Resilient deltas a case-study report on the Volga and Ganges delta systems

Dr. Irina Overeem ^{1,2)}

CSDMS, INSTAAR, University of Colorado, CO, Boulder, USA
 Delft University of Technology, The Netherlands

Thanks to co-authors: S.B.Kroonenberg, T.Veldkamp, and S. Goodbred.

Outline

Introduction: extreme rates of sea-level?

Case-study: Volga delta over last centuryCase-study: Ganges delta at Early Holocene

Conceptual framework: correlated change in sealevel and sediment supply.

What are extreme sea-level changes?

- □ Observed 20th century sea-level change 1.7 mm/yr.
- IPCC forecasts¹⁾ for global sea-level change rates until 2099 vary from ~3-4 mm/yr depending on scenarios.
- Volga delta response to last century sea-level change (100 mm/yr)
- Ganges delta response to Early Holocene sea-level change (20 mm/yr)

Volga river drains 1,5 million km² and has wide fluvial– dominated delta

Volga river and Caspian Sea

Caspian Sea went through a 3-m sea-level cycle over the last century.

(Source: Mahachkala gauge)

Caspian Sea level is controlled by Volga discharge, which in turn depends on precipitation. Arpe et al.,(2000) showed correlation with ENSO.

Delta progradation over last century

(After Alekseevskiy, Aibulatov, Chistov, 1999), based on combination of old maps and surface topography.

Sea-level fall - low sediment supply

• Relative stable coast 1850–1909 'highstand'

• Rapid progradation 1909-1927 due to emergence, s.l. fall 0.6 m

• Slow progradation 1927-1938, despite additional 1.2m s.l. fall because of reduced sediment supply.

- Rapid progradation 19351951, emergence and skeleton of channels
- 1951-1981 lowstand, channel network fills.

• 1981- 1990 coastline is stable despite 1,5 m sea level rise.

AquaTellUs numerical model

Model simulation results

Ganges delta

Indian monsoon dominates Ganges

(Source: BBC weather, 2005)

Ganges River (Farakka station 1949-1973)

Longterm Indian Monsoon

Indian monsoon proxy: salinity in the Bengal basin (e.g. Kudrass et al., 2001). Indicates that paleo river discharges were higher.

Sediment supply high at Early Holocene

Floodplain and shallow coastal GB system: location of borehole data, which have grain size analysis and C¹⁴ dates.

Goodbred & Kuehl (1999, 2000)

Volume/Time of sediment stored in Ganges delta sequence tracks monsoonal record

Isopach map of Ganges-Brahmaputra sediments deposited in Bengal basin since 11 kBP.

Sediment volume is 8.5 ×10¹² m³, nearly 60% of which was stored from 11-7kBP. Implies 2.2 times higher flux at Early Holocene!

(Goodbred et al., 1999, 2000)

Sedflux Stratigraphic Model

3DSedFlux

INPUT(t)

sea level(t), bathymetry (t-0) Q, Qs, Qb (HydroTrend)

PROCESSES

River: avulsion, floodplain SR Marine: delta plume, storms Basin: compaction, subsidence

OUTPUT (x,z,t)

- 3D-geometry
- grain size, age

Details and Equations: Three-dimensional modeling of deltas Overeem et al., 2005. SEPM Spec Publ.

NEWEST Version: Hutton, Syvitski (in press 2007), Computers and Geosciences.

SedFlux simulation results

500 year experiments (SLR = 2 m per 100yrs)

SedFlux simulations of rapid sea-level rise for a merging GB system

SedFlux simulations of rapid sea-level rise for a merged GB system

Y-section at 20 km; away from last depocenter

SedFlux simulations of rapid sea-level rise for a merging GB system

Present-day Monsoon Conditions Different Subsidence Rates

'low subsidence'4 mm/year uniformly over entire grid

'high subsidence'7.5 mm/year locally in 'graben'

Low subsidence

High subsidence

Concept: correlated controls

Implication: delta system is more resilient to rising sea-level, because it is able to build rapidly.

Implication: change is amplified, i.e. delta system is rapidly prograding due to emergence.

Discussion

- Interacting forces can be explored with numerical modeling. Several processes/modules need further research, notably supply mechanisms, and floodplain sedimentation.
- Deltas that have high sediment supply rates may be more resilient to sea-level change.

