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Motivation
* Steep elevations dominantly erode by mass-wasting which form major source of sediment input to streams. Where landslide A regional landslide hazard model shall:
intersect with human development, they cause damage and life loss. (1) be flexible to incorporate changes in intrinsic and extrinsic conditions, such as vegetation and climate;
* Existing models focus on research icati in small with detailed lide inventories. (2) account for spatial variability in model parameters and forcings
* Tools are needed that can combine regional gridded soil, ion, climate, and hy gic model products to develop (3) integrate spatial and temporal dimensions of uncertainty to quantify landslide probability.
landslide hazard models without the need for detailed calibration.
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Shallow landslide initiation is modeled using the infinite slope A Monte Carlo solution is used for the FS equation. Outcome is Model is developed in Landlab (Hobley et al., 2017). Parameter fields are derived from gridded data, uncertainties added.
stability factor of safety (FS) equation. local annual Probability of Failure, P(F). Recharge is used from VIC for subsurface flow. Parameter ranges are evaluated against observations on slope-area domain.
Field Site: North Cascades National Park (NOCA), WA _Results:
= T Annual Probability of Failure (PF) maps Unconditionally Unstable: Barren pro-glacial landscapes
SSURGO-SD Model-SD Long-term Model-SD

* Elevation range: 100-2,800m
*Slopes up to 84°

* MAP: 708 — 4,575 mm

* ~1,700 mass wasting mapped
by the National Park Service.
* 283 debris avalanches
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* All models give relatively higher P(F) at the
location of observed landslides.

* Among the soil depths maps used, P(F) is higher
across the landscape with SSURGO Soil Depth,
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Model5D) FonpztenmiModel:SD) - « Intermediate slopes where landslide source
7 j A areas are located have higher P(F).

* Lack of soil in high elevations lead to reduced
P(F).

Question:

How do hydro-meteorologic,
- vegetation, and soil variability control
“s0 00 1500 2000 2500  the spatial patterns of landslides?
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How was the model run?

*Annual maximum upslope Recharge
(R,,) for each model grid is obtained
from regional VIC model runs (1916 to
2006), forced by gridded meteorology.
* A non-parametric distribution is used
forR,,.

 Triangular distribution is assumed for
all model parameters.

Parameter values 5 W ¢ et B A * At each grid cell 3,000 samples were
from literature generated for each parameter and P(F)
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i 1 3 Soil depth (SD) and its uncertainty control P(F) in space.
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* Modeled SD (contemporary) L N N
o Forests stabilize landscape at low elevations, loss of forest increase

+ Modeled SD-Long term g
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