 IF staff presentations

123 IF staff peerreviewed journal papers, books and book chapters

CSDMS Integration Facility (IF) Staff

1. NSF-supported CSDMS Staff 5.6 FTE (2011)

 Exec. Director Software Architect Software Engineer Cyber IF Scientist EKT Scientist 	2007 0.25 FT 2007 0.71 FT 2007 0.92 FT 2007 0.60 FT 2009 0.62 FT	Ē
 Software Architect Software Engineer Cyber IF Scientist 	20070.71 FT20070.92 FT20070.60 FT	

- 2. Staff support from other sources 2.4 FTE (2011)
- 3. CSDMS-related support from other sources (2007-2011)
- 9 grad students
- 2 undergrad students
- **3 postdocs**
- 2 senior research scientists
- 34 CSDMS Visiting Scientists & Students (USA,

Canada, Germany, Norway, Australia, Italy, Columbia, China, Netherlands, Belgium)

CSDMS Model Repository:

Domain	Models	Tools	Components	
All domains	140	47	53	Repository consists of
Terrestrial	74	44	33	than 4 million lines of
Coastal	42	1	3	valuable metadata for
Marine	28	2	6	model with up-to-date
Hydrology	47	34	43	references behind the
Carbonate	1	1	0	and its application.
Climate	5	2	0	

 No. of
 No. of

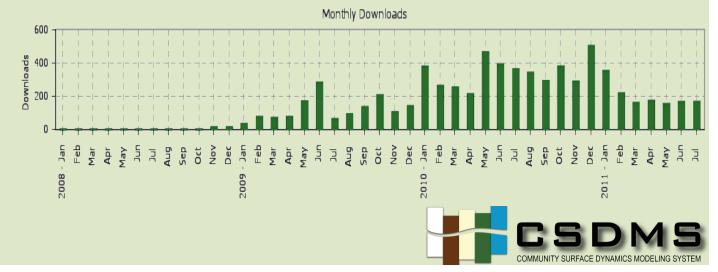
 models
 downloads

 14
 >100

 29
 50-100

 29
 20-49

 45
 <20</td>


CSDMS provides the cyber-infrastructure to distribute software tools, models & model data in aid of application and education.

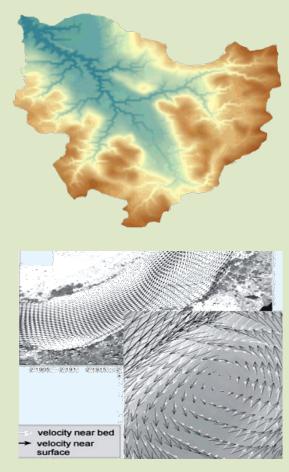
more

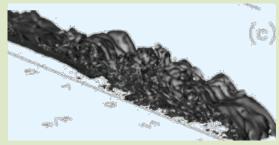
code,

each

model

Types of CSDMS models


1) Landscape / Seascape Evolution Models: Geomorphic & stratigraphic models to simulate across geological time and space by incorporating geophysical & geochemical feedbacks including isostasy, eustasy, tectonics, climate change, sea level, post-depositional processes and biology.

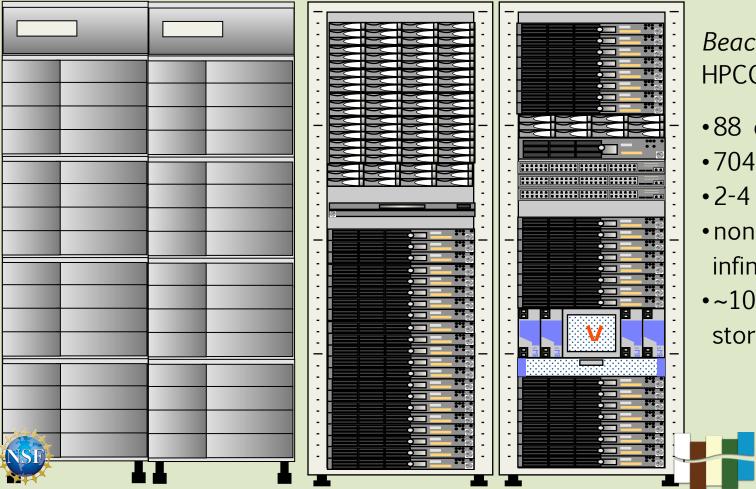

2) Morphodynamic Models:

Engineering & sedimentology models to simulate the evolving transport pathway and mobile bed with dynamical feedback to fluid transport processes may include ecodynamics.

3) Transport / Circulation Models:

Oceanographic, hydrologic & sedimentologic models to simulate the material flux along pathways at the even scale (e.g. river floods, ocean storms) using advanced computational fluid dynamics

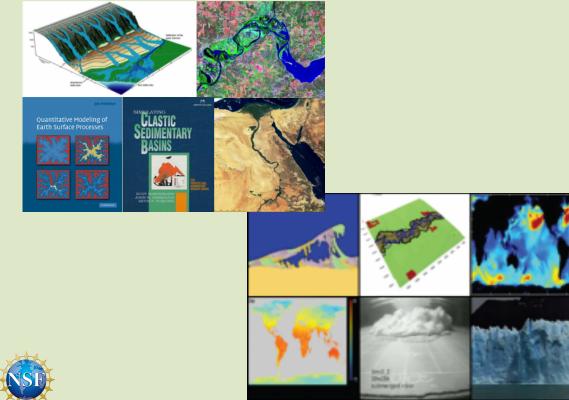
CSDMS MODEL EXAMPLES


Model Category	Domain	Example models in the CSDMS Repository		
Terrestrial	landscape evolution	CHILD, SIBERIA, Caesar, Erode, GOLEM, MARSSIM, WILSIM		
	fluvial morphodynamics	LOGPRO, BEDLOAD, MIDAS, TISC, SUSP, YANGs		
	eolian transport	Eolian Dune Model		
	cryosphere	GC2D, ISGR, Ice ages		
	geodynamics	TAo, TISC, LavaFlow2D		
Hydrology	reaches	STVENANT, SVVMM, FLDTA		
	basins	DR3M, TopoFlow, GEOtop, HydroTrend, PIHM, ParFlow,		
		MFDrouting, MODFLOW		
	continental	ANUGA, CREST, DHSVM, PIHM		
	global	WBM-WTM,VIC		
	biogeochemistry	QUAL2K, OTEQ, OTIS, SPARROW, GNE, HSPF, LOADEST,		
	& water quality	RHESSys, SWAT		
Coastal flow dynamics		2DFLOWVEL, ADCIRC, NearCoM, ROMS		
	wave dynamics	REF-DIF, STORM, STWAVES, SWAN, WAVEREF, WINDSEA,		
		FUNWAVE, ROMS		
	coastal evolution	CEM, Delta, XBeach, CrevasseFlow, Avulsion, AquaTellUs		
Marine	physical oceanography	FVCOM, ROMS, POM, Symphonie, WAVEWATCH-III		
	sediment transport	Diffusion, Plume, SedPlume, SedBerg, Sedtrans5, WSGFAM,		
		SedFlux, Sakura, Hyper, Bing, Bio		
	geodynamics	Subside, SedFlux		
	stratigraphy	cyclopath, SedFlux		
Climate, Weather		WRF,WACCM+, and MITgcm		
Tools		ADI2D, LOGDIST, TopoToolbox, TauDEM, Zscape, TURB,		
		TOPOG, Parker Ebook, SVELA, SETTLE, PsHIC, FTCS, Compact		

CSDMS members may gain access to the CU/USGS experimental supercomputer *Beach* supporting >150 CSDMS members who have met a use criteria

- Running CSDMS models to advance science
- Developing a model for the CSDMS model repository.
- Developing a data or visualizations systems in support of CSDMS models.

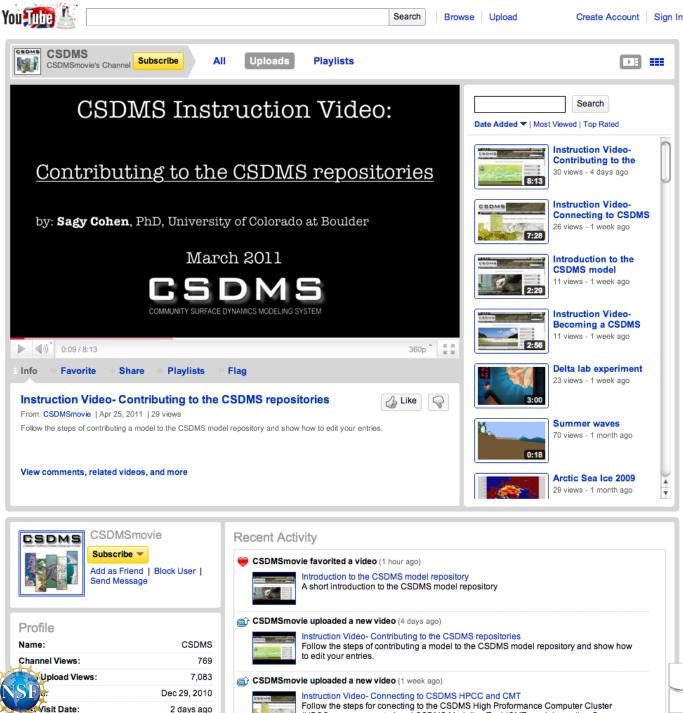
Beach a 8Tflop/s HPCC employs:


- •88 compute nodes
- •704 x 3-GHz cores
- •2-4 GB/core
- non-blocking infiniband
- •~100TB RAID
- storage.

Janus (NSF & CU)

Beach is linked to NSF/CU *Janus* offering 16,416-cores (>150 Tflop/s) --- 1368 nodes: 6 cores/processor x 2 - 2.8 GHz processors; 2 GB/core; non-blocking Infiniband; ~1PB of RAID storage.

Data	set info	Туре	Origin	Description	Data example
ASTER	t	Topography	Measured	Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)	
DDM3	0	Hydrography	Modeled	Global drainage direction map	
ETOPO	01	Topography	Modeled	ETOPO1 is a 1 arc-minute global relief model	N Pro
GEBCO	D	Topography	Modeled	The General Bathymetric Chart of the Oceans	
GLOBE		Topography	Modeled	GLOBE is a project to develop the best available 30-arc-second (nominally 1 kilometer) global digital	~



CSDMS Data **Repository:** includes initialization databases; data tools; test & validation data; benchmarking data

CSDMS Education **Repository:** Real event & laboratory movies, model animation movies; student labs; modeling short courses, lectures, textbooks, imagery

CSDMS offers instructional material on its YouTube channel highlighted several times for being in the "Top 50 most viewed channel" in the "non profit" category.

Instructional videos

Description

How to connect to the supercomputer

An instructional video that shows how to connect to the CSDMS High Performance Computer Cluster (HPCC; beach) and the CSDMS Modeling Tool (CMT; model coupling GUI).

How to contribute to the CSDMS repositories

A step by step video of how to contribute a model to the CSDMS model repository and show how to edit your entries.

How to use the model repository

A brief video of how to use the model repository

How to become a member

A short description of how to become a member and what are the benefits of a CSDMS member.

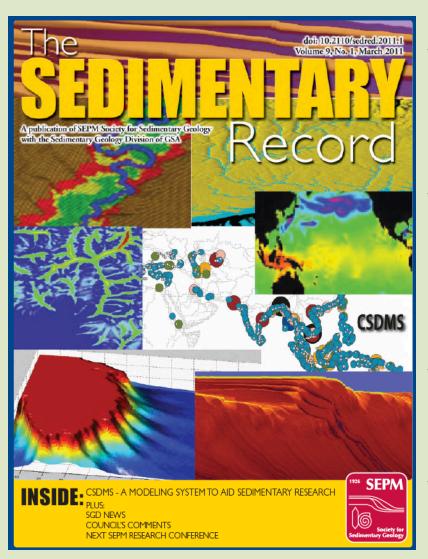
Open State Description <thDescription</th> <thDescription</th>

CSDMS

Explore Earth's surface with community softs:

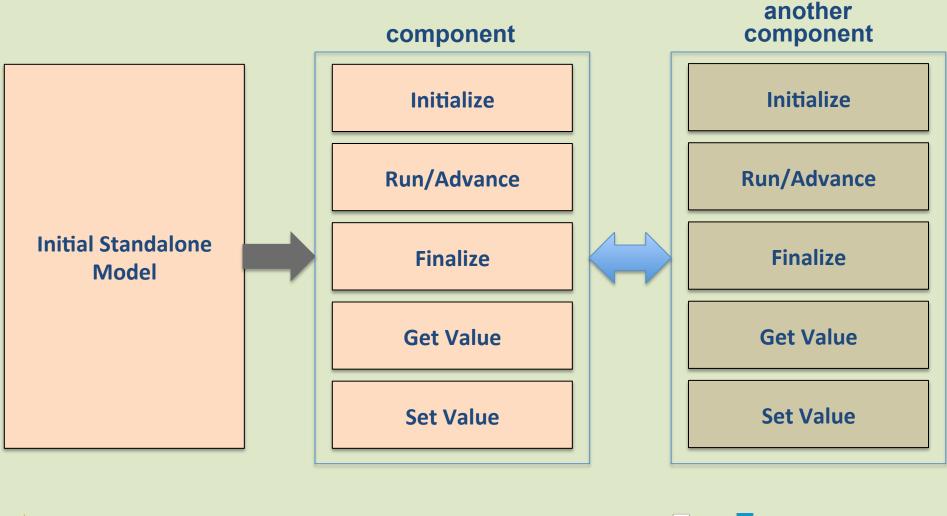
CSDMS instructional videos offer step by step instruction on how to use the various tools and facilities of CSDMS.

CSDMS best-practices or protocols for contributed models


- 1) **Open-source license**.
- 2) Be widely available.
- 3) **Vetted** the software should do what it says it does.

4) In a Babel-supported **open-source language** (C, C++, Fortran, Java, Python) or have a pathway for conversion.

- 5) Refactored with an IRF interface [& getter and setter functions].
- 6) Separate out any user interface
- 7) Include a metadata file and test I/O files.
- 8) Be **clean and documented** using keywords within comment blocks to provide basic metadata for the model and its variables.
- 9) Provide descriptive state variables with identified units


Why Open Source?

- Revealing source code provides the scientific hypotheses embodied in a numerical model, and reveals their implementation.
- Details are important. A solution to a set of equations can take numerous forms, and each solution has its pyramid of assumptions and limitations.
- Code transparency allows for full peer review and replication of results — the foundation of modern science.
- Code transparency allows for reuse, often in new and clever ways, and reduces redundancy.

A standalone model is componentized by dividing it into tasks that other components can use

CSDMS's component-based modeling Framework:

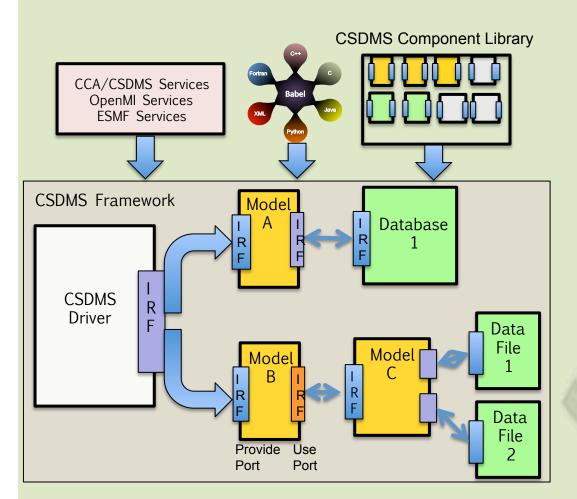
• Supports *multiple operating systems* (Linux, Mac OS X, Windows)

Language interoperability for contributions in procedural languages
 (C or Fortran) & object-oriented languages (Java, C++, and Python).

• Supports *structured & unstructured grids* - spatial regridding tool

• Offers *platform-independent GUIs & graphics*.

◆ Uses *open-source standards* (e.g., CCA, SIDL, OGC, MPI, NetCDF, OpenDAP, XUL) & tools — avoids dependencies on proprietary software (Windows, C#, Matlab).


◆ Supports *parallel computation* (multiprocessor via MPI standard) and parallel tools (e.g., Vislt, PETSc, ESMF Regrid).

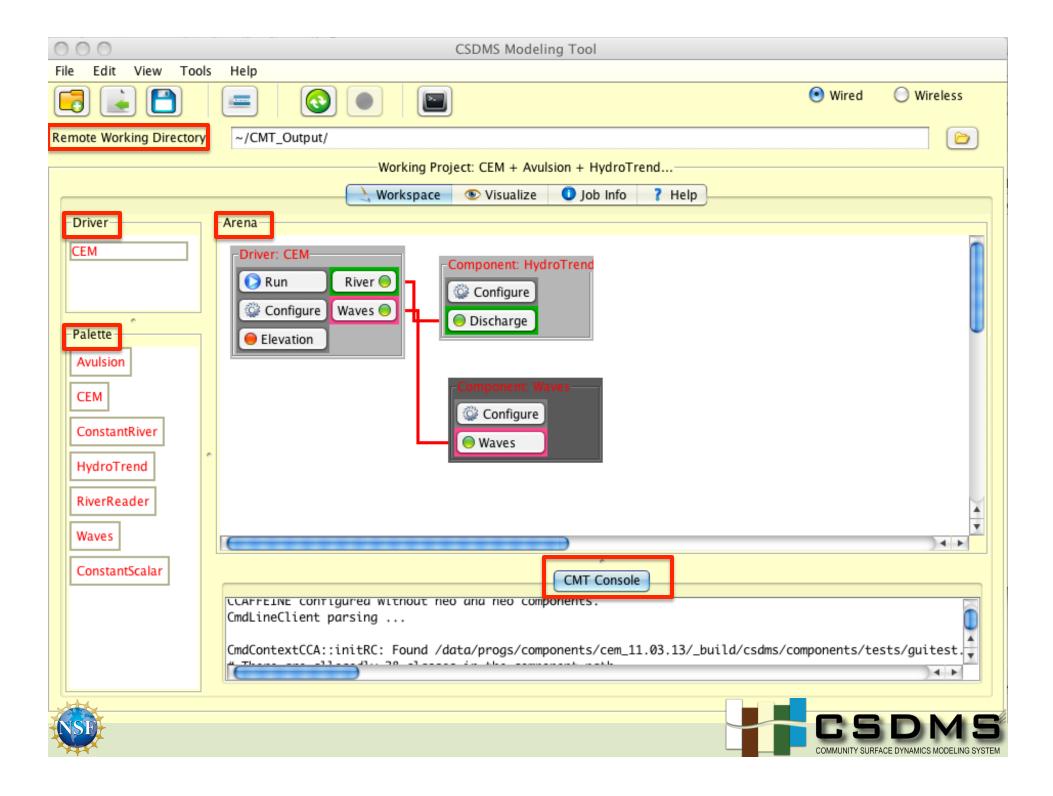
• Interoperable or friendly with other coupling frameworks.

• Familiarity — developers need not change how they work.

CSDMS pioneering efforts in model coupling have led to a **"plug and play" programming** environment that increases the performance of contributed models, increases their ease of maintenance and use, their flexibility, stability, portability, and future proofing.

The **CSDMS Component Modeling Tool (CMT)** offers an environment to link components, provide **services** accessible to all components, and avoids black box syndrome.

CSDMS has adopted, integrated and advanced open-source services into its modeling framework — largely invisible to users of the CSDMS **Component Modeling Tool** (**CMT**).


CSDMS CMT Services:

(1) language interoperability (C, C++, Java, Python, Fortran) using **Babel**;

- (2) component preparation & project management using **Bocca**;
- (3) low level model coupling within a HPC environment using *Ccaffeine*;
- (4) single-processor spatial regridding (**OpenMI** *Regrid*) or multi-processor spatial regridding (**ESMF** *Regrid*);
- (5) component interface standards advanced by **OpenMI**;
- (6) self-describing scientific data format (*NetCDF*) & water markup language (*WML*);
- (7) visualization of large data sets within a multiple processor environment (e.g. *Vislt*);
- (8) message passing within the HPC environment using *MPI* (*MPICH*) and *OpenMP*, along with *PETSc* a Portable, Extensible Toolkit for Scientific Computation.

000	CSDMS Mode	ling Tool		000	TopoFlow 1.5 Help - Tutorial
File Edit View Tools H	elp			🔺 🕨 🕂 🕙 http	://csdms.colorado.edu/help/models/topoflow/TF_tutorial.htm
i 🔁 📘			🔘 Wired 💽 Wireless	CU etc ▼ N	SF v CSDMS v ONR v Class v Global Change v coastal v Arctic v Plumes v Key Projects v D
Remote Working Directory:	/CMT_Output/			A MARINE	CSDMS Help System
	Working Project: To	poFlow + GC2D			eserie neip system
	📐 Workspace 🛛 💿 Visualize	Job Info 🕴 Help		and the second	
Driver	Arena			Getting Starte	ed with TopoFlow 1.5 - A Short Tutorial
TopoFlow	Driver: TopoFlow			Introduction	
	Run Meteorology 😑			TopoFlow is a free	spatially-distributed hydrologic model with a user-friendly, wizard-style interface. TopoFlow evolved
	Configure Channels 🖲			from the merger of	a previous rainfall-runoff model based on DEM-derived D8 flow grids and a model called ARHYTHM
Palette	Hydro_model Snow				and tested for modeling Arctic watersheds. For this reason, it offers sophisticated methods for ure-dependent processes such as snowmelt, evaporation, infiltration (frozen ground) and shallow
ChannelsDiffWave	Evap 😑				opoFlow is highly modular and was designed to be user-extensible. In virtually every input dialog, e flexibility of entering any input parameter in any of the following forms:
ChannelsDynamWave	Infil 🥚	OOO Hydro Mo	del: TopoFlow Parameters	users also have the	
ChannelsKinWave	Satzone 🔴		Input Parameters		e used for every pixel and all times) (to be used for every pixel)
	ice 😑	Component status: -	Enabled	10	to be used for all times) or
Diversions	Diversions 😑	Input directory: –	/data/sims/topoflow/treynor_iow		ce (corresponding to the timestep for that process).
EvapEnergyBalance	·	Output directory: -	~/CMT_Output/	2	features that sets TopoFlow apart from most other spatial hydrologic models.
EvapPriestleyTaylor			Treynor		Data Language) source code for TopoFlow is open, but subject to a <u>license agreement</u> . By any represents a substantial programming effort. Version 1.5 consists of about 40,500 lines of IDL
EvapReadFile		Case prefix: -	Case5	0	rnal comments). Assuming 60 lines per page, printing out the source code would therefore require
		Stopping method: -	Q peak fraction	;?	f written in a lower-level language like C, it would require at least 5 to 10 times more code.] in progress by multiple programmer-hydrologists and we welcome feedback and bug reports from
HISData		Q peak fraction: {0.0, 1.0}			
lceGC2D		Model stop time: {0.0, 1.0E9}			ork with TopoFlow, you may find it helpful to review the concepts behind spatially-distributed
InfilGreenAmpt		Number of steps: {1, 100000000}		?	 One paper that you might find helpful is a draft book chapter on spatial hydrologic modeling written for an Elsevier book called Geomorphometry. Another paper that contains a great deal of
InfilRichards1D	(Number of steps. {1, 100000000}	100		information is the one by Zhang et al. (2000) that describes the ARHYTHM model. If you would like
		Help Restore	e Defaults OK (Cancel	the point-and-click, hydrologic GIS program called RiverTools, you may also be interested in this written by <u>Peckham (2007b)</u> , also for the Geomorphometry book.
InfilSmithParlange	Deleting instance: InfilRichards1	D			on is available on the official TopoFlow website at: http://instaar.colorado.edu/topoflow/.
Meteorology	<pre>getGizzard("EvapEnergyBalance") = Deleting instance: SatZoneDarcyLa</pre>				
SatZoneDarcyLayers	<pre>getGizzard("InfilRichards1D") = 0 Deleting instance: IceGC2D</pre>			How to Set Up a	
SnowDegreeDay	<pre>getGizzard("SatZoneDarcyLayers") getGizzard("IceGC2D") = 0. No suc</pre>			than about 300 colu	EM (digital elevation model) for the basin that you wish to model. If the DEM has dimensions greater umns and 300 rows, then it is usually best to subsample the DEM (by averaging) to have
SnowEnergyBalance	/data1/progs/cca/src/serial-night SUCCESS: TopoFlow component statu	ly/cca-tools-contractor/_build/bu	uild/ccaffeine/cxx/dc/1	Sequence) for whic	range. Using larger DEMs will result in longer model runs and may result in RTS files (RiverTools ch you do not have enough space on your hard drive. It is good to start with smaller DEMs and then
TopoFlow	Reading GUI info from: /data/prog		cfg	to increase the size	e/resolution of your DEM for subsequent model runs if you determine that higher resolution is I have sufficient time and disk space. Tools for mosaicking, subsetting and subsampling DEMs are
	Connecting Opening file: http://csdms.colora	do.edu/help/models/topoflow/TF_tu	ıtorial.htm		gic GIS software such as RiverTools 3.0.
			V 	Step 2. Create a D	8 flow grid, area grid, slope grid and Horton-Strahler order grid for your DEM using RiverTools 3.0 or
				o aimilar program	The flow originate when the accounted if accounter the power the Diver Table flow and a (the standard

CSDMS 'help system' avoids black-box syndrome

CSDMS members can express which model they want the Integration staff to make into a component --- each member only receives one vote per model

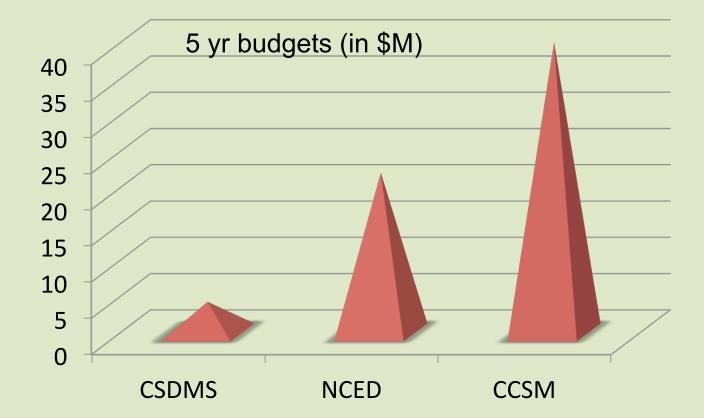
Program 🖻	Description M	Developer 🖻	Voting results 💌
SedBerg	An iceberg drift and melt model, developed to simulate sedimentation in high-latitude glaciated fjords.	Mugford, Ruth	1.98 (2 voters)
WRF	Weather Research and Forecasting Model	Skamarock, Bill	1.98 (2 voters)
Delft3D	3D hydrodynamic and sediment transport model	Delft3D, Support	1.95 (3 voters)
XBeach	Wave propagation sediment transport model	Roelvink, Dano	1.86 (2 voters)
GOLEM	Landscape evolution model	Tucker, Greg	1.82 (2 voters)
MODFLOW	MODFLOW is a three-dimensional finite-difference ground-water model	Barlow, Paul	1.74 (2 voters)
Caesar	Cellular landscape evolution model	Coulthard, Tom	1.5 (2 voters)
Anuga	ANUGA is a hydrodynamic modelling tool that allows users to model realistic flow problems in complex 2D geometries.	Habili, Nariman	1 (1 voter)
РІНМ	PIHM is a multiprocess, multi-scale hydrologic model.	Duffy, Christopher	1 (1 voter)

Roadmap Flexure component status:

Project owner CSMDS-IF:Eric Hutton ➡Start date project:06/02/2011Estimated release date:12/31/2012Project status:46%

Milestone: Executable

				100%
Status	Task	Task owner	Information	Estimated completion date
	Provide metadata	Andy Wickert	More	12/07/2010
	Upload source	Andy Wickert	More	12/07/2010
	Upload input and output data	Andy Wickert	More 🔒	12/07/2010
	Compile	Eric Hutton	Moreଜ	06/02/2011


CSDMS componentizing activities are made transparent through web available road maps

Milestone: Standalone component

				42%
Status	Task	Task owner	Information	Estimated completion date
	IRF interface	Greg Tucker, Andy Wickert, Beichuan Yan	More 🔒	05/19/2011, 07/29/2011
	Create CCA component	Andy Wickert		mm/dd/yyyy
	Build GUI	TBD		mm/dd/yyyy
NS D	Template input file	Andy Wickert, Beichuan Yan	More 🔒	08/08/2011
	Documentation	TBD		mm/dd/yyyy

CSDMS carries out its activities on a limited budget compared to other experimental or computational programs

The latest World Economic Forum report ranks the U.S. 51st in science and math education; 6% of U.S. degrees are in engineering compared to 20% in Japan and 16% in Germany.

Future CSDMS Priorities:

- **1. CSDMS 2.0: Expanding our Reach** multiple platforms; better HPCC model capability, HPCC code training; advanced GIS support
- 2. Coupling physical, biological & human processes: FRGs in geodynamics & CIG? Ecosystems & GRASS? Biogeochemistry & CZO? Polar world? ESM & IAM?
- 3. Landscape into Rock Initiative deep time and space support
- **4. Global Environmental Change modeling:** for sustainability science support including an International Year of Deltas
- **5. Modeling for operational needs**: 1) coupling NASA products with CSDMS models; 2) coupling CSDMS models for BOEM; 3) CCMP support
- 6. CSDMS Model Benchmarking & Model Inter-comparison
- 7. More direct linkage of models to field work/programs e.g. NSF Delta FESD

CSDMS 2011 ANNUAL Meeting Impact of time and process scales

October 28-30th, Boulder Colorado, USA

Day 1-3: Mornings: keynote addresses on concepts and models Day 1-3: Hour lunch

- Day 1-3: Early Afternoons: Clinics (models, generic)
- Day 1-2: Later Afternoons: Posters with Refreshments
- Day 3: Later Afternoon: Working Group or FRG meetings
- Day 2: Banquet: Poster Award; Lifetime Achievement Award
- Day 4: Morning: ExCom Meeting & Steering Committee Meeting

