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e Large-scale and long-term fluvial morphodynamics are driven by processes which occur at much smaller spatial and temporal scales N Qc;g{?
E.g., an advective basin-scale sediment wave propagating through the Nooksack River (Fig. 1) over a multi-decadal time period (Anderson and Konrad 2019) 60 km ~ N ‘
e These long-term patterns of erosion and deposition can affect flood hazard in populated lowland regions (see Shelby Ahrendt's poster) ‘. 50 km <~ 10 km %waw~~
e Resolving the relevant range of scales in simulations requires large domains with fine spatial and temporal steps, which is computationally expensive { J W North Fork
/70 kam ‘ 5= 0 km
, Nooksack R.
e Can we use a morphological acceleration factor (morfac, 1)) to reduce simulation time? | 20 km Az = Ay = 20 m (377,616 cells)
e The use of morfac assumes linearity between hydrodynamics and resultant morphodynamics N ] A At = 0.05 min = 3 sec
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e Morfac is commonly used in coastal/estuarine simulations with values O(10°) or greater _ Vel \‘7 Washington
e In fluvial simulations the use of morfac is generally confined to steady (or quasi-steady) flow 0 9 4 6km - ,? - Middle Fork State
e How does using morfac to scale an unsteady hydrograph affect morphodynamics? B 30 km Nooksack It.
South Fork |
e Implementing morfac here requires adjusting the inflow time-series by a factor of M, effectively Nooksack R.
compressing the upstream boundary hydrograph (Fig. 2) Time as implemented (days) Fig. 2 (left) Inflow hydrograph time-series manipulation example
o Using Delft3D test M, (5, 7.5, 10, 15, 20, 50), using no acceleration (M; = 1) as a standard for M; = 10. Time values are centered on the peak of the flood.
(2) FLOOD WAVE PROPAGATION (3) MORPHODYNAMIC RESULTS (4) SUMMARY & CONCLUSIONS
o Higher M; values result in more attenuative flood waves (lower celerities and peak flows, Fig. 3a) e Similar patterns of erosion/deposition, but more muted with higher morfac values (Fig. 4a-c) e Hydrograph time-series manipulation creates 3o
e Peak discharge moves downstream as a power-law function of time (Fig. 3b and c) o Higher M; results in higher errors, similar regions of high error (Fig. 4d,e and Fig. 5a) more attenuative flood waves 2 102 - i
o 107
s — o X tP e Errors higher for regions of high slope (Fig. 5¢c) and regions of narrow channel width (Fig. 5d) =
e Discharge magnitude reduction increases G 50
e From fitting (Fig. 3b and c), wave celerity (¢ = ds/dt) is inversely proportional to morfac — | M. =1 (a) Fig. 4 (a-c) Downstream pattern of summed linearly with morfac 3 O
g 107 / 1 elevation changes per 1/2 km, and (d-e) errors in = 20
c & 181.3/M; o : > 15 _.O
g 0 summed elevation changes. . . . < ®)
_ _ _ o _ _ . e Lower peak discharge magnitudes result in T 10
e Peak discharge reduction (Fig. 3d) is directly proportaional to distance and morfac 10+ . Positive Negative Net . . _ o 10 - 75 . @ =
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Fig. 3 (a) Discharge time-series at several downstream locations, showing increased flood wave
attenuation with increasing morfac, (b and c) fitting parameters for power-law relationship between
peak discharge timing and location, and (d) relationship between reduction in peak flow and time.

Fig. 5 (a) Downstream variation in median percent error of elevation change, (b) downstream mean
channel slope and width, (c) trends between error and slope, and (d) trends between error and width.
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